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1. Introduction 

Cells are equipped with the multiple DNA repair mechanisms to deal with DNA damage 

and transduce the signal downward, which provokes a process to inhibit cell cycle 

progression and to induce DNA repair [1, 2]. The main DNA damage recognition molecule 

is ataxia telangiectasia-mutated (ATM), which is a checkpoint kinase that phosphorylates a 

number of proteins including p53 and BRCA1 in response to DNA damage (Figure 1), and 

thus induce the response to it [3, 4]. Mutations in the ATM have been associated with 

increased risk of developing a cancer. In addition, it is well known that mutations in the p53 

and BRCA1 tumor suppressor genes account for a certain amount of cancers. The p53 

protein is a key transcription factor that regulates several signaling pathways involved in 

the cellular response to genome stress and DNA damage. Through the stress-induced 

activation, p53 triggers the expression of target genes that protect the genetic integrity of 

cells [5, 6]. Normal cells show an exquisite balance among these various mechanisms of 

DNA repair. 

Genomic instability is often linked to DNA repair deficiencies. Standard DNA repair 

pathways available in mammalian cells include homologous repair, nonhomologous end 

joining, single strand annealing and so on. Those are different pathways that repair DNA 

double strand breaks (DSBs) [7]. The DNA repair is essential for the survival of both normal 

and cancer cells. An elaborate set of signaling pathways detect the DSBs and mediate either 

survival on the DNA repair or apoptotic cell death [8, 9]. The DNA damaging agents for 

cancer therapies are potent inducers of cell death triggered by the apoptosis. Recent 

advances in basic science have led to a better understanding of the molecular events 

important in the pathogenesis of cancer. In the present review, we summarize the function 

of prominent DNA repair molecules and the tumor suppressor gene products, p53 and 
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BRCA1 (Figure 2), at a viewpoint of carcinogenic DNA damage and therapeutical 

modulation in cancer. 

 

 

 

 

 
 

 

 
 

Figure 1. Schematic representation of the DNA repair and Growth arrest signaling pathways. Examples 

of the molecule known to act on the regulatory pathways are shown. 
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Figure 2. Schematic diagram indicating the domain structures of the p53 and BRCA1 proteins. The 

functionally important sites including the sites of protein phosphorylation are also shown. 

2. Function and involvement of p53 in DNA repair pathway 

The p53 is a transcription factor that regulates a number of genes and protects against 

genomic instability. It is inactive under normal physiological conditions and activated in 

response to various types of cellular stresses including DNA damage. Under the stress 

conditions, p53 functions to block cell cycle progression [10], and failure of the DNA repair 

mechanisms leads to p53 mediated induction of apoptotic cell death programs. The p53 

protein is also induced and activated in the nucleus by a stress such as hypoxia and 

oxidative stress. In addition, p53 undergoes post-translational modifications such as 

acetylation of lysines, nitration of tyrosines, phosphorylation of serine/threonine residues in 

response to those stresses [11]. Activated p53 protein regulates its downstream genes and 

subsequently inhibits malignant transformation of normal cells. Because p53 plays an 

important role in the transcriptional regulation of genes encoding proteins involved in DNA 

repair and programmed cell death, the modification of p53 protein appears to be a pivotal 

determinant of cells fate in some conditions. 

The p53 protein is involved in a lot of signaling pathways of cell growth regulation, and 

multiple mechanisms have been revealed to accomplish the regulation of p53 activity, which 

determines the selectivity of p53 for specific transcriptional targets, resulting in control of 

the p53 activity. A large number of molecules capable of activating p53 have been 

developed. Studies have documented the importance of Mdm2 in the control of the p53 

activity [12]. MdmX is also recognized as the p53 negative regulators [13]. A p14 ARF 

controls the level of p53 by inhibiting the p53-specific ubiquitin ligase MDM2 [14]. The 

MdmX has been identified as a highly homologous gene that is closely related to Mdm2. 

Although MdmX possesses a p53 binding domain at its N-terminus, the MdmX does not 

have ubiquitin ligase activity like Mdm2. The 53BP1 protein also has a role in the cellular 

response to DNA damage. Convincing evidence exists for the 53BP1 affecting the outcome 

of DNA double strand break repair [15, 16]. Among a number of transcriptional targets of 

the p53, the p21WAF1 has been shown to play an important role in both p53-dependent and 

independent pathways [17]. The p21 WAF1 inhibits cell cycle progression through 

interaction with the cyclin and CDK complexes. CLCA2 has been reported as a p53 target 

gene that regulates the p53 induced apoptotic pathways. In addition, CLCA2 has been 
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shown to be down-regulated in breast cancer tissues [18]. ABL1 includes nuclear localization 

signals and a DNA binding domain through which it mediates DNA damage repair 

functions. Several ABL targets including the p53 are primary regulators for the DNA 

damage induced apoptosis [19, 20]. Ciz1 is an estrogen-responsive gene (ER), whose 

product co-regulates ER by enhancing its transactivation activity. The Ciz1 protein induces 

hypersensitivity of breast cancer cells to estrogen and induces the expression of ER target 

gene such as cyclin D1 [21]. Moreover, Ciz1 promotes the proliferation, anchorage 

independent growth of breast cancer cells. The Ciz1 protein also interacts with a novel 

protein named PDRG1, which is regulated by the p53 and DNA damage [22]. 

The gene of the p53 is frequently mutated in multiple cancer tissues, suggesting that p53 

plays a critical role in preventing cancers. Studies have shown that p53 is mutated or deleted 

in nearly half of all human cancers. During neoplastic progression, the p53 is often mutated 

and fails to perform its normal functions. Mutant p53 can be classified as a loss of function 

or a gain of function proteins depending on the type of mutation. The p53 activation by 

something cellular regulator including a gain of function-mutation may lead to regression of 

an early neoplastic lesion, and therefore may be important in developing cancer chemo-

prevention.  

3. Function and involvement of BRCA1 in DNA repair pathway 

Mutations in the tumor suppressor gene BRCA1 confer an increased risk for the 

development of breast and ovarian cancers [23]. BRCA1 hereditary breast cancer is a type of 

cancer with defects in a DNA repair pathway. Actually, mutation of a single allele of the 

cancer susceptibility gene BRCA1 is associated with increased genomic instability in human 

breast epithelial cells [24], which accelerates the mutation rate of other critical genes. Several 

functions of BRCA1 may contribute to its tumor suppressor activity including roles in the 

DNA repair. Although BRCA1 gene mutations are rare in sporadic breast and/or ovarian 

cancers, BRCA1 protein expression is frequently reduced in the sporadic cases.  

The BRCA1 has the important role in concert with BRCA2, Rad50 and Rad51 [25], in order 

to activate the checkpoints. For example, BRCA1 is colocalized with Rad51, a DNA 

recombinase related to the bacterial RecA protein. The BRCA1 protein becomes hyper-

phosphorylated after exposure to the DNA damaging agents, and the function of BRCA1 

seems to be regulated by the phosphorylation in response to DNA damage. Pharmacological 

inhibition of poly-ADP-ribose polymerase induces cell death in tumors with mutations in 

certain DNA repair pathways, when combined with DNA damaging chemotherapies. Then, 

poly-ADP-ribose polymerase inhibitors have been investigated for the treatment of patients 

with BRCA 1 mutation, as a strategy to potentiate the DNA damaging effects of 

chemotherapy and irradiation [26, 27].  

The BRCA1 plays an important role in maintaining genomic integrity by protecting cells 

from double-strand breaks that arise after DNA damage. The BRCA1 cDNA encodes for 

1863 amino acids protein with an amino terminal zinc ring finger motif and two putative 
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nuclear localization signals (Figure 2). The amino-terminal domain possesses E3 ubiquitin 

ligase activity [28] and the carboxyl-terminal domain is involved in binding to specific 

phospho-proteins. The role of BRCA1 in cell cycle control has been understood by its ability 

to interact with various cyclins and cyclin-dependent kinases. The BRCA1 activates the CDK 

inhibitor p21 and the p53 tumor suppressor protein, which regulates several genes that 

control cell cycle checkpoints. BRCA1 also has binding domains for Rb, Rad50 and Rad51 

[29, 30]. They may also be involved in DNA double strand break repair. Previous studies 

have suggested that the BRCA1 pathway dysfunction may also provide an opportunity for 

therapeutic intervention. 

4. DNA repair and cancer therapy 

DNA damaging strategies are frequently used as nonsurgical therapies against cancers. 

Among them, methylating agents such as cisplatin and ionizing radiation are important. 

DNA double strand breaks are induced following the exposure to the methylating agents 

[31]. Those also activate the DNA damage checkpoints, which induce cell cycle arrest in 

order to repair the DNA damage. However, down-regulation of DNA repair mechanism 

promotes genetic instability, which can lead to carcinogenesis. When defects in certain DNA 

repair molecules are present in immune system, for example, lymphocyte development can 

be compromised and the patients can consequently develop primary immune-deficiencies. 

Those patients often have a predisposition for cancer development. An additional 

consequence of defective DNA repair is cellular hypersensitivity to DNA damaging agents 

[32]. In another words, DNA damaging agents work well in cells with DNA repair defects. 

Mutations in BRCA1, for example, make cancer cells highly susceptible to inhibitors of a 

DNA repair pathway such as poly-ADP-ribose polymerase [33]. Inhibition of DNA repair 

pathway also seems to block the mechanisms that are required for survival in the presence 

of oncogenic mutations. As the consequence, selective elimination of the mutation bearing 

cells occurs, which can upregulate the DNA repair system. Epigenetic mechanisms such as 

histone modifications and DNA methylation have been evaluated with a view for enhancing 

the cancer therapy via the regulation of the expression of genes involved in DNA repair [34].  

Treatment of cancers with DNA damaging therapy causes cytotoxicity through induction of 

high levels of the DNA damage. Cancer cells also respond to DNA damage by activation of 

the DNA repair and may counteract chemo and radiation efficacy. Actually, DNA repair 

have been shown to influence radiosensitivity, and the activation of DNA repair of cancer 

cells might be one of the most important factors in the therapeutical resistance. Inactivation 

of ATM give rise to cell cycle defects in response to irradiation and radiosensitise cancer 

cells [35]. In this way, Zebularine and 5-aza-2'-deoxycytidine are employed as 

radiosensitizing agents [36, 37]. Histone deacetylase inhibitors such as LBH589 and MS-275 

have been shown to enhance radiosensitivity through the similar mechanisms [38]. Several 

histone deacetylase inhibitors exert direct cytotoxic effects and sensitize cancer cells to 

radiotherapy. For example, trichostatin A, which is the potent histone deacetylase inhibitor 

enhances radiosensitivity in a variety of human cancers [39]. A previous study has 
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demonstrated that a histone deacetylase inhibitor downregulate the expression of Rad51, 

which participate in the DNA repair pathway. The marine product, psammaplin A, has 

been shown to have potent cytotoxicity against several cancer cells. As psammaplin A has 

been shown to exhibit histone deacetylase inhibitory activity, this may be a promising 

radiosensitizing agent [40]. Actually, the psammaplin A has the potential to increase 

radiosensitivity in lung cancer A549 and glioblastoma U373MG cells. Thus, it has been 

found that a variety of histone deacetylase inhibitors synergistically enhance the growth 

inhibition and apoptosis of DNA damaging drugs. As numerous parameters may influence 

cancer therapeutical sensitivity, the impairment of DNA repair may be one of the most 

crucial mechanisms underlying enhanced the therapeutical responses. So, detection of DNA 

damage and repair pathways is important component of the intrinsic therapy sensitivity 

(Figure 3). 

Platinum compounds such as cisplatin and carboplatin are one of the most widely used and 

effective chemotherapeutic agents for several cancers including cerebellar tumor and 

medulloblastoma [41]. However, cancer cells often develop resistance to those genotoxic 

drugs. Improvements of the effectiveness to cancers are urgently needed. Some cell lines 

develop acute resistance to cisplatin in the presence of estrogen receptor antagonist. In the 

presence of it, cisplatin treated medulloblastoma cells show recruitment of Rad51 to the sites 

of damaged DNA lesions, and increase DNA repair activity. BRCA1 is required for 

subnuclear assembly of the Rad51 and survival following treatment with the cisplatin [42]. 

DNA damage in MCF7 cells in which estrogen receptor is activated, lead to the inhibition of 

cell cycle checkpoint, which results in less effective DNA repair [43]. DNA damage in the 

cancer cells in which estrogen receptor is inhibited, result in better DNA repair and 

improved cell survival, which attenuated cytotoxic action of cisplatin. 

Proper intake of dietary nutrients including zinc has been considered crucial for preventing 

the initiation of events leading to the development of cancer. The zinc is an essential element 

that is integral to some transcription factors which regulate key cellular functions such as 

the response to oxidative stress and DNA damage repair. Zinc is involved in stabilization 

and activation of the p53 that appears to be an important component of the apoptotic 

process [44]. Thus, zinc provides an effective dietary chemopreventive approach to disease 

in a cancer, and zinc could be effective in the treatment of several cancers. However, it needs 

further exploration to investigate the genetic and epigenetic pathways of the effects by the 

zinc. There is interest in mechanisms of acquired resistance to epidermal growth factor 

receptor (EGFR) inhibitors that are being used in the treatment of a variety of cancers [45]. 

Acquired resistance to EGFR inhibitors is associated with the loss of p53 and cross resistance 

to irradiation. The p53 may enhance sensitivity to irradiation via induction of DNA damage 

repair at this point. The cytotoxic agents target stabilization of p53 through DNA damage. 

Thus, p53 represents an attractive target for therapeutic design and development of 

anticancer agents. Restoration of hypoxia induced p53-mediated signaling may well be 

effective in the targeting of hypoxic cells [46]. The DNA damage response is also induced in 

cells by the hypoxia. 
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Figure 3. Implication of DNA repair modulations in cancer. DNA repair downregulation can contribute 

to genomic instability, which promotes malignant transformation of cells, and leads to cellular 

sensitivity to DNA damaging therapy. DNA repair upregulation can contribute to genomic stability, 

which lead to acquired resistance to the DNA damaging therapy. 

5. Perspective 

It has been paid more attention to the DNA repair as a therapeutic target, because DNA 

repair enzymes regulation and specific cytotoxic cancer therapy may be possible via the 

mechanism based on the appropriate DNA damaging approaches (Figure 4). The cancer cell 

genome is aberrant as a consequence of incomplete DNA repair. As many anticancer drugs 

further reduce the integrity of DNA, they may be able to cause more mutations and another 

cancer, if the lesions are not repaired. However, cancer cells, in which its DNA repair is 

down-regulated, have been shown to exhibit increased sensitivity to DNA damaging 

chemotherapy. A new therapeutic approach will be possibly developed, in which radiation 

therapy or cytotoxic anticancer agents are employed in conjunction with the DNA repair 

modulators. For example, cells exposing to hypoxia are sensitive to inhibition of 

components of the DNA damage response. The DNA damage response induced by hypoxia 

is distinct from the classical pathways induced by the DNA damaging agents due to the 

coincident repression of DNA repair in hypoxic conditions. The principle aims of the 

hypoxia induced DNA damage response seem to be the induction of p53 dependent 

apoptosis. Such combinations can cause severe genomic instability in cancer cells resulting  
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Figure 4. Survival or Apoptosis, that’s the problem in cancer therapy and for individual health. The 

determination either survival or apoptosis is due to the balance between DNA damage and the DNA 

repair levels in cells. 

in apoptotic cancer cell death. Tumor recurrence frequently occurs after genome damaging 

therapy, but the characteristics and the behavior of resistant cancer cells remain unknown. 

Recently, it has been reported that the peri-necrotic tumor cells after radiation therapy 

acquire hypoxia-inducible factor 1 (HIF-1) activity after surviving radiation, which triggers 

their translocation towards tumor blood vessels. So, the HIF-1 inhibitors suppress the 

incidence of post-irradiation tumor recurrence [47]. 

Understanding of the cellular aberrations of cancer cells has allowed the development of 

therapies to target biological pathways. Active inhibition of DNA repair enzyme in a tumor 

can lead to genomic instability and cell death by exploiting the paradigm of synthetic 

lethality, which potentiates anti-neoplastic effects of DNA damaging therapy including 

radiation. Several studies have evaluated the role of DNA repair enzyme inhibitors for 

treatment of cancer [48, 49]. In conclusion, the combination of DNA damaging agent and 

DNA repair enzyme inhibitor results in beneficial improved anticancer efficacy. However, 
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side effects of the blocking of DNA repair system on the normal cell may overcome their 

benefit action. So it is important to precisely investigate the effects in both the target and 

normal cells. Optimizing treatment according to tumor status for DNA-repair biomarkers such 

as BRCA1 could predict response to DNA toxic cancer therapies and might improve the 

response of tumors to the therapies. Variation in DNA repair genes may also be informative. 

Further investigations will be required to identify other additional mechanisms associated 

with the therapeutic sensitivity and other epigenetic drugs such as the histone deacetylase 

inhibitors. Investigations are warranted to determine whether alterations in the methylation 

patterns of set of genes involved in DNA repair might be modulated by the inhibitors. Also, 

future studies should be conducted to determine whether the combination of DNA damaging 

agents and DNA repair modulator has potential for the treatment against cancer. 

Competing interests statement 

The authors declare that they have no competing financial interests. 

Author details 

Yasuko Kitagishi, Mayumi Kobayashi and Satoru Matsuda* 

Department of Environmental Health Science, Nara Women's University Kita-Uoya, 

Nishimachi Nara, Japan 

Acknowledgement 

This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, 

Science and Technology in Japan and Nara Women's University Intramural Grant for Project 

Research.  

6. References 

[1] Frame FM, Maitland NJ (2011) Cancer stem cells, models of study and implications of 

therapy resistance mechanisms. Adv Exp Med Biol. 720: 105-118. 

[2] Athar M, Elmets CA, Kopelovich L (2011) Pharmacological activation of p53 in cancer 

cells. Curr Pharm Des. 17: 631-639. 

[3] Pierce LJ, Haffty BG (2011) Radiotherapy in the treatment of hereditary breast cancer. 

Semin Radiat Oncol. 21: 43-50. 

[4] Bolderson E, Richard DJ, Zhou BB, Khanna KK (2009) Recent advances in cancer 

therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer 

Res. 15: 6314-6320. 

[5] Bykov VJ, Lambert JM, Hainaut P, Wiman KG (2009) Mutant p53 rescue and 

modulation of p53 redox state. Cell Cycle. 8: 2509-2517. 

                                                                 
* Corresponding Author 



 

Oncogene and Cancer – From Bench to Clinic 126 

[6] Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol 

Med. 44: 1529-1535. 

[7] Gostissa M, Alt FW, Chiarle R (2011) Mechanisms that promote and suppress 

chromosomal translocations in lymphocytes. Annu Rev Immunol. 29: 319-350. 

[8] Al-Ejeh F, Kumar R, Wiegmans A, Lakhani SR, Brown MP, Khanna KK (2010) 

Harnessing the complexity of DNA-damage response pathways to improve cancer 

treatment outcomes. Oncogene. 29: 6085-6098. 

[9] Krystof V, Uldrijan S (2010) Cyclin-dependent kinase inhibitors as anticancer drugs. 

Curr Drug Targets. 11: 291-302. 

[10] Kim E, Giese A, Deppert W (2009) Wild-type p53 in cancer cells: when a guardian turns 

into a blackguard. Biochem Pharmacol. 77: 11-20. 

[11] Kim DH, Kundu JK, Surh YJ (2011) Redox modulation of p53: mechanisms and 

functional significance. Mol Carcinog. 50: 222-234. 

[12] Chen H, Kolman K, Lanciloti N, Nerney M, Hays E, Robson C, Chandar N (2012) p53 

and MDM2 are involved in the regulation of osteocalcin gene expression. Exp Cell Res. 

318: 867-876. 

[13] Biderman L, Poyurovsky MV, Assia Y, Manley JL, Prives C (2012) MdmX Is Required 

for p53 Interaction with and Full Induction of the Mdm2 Promoter after Cellular Stress. 

Mol Cell Biol. 32: 1214-1225. 

[14] Gallagher SJ, Kefford RF, Rizos H (2006) The ARF tumour suppressor. Int J Biochem 

Cell Biol. 38: 1637-1641.  

[15] Aly A, Ganesan S (2011) BRCA1, PARP, and 53BP1: conditional synthetic lethality and 

synthetic viability. J Mol Cell Biol. 3: 66-74. 

[16] Kobayashi J, Iwabuchi K, Miyagawa K, Sonoda E, Suzuki K, Takata M, Tauchi H (2008) 

Current topics in DNA double-strand break repair. J Radiat Res. 49: 93-103. 

[17] Lo PK, Lee JS, Sukumar S (2012) The p53-p21WAF1 checkpoint pathway plays a 

protective role in preventing DNA rereplication induced by abrogation of FOXF1 

function. Cell Signal. 24: 316-324. 

[18] Walia V, Ding M, Kumar S, Nie D, Premkumar LS, Elble RC (2009) hCLCA2 Is a p53-

Inducible Inhibitor of Breast Cancer Cell Proliferation. Cancer Res. 69:6624-6632. 

[19] Gonfloni S (2010) DNA damage stress response in germ cells: role of c-Abl and clinical 

implications. Oncogene. 29: 6193-6202. 

[20] Yamaguchi T, Miki Y, Yoshida K (2010) The c-Abl tyrosine kinase stabilizes Pitx1 in the 

apoptotic response to DNA damage. Apoptosis. 15: 927-935. 

[21] den Hollander P, Rayala SK, Coverley D, Kumar R (2006) Ciz1, a Novel DNA-binding 

coactivator of the estrogen receptor alpha, confers hypersensitivity to estrogen action. 

Cancer Res. 66: 11021-11029. 

[22] Jiang L, Luo X, Shi J, Sun H, Sun Q, Sheikh MS, Huang Y (2011) PDRG1, a novel tumor 

marker for multiple malignancies that is selectively regulated by genotoxic stress. 

Cancer Biol Ther. 11: 567-573. 

[23] Chionh F, Mitchell G, Lindeman GJ, Friedlander M, Scott CL (2011) The role of poly 

adenosine diphosphate ribose polymerase inhibitors in breast and ovarian cancer: 

current status and future directions. Asia Pac J Clin Oncol. 7: 197-211. 



 
DNA Repair Molecules and Cancer Therapeutical Responses 127 

[24] Konishi H, Mohseni M, Tamaki A, Garay JP, Croessmann S, Karnan S, Ota A, Wong 

HY, Konishi Y, Karakas B, Tahir K, Abukhdeir AM, Gustin JP, Cidado J, Wang GM, 

Cosgrove D, Cochran R, Jelovac D, Higgins MJ, Arena S, Hawkins L, Lauring J, Gross 

AL, Heaphy CM, Hosokawa Y, Gabrielson E, Meeker AK, Visvanathan K, Argani P, 

Bachman KE, Park BH (2011) Mutation of a single allele of the cancer susceptibility gene 

BRCA1 leads to genomic instability in human breast epithelial cells. Proc Natl Acad Sci 

U S A. 108: 17773-17778. 

[25] Rebbeck TR, Mitra N, Domchek SM, Wan F, Chuai S, Friebel TM, Panossian S, Spurdle 

A, Chenevix-Trench G; kConFab, Singer CF, Pfeiler G, Neuhausen SL, Lynch HT, 

Garber JE, Weitzel JN, Isaacs C, Couch F, Narod SA, Rubinstein WS, Tomlinson GE, 

Ganz PA, Olopade OI, Tung N, Blum JL, Greenberg R, Nathanson KL, Daly MB (2009) 

Modification of ovarian cancer risk by BRCA1/2-interacting genes in a multicenter 

cohort of BRCA1/2 mutation carriers. Cancer Res. 69: 5801-5810.  

[26] Orlando L, Schiavone P, Fedele P, Calvani N, Nacci A, Cinefra M, D'Amico M, Mazzoni 

E, Marino A, Sponziello F, Morelli F, Lombardi L, Silvestris N, Cinieri S (2012) Poly 

(ADP-ribose) polymerase (PARP): rationale, preclinical and clinical evidences of its 

inhibition as breast cancer treatment. Expert Opin Ther Targets. 16:S83-S89.  

[27] Banerjee S, Kaye S (2011) PARP inhibitors in BRCA gene-mutated ovarian cancer and 

beyond. Curr Oncol Rep. 13: 442-449. 

[28] Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin CS, deRooij DG, Hirsch S, Ravi K, Hicks 

JB, Szabolcs M, Jasin M, Baer R, Ludwig T (2011) BRCA1 tumor suppression depends on 

BRCT phosphoprotein binding, but not its E3 ligase activity. Science. 334: 525-528. 

[29] Maniccia AW, Lewis C, Begum N, Xu J, Cui J, Chipitsyna G, Aysola K, Reddy V, Bhat 

G, Fujimura Y, Henderson B, Reddy ES, Rao VN (2009) Mitochondrial localization, 

ELK-1 transcriptional regulation and growth inhibitory functions of BRCA1, BRCA1a, 

and BRCA1b proteins. J Cell Physiol. 219: 634-641. 

[30] Deng CX, Brodie SG (2000) Roles of BRCA1 and its interacting proteins. Bioessays. 22: 

728-737.  

[31] Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity 

of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 

determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer 

Res. 67: 11886-11895. 

[32] Damia G, D'Incalci M (2007) Targeting DNA repair as a promising approach in cancer 

therapy. Eur J Cancer. 43: 1791-1801. 

[33] Nguyen D, Zajac-Kaye M, Rubinstein L, Voeller D, Tomaszewski JE, Kummar S, Chen 

AP, Pommier Y, Doroshow JH, Yang SX (2011) Poly(ADP-ribose) polymerase inhibition 

enhances p53-dependent and -independent DNA damage responses induced by DNA 

damaging agent. Cell Cycle. 10: 4074-4082. 

[34] Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication 

and transcription. Trends Cell Biol. 21: 534-542.  

[35] Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, Novik K, Yang C, 

Agranovich A, McKenzie M, Morris WJ, Olive PL, Marra MA, Moore RA (2009) 

Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant 

prostate brachytherapy patients. Clin Cancer Res. 15: 5008-5016. 



 

Oncogene and Cancer – From Bench to Clinic 128 

[36] Champion C, Guianvarc'h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, 

Arimondo PB, Guieysse-Peugeot AL (2010) Mechanistic insights on the inhibition of c5 

DNA methyltransferases by zebularine. PLoS One. 5: e12388. 

[37] Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco-Miotto T (2011) GSTP1 DNA 

methylation and expression status is indicative of 5-aza-2'-deoxycytidine efficacy in 

human prostate cancer cells. PLoS One. 6: e25634. 

[38] Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in 

clinical trials as anti-cancer agents. J Hematol Oncol. 3: 5.  

[39] Karagiannis TC, Smith AJ, El' Osta A (2004) Radio- and chemo-sensitization of human 

erythroleukemic K562 cells by the histone deacetylase inhibitor Trichostatin A. Hell J 

Nucl Med. 7: 184-191. 

[40] Ahn MY, Jung JH, Na YJ, Kim HS (2008) A natural histone deacetylase inhibitor, 

Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer 

cells. Gynecol Oncol. 108: 27-33. 

[41] Paulino AC, Lobo M, Teh BS, Okcu MF, South M, Butler EB, Su J, Chintagumpala M (2010) 

Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy 

in children with medulloblastoma. Int J Radiat Oncol Biol Phys. 78: 1445-1450.  

[42] Wagner JM, Karnitz LM (2009) Cisplatin-induced DNA damage activates replication 

checkpoint signaling components that differentially affect tumor cell survival. Mol 

Pharmacol. 76: 208-214. 

[43] Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG, Dering J, Reedijk M (2010) 

Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast 

Cancer Res Treat. 123: 113-124.  

[44] Song Y, Elias V, Loban A, Scrimgeour AG, Ho E (2010) Marginal zinc deficiency 

increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol 

Med. 48: 82-88. 

[45] Rosell R, Molina MA, Costa C, Simonetti S, Gimenez-Capitan A, Bertran-Alamillo J, 

Mayo C, Moran T, Mendez P, Cardenal F, Isla D, Provencio M, Cobo M, Insa A, Garcia-

Campelo R, Reguart N, Majem M, Viteri S, Carcereny E, Porta R, Massuti B, Queralt C, 

de Aguirre I, Sanchez JM, Sanchez-Ronco M, Mate JL, Ariza A, Benlloch S, Sanchez JJ, 

Bivona TG, Sawyers CL, Taron M (2011) Pretreatment EGFR T790M mutation and 

BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer 

patients with EGFR mutations. Clin Cancer Res. 17: 1160-1168.  

[46] Gopalani NK, Meena RN, Prasad DN, Ilavazhagan G, Sharma M (2012) Cooperativity 

between inhibition of cytosolic K+ efflux and AMPK activation during suppression of 

hypoxia-induced cellular apoptosis. Int J Biochem Cell Biol. 44: 211-223. 

[47] Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, Zeng L, Ou G, Zhu 

Y, Yoshimura Y, McKenna WG, Muschel RJ, Hiraoka M (2012) Nature Communications 

3, DOI: doi:10.1038/ncomms1786. in press. 

[48] Davar D, Beumer JH, Hamieh L, Tawbi H (2012) Role of PARP Inhibitors in Cancer 

Biology and Therapy. Curr Med Chem. 19:3907-3921. 

[49] Park Y, Moriyama A, Kitahara T, Yoshida Y, Urita T, Kato R (2012) Triple-negative 

breast cancer and poly(ADP-ribose) polymerase inhibitors. Anticancer Agents Med 

Chem. 12:672-677. 


