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Improving Machining Accuracy Using Smart Materials 
 

 

Maki K. Rashid 

 

1. Introduction 

Both economical and ecological factors might encourage conventional ma-

chines to continue in service by healing tool vibration problems. Higher pro-

ductivity in automated manufacturing system brought to the attention the im-

portance of machine tool error elimination. Various factors might affect the 

machining process (Merritt, 1965), some of them are non-measurable, and oth-

ers might change in real-time. However, the wider use and availability of suit-

able and economical microcontrollers encouraged the use of intelligent control 

scheme to overcome such time dependent problem. Large magnitude of excita-

tion forces with a tiny relative motion between cutting tool and working piece 

promote the use of smart material actuators that interfaced with microcontrol-

lers to counteract such motion errors (Dold, 1996). Rigid fixture is a require-

ment to minimize displacements of cutting tools from its nominal position 

during machining. However, the reconfigurable manufacturing era encourage 

the use of small fixtures with lower mass (Gopalakrishnan, et al., 2002) and 

(Moo n& Kota, 2002).   

Previous dynamic modeling of a smart toolpost (Frankpitt, 1995) is based on 

linear piezo-ceramic actuator. The system is either modeled as lumped single 

rigid mass incorporating tool carrier (holder), tool bit, and piezo-actuator. Or 

by using an effective mass, stiffness, and, damping coefficients for the most 

dominant mode of vibration. The fundamentals of this model are incorporated 

to design an adaptive controller using the measured current, and, voltage ap-

plied to the actuator as a control signals. Based on identical principles (Eshete, 

1996) and (Zhang et al., 1995) a mathematical model is derived for smart tool 

post using PMN ceramic material. A control system, and real time microproc-

essor implementation was examined in (Dold, 1996].  Sensitivity analysis for 

the toolpost design modifications and interfacing parameters on tool dynamic 

response require further elaboration.  No conclusions are drawn related to bet-

ter design and selection of actuator, tool holder and tool bit stiffness ratios. In 
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case of a future geometrical change, the validity of the lumped masses in sys-

tem modeling is questionable. Nature and type of signals that control smart 

material actuator and how can affect toolpost dynamic response suffer from 

scarcity of information.  Recently a systematic engineering approach is used to 

investigate an optimum fixture–workpiece contacts property (Satyanarayana 

& Melkote, 2004), machining fixtures dimension (Hurtado & Melkote, 2001) 

and structural stiffness in toolpost dynamic (Rashid, 2004) by using the finite 

element approach. 

Present analysis investigates the capability of smart material in tool error 

elimination using finite element modeling. This incorporates structural stiff-

ness evaluations for toolpost actuator, tool holder, holder fixture, and tool bit. 

Radial tool movement relative to the workpiece is regarded as a main source 

for cutting tool error. Considerations are given for evaluating lumped mass 

modeling, effectiveness of dynamic absorber in case of PWM voltage activa-

tion and effect of toolpost stiffness ratios on error elimination. Awareness is 

given for the model to be capable of handling large variations in design pa-

rameters for future toolpost development in the case of limited space and 

weight requirements. Other issues are related to the effectiveness of dynamic 

absorber presence, switching rate and voltage modifications to minimize tool 

error. 

2. Toolpost FEM Model 

In this work the Lead Zirconate Titanate (PZT), is the intelligent material for 

the investigated smart toolpost actuator. This encouraged by the well-

developed theoretical analysis of this material and its common use. Two mod-

els are applied for obtaining the toolpost results. The first is shown in Fig. 1 (a) 

represented by actuator, tool carrier (holder), diaphragm support and tool bit 

as a spring buffer between tool carrier and the axially actuated cutting force at 

tool tip ( radial to the work piece). The second model in Fig. 1 (b) is added to it 

the dynamic absorber as a disk supported by a diaphragm. In this work 8-node 

isoparametric solid element is used for domain discretization. The FEM model 

is tested in terms of mesh refinement, and, the results compared to a similar 

verified analytical work. Maximum difference between calculated values 

throughout verifications is within 8%. 
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Figure 1. Toolpost Models 

 

Conventional stacked PZT actuator incorporates polarized ferroelectric ce-

ramic in the direction of actuation, adhesive, supporting structure, and elec-

trodes wired electrically as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. PZT Stacked Actuator 
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Modeling of active materials and toolpost are based on the general constitutive 

equations of linear piezoelectricity and the equations of mechanical and elec-

trical balance (Piefort, V. 2001). The equations are thus expressed as  
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The momentum balance equation is 
 

 (2) 

 

Moreover, the electric balance equation is 
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Where }{T represents the stress vector, }{S , the strain vector, }{E , the electric 

field, }{D , the electric displacement, ][ Ec , the elastic coefficients at constant 

}{E , ][
Sε , the dielectric coefficients at constant }{S , and ][e , the piezoelec-

tric coupling coefficients. }{u is the mechanical displacement vector and 
22 /}{}{ tuu ∂∂=&&  is the acceleration. φ  is the electric potential (voltage). The 

boundary conditions are expressed in Fig. 1, where zero displacements are as-

signed to actuator left end and, fixed outer edge for supporting diaphragm. 

Problem description is finalized by assigning voltage to actuator electrodes 

and applying force at tool tip.  

The unknowns are the displacements vector iu  and the electric potential val-

ues iφ  at node i. The displacement and voltage fields at arbitrary locations 

within elements are determined by a linear combination of polynomial inter-

polation or shape functions uN  and φN  respectively. The nodal values of these 

fields are used as coefficients. The displacement field }{u and the electric po-

tential φ  over an element are related to the corresponding node values 

}{ iu and }{ iφ by the mean of the shape functions ][ uN , and ][ φN   
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The dynamic equations of a piezoelectric continuum derived from the Hamil-

ton principle, in which the Lagrangian and the virtual work are properly 

adapted to include the electrical contributions as well as the mechanical ones 

(Piefort, 2001 et al., 1990). Taking into account the constitutive Eqs. (1) and 

substituting the LaGrangian and virtual work into Hamilton’s principle to 

yields variational equation that satisfy any arbitrary deviation of the displace-

ments }{ iu and electrical potentials }{ iφ compatible with the essential boundary 

conditions, and then incorporate Eq. (4) to obtain 
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][ uum , ][ uuk and, ][ uuc are the mechanical mass, stiffness and damping matrices, 

respectively. ][ φuk is the piezoelectric coupling matrix. ][ φφk is the dielectric 

stiffness matrix. }{ if and }{ iq are the nodal mechanical force and electric charge 

vectors, respectively. }{ iu and, }{ iφ are the nodal displacement and potential 

vectors, respectively. For the sake of brevity, (Zienkiewicz & Taylor, 2000) dis-

cuss the scheme by which the elemental contributions are assembled to form 

the global system matrices. 

 

 

3. Lumped Versus FEM Modeling 

Lumped mass modeling for PZT actuator and tool carrier produce simple 

closed form solutions that are of interest to the designer and modeler (Frank-

pitt, 1995 and, Piefort, 2001).  However, model validity of such representation 

for different design applications deserves more attention. In some applications, 

smart materials are used simultaneously in sensing and actuation. Displace-

ment sensing at different locations is dependent on system dynamic, design 

geometry and system rigidity.  Controller effectiveness relies on a valid dy-

namic system representation and the limits of legitimacy of such model.  

A comparative result for a deviation in natural frequency of lumped mass ver-

sus continuous system is discussed for a single actuator as a first step toward 

an integrated tool post. 
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3.1 Comparative Results for Actuator Modeling  

Before solving the time-dependent equation of motion for the smart toolpost, 

the mode shapes and the resonant frequencies of undamped system are ob-

tained by using Eigenvalue analysis. The Eigenvalue problem is carried using 

a reduced matrix system obtained by matrix condensation of structural and 

potential degrees of freedom. Free vibration implies  
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iuu UmK ω−  

(6) 

 

Where ω  is the natural frequency, the new stiffness matrix ][ *K  indicates that 

structure is electromechanically stiffened. The modal analysis is based on the 

orthogonality of natural modes and expansion theorem (Zienkiewicz, and Tay-

lor, 2000 a & b). Usually the actuator is composed off several PZT layers, elec-

trodes, adhesive, and supporting structure as shown in Fig. 2. The effective 

stiffness of the actuator (STIFA) is the stiffness summation of all individual 

layers neglecting all piezoelectric effects.  
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For comparison the effective actuator mass assumed to be 20 or 30% of the lay-

ers masses as indicated in Fig. 3. 
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The FEM solution of the first natural frequency for short circuit and open cir-

cuit actuator are compared to the lumped mass frequency as obtained from Eq. 

(9) and the ratio is plotted in Fig. 3.  

 



Improving Machining Accuracy Using Smart Materials    507 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3. First critical frequency ratio /FEM/Lumped) versus layers thickness ratios for 

short circuit (SC) and open circuit (OC). 
 

 

PZT8 properties from (Berlincourt, & Krueger, 2000) are used in FEM calcula-

tions. Plotted results in Fig. 3 are not incorporating stiffness variation resulted 

from actuator fabrication. Short circuit actuator shows a decrease in natural 

frequency, which indicates actuator stiffness reduction. Actuator short and 

open circuit conditions maps the two stiffness extremes and such data provide 

designers quick tool for estimating natural frequencies in early stages of de-

sign. 

3.2 Comparative Results for Toolpost Model Incorporating Dynamic 
Absorber 

In lumped modeling shown in Fig. 4 the tool carrier is considered as a rigid 

mass added to it one third of the PZT actuator mass and assigned (MT). The 

dynamic absorber is the second mass (Md) of the two-degree of freedom sys-

tem and compared to the FEM solution to investigate lumped model validity 

of such system. A close form solution is obtained for the two-degree of free-

dom system incorporating the piezoelectric coupling effects (Frankpitt, 1995, 

and, Abboud, Wojcik, Vaughan, Mould, Powell, & Nikodym, 1998). Neverthe-

less, there solution does not answer the significant deviation between FEM and 
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lumped mass solutions in the case of no pizo effects. The supporting dia-

phragm stiffness (KD) is calculated as a plate with central hole fixed at both in-

ner and outer edges (Roark, and Young, 1975) then, added to actuator stiffness 

to form a cushion for tool carrier.   

The actuator stiffness (KA) is calculated as in Fig. 2. Then the dynamic absorber 

diaphragm stiffness for dynamic absorber (Kd) is considered as a plate with 

central hole fixed at both inner and outer edges 

From Fig. 4 the equations of lumped mass and stiffness matrices for a two-

degree of freedom system is: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−++
=

⎥
⎦

⎤
⎢
⎣

⎡
=

dd

ddDA

d

T

KK

KKKK
K

M

M
M

][

)10(

0

0
][

 
(10) 

 

 

 

 

 

 

 

 

 

 

Figure 4. Tool post with dynamic absorber 
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Then the dynamic equation of motion and its characteristic equations for un-

damped free vibration can be derived as 
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Two natural frequencies are calculated from Eq. (11). Then lumped model fre-

quencies )( Lumpedω  compared with the first three natural frequencies of the FEM 

model )( FEMω  taking into consideration the mode shape and the Eigenvalue re-

sults. Three frequency ratios are compared namely stLumpedstFEM 11 )/()( ωω for 1st 

critical, ndLumpedndFEM 22 )/()( ωω for 2nd critical, and ndLumpedrdFEM 23 )/()( ωω for 3rd 

critical. 

Figure 5 show such variation of frequency ratios on log-log plot against the ra-

tio of diaphragm support stiffness to actuator stiffness for a unit ratio between 

tool carriers to actuator stiffness (KT/KA).  In general, the FEM model predicts 

lower natural frequencies for the toolpost and this deviation increases with the 

increase in the ratio of diaphragm support to actuator stiffness (KD/KA).   

Increasing the ratio of tool carrier to actuator stiffness (KT/KA) ten times as in 

Fig. 5 yields a closer FEM solution to the lumped model at low diaphragm 

support to actuator stiffness ratio as shown in Fig. 6. However, the deviation 

again increases with the increase in diaphragm support to actuator stiffness ra-

tio (KD/KA). 

 

 

 

 

 

 

Figure 5. Frequency ratio of REM to lumped masses against diaphragm support to ac-

tuator stiffness  (KT/KA =1.0, open circuit) 
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Figure 6. Frequency ratio of FEM to lumped masses against diaphragm support to ac-

tuator stiffness ratio ( KT/KA = 10.0, open circuit) 

 

Although the validity of lumped mass modeling can be defined in, a specific 

region but the broad requirement of design applications would limit the use of 

such narrow domain. As noticed, the critical frequencies are quite dependent 

on stiffness ratio and the FEM third critical can be the same as 2nd critical fre-

quency of lumped mass modeling at high diaphragm stiffness ratio. 
 

4. Results of Estimated Static Force Availability for Error Elimination 

Elimination of error in tool positioning under static condition relies on PZT ac-

tuator capability in resisting axial tool force within the range of motion.  To 

have initial guessing for the generated force a displacement curve is developed 

for the investigated PZT toolpost under static condition. Figure 7 shows such 

force-displacement characteristics at different levels of voltage intensity and 

for specified values of tool tip to actuator stiffness ratio (TIP-Ratio), diaphragm 

to actuator stiffness ratio (D-Ratio), and, tool carrier to actuator stiffness ratio 

(T-Ratio).  

Calculations conducted in this work proved the importance of increasing tool 

tip to actuator stiffness, tool carrier to actuator stiffness and, reducing dia-

phragm to actuator stiffness ratios for a better utilization of actuator operating 

range. Figuring out an appropriate actuator for specific application is by relat-

ing the cutting force value to the information given in Fig. 7. However, such 
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information does not predict the required dynamic actuator voltage during 

service.  Smart material data, toolpost dimensions and, actuator layers thick-

nesses are given in Table 1 for both static and transient force-displacements 

calculations. 

 

Item Value Unit 

Cylindrical PZT-8 Stack 

PZT Thickness 0.09e- m 

Electrode Thickness 0.03e- m 

Structural support 0.03e- m 

Adhesive Thickness 10.0e- m 

Number of layers 500  

Effective Radius 5.0e-3 m 

Steel Cylindrical Tool Carrier (holder) 

Radius 10.0e-3 m 

Length 65.35e- m 

Steel Tool Bit Effective Length 

Assumed Effective 20.0e-3 m 

Steel Diaphragm 

Thickness 0.5e-3 m 

Outside Radius 20.0e-3 m 

Table 1 Toolpost dimension 
 

 

 

 

 

 

 

 

Figure 7. Tool load versus deformation for different PZT voltage intensity and fixed 

structural stiffnesses 
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5. Toolpost Time Response Due to Combined Effect of Voltage and Force 
Activation: 

Evaluation of switching effects and system damping on toolpost response dur-

ing error elimination are quantified by solving Eq. (5) in time domain for the 

system shown in Fig. 1.  The PZT stack pattern is given in Table 1 that incorpo-

rates PZT layers, supporting structure, and electrodes for alternating poling 

direction. A thin layer of glue bonds wafers to one another. Because of this ar-

rangement, the mechanical properties act in series. To reduce computational 

time the PZT stack is treated as a monolithic layer and precautions are taken 

accordingly for electric field intensity and other factors for multi-layer.  

5.1 Voltage Switching Methodology  

Deviation in position between tool tip and workpiece can be minimized by 

appropriate voltage activation to the PZT actuator. The easy way of activating 

smart material for vibration suppression is by using Pulse Width Modulation 

(PWM). It is a common technique available with the microcontroller units 

(MCU) to govern the time average of power input to actuators.  Our main con-

cern is the time dependent response accompanying the tool error suppression 

in using the PWM for smart material actuator. Voltage activation for smart ma-

terial might either based on a piezo stack with force sensing layer or using an 

appropriate type of displacement sensor to detect tool carrier motion. In both 

methods sensing location should reflect cutting tool position error correctly. 

Switching circuits (Luan, and Lee, 1998) are not of our concern; however, the 

required voltage level and the resulted motion are among the targeted results 

in this work.  

 

 

 

 

 

 

 

 
 

 

Figure 8. Tool carrier compressive presssure (P) accompanying PZT voltage activation inten-

sity (E) plotted on a common time axis. 
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Figure 8 shows two cycles of voltage activation for the PZT actuator using 

PWM to oppose the compressive time dependent cutting force.  The waveform 

of the compressive cutting force is used as a reference for the PWM voltage 

with a chance to incorporate the time delay.  All present work results are as-

suming harmonic force actuation. 

5.2 Solution Scheme for the Toolpost Time Response 

The classical Newmark algorithm (Zienkiewicz, and Taylor, 2000b) solves the 

system of equations for such a nonlinear problem. Time step-by-step integra-

tion is used for solving Eq. (5) for the system shown in Fig. 1. This scheme as-

sumes the system-damping matrix as linear combination of stiffness and mass 

matrices (Rayleigh damping) (Bathe, 1982): 

 

][][][ uuuuuu kmc βα +=  (12) 

 
Both α  and β are constants to be determined from two proposed modal 

damping ratios ( iξ ) (1% and 5%) for first and second natural frequencies re-

spectively which are obtained from the FEM model and the equation of modal 

damping as given in (Bathe, K.J. 1982). 

5.3 Results for the Tool Time Transient Response  

Synchronization of voltage activation with tool radial force can be reached ei-

ther through a sensing layer in actuator stack or by using a displacement sen-

sor for detecting tool carrier movements. The effective use of any of these 

techniques requires a profound investigation for toolpost dynamic behavior as 

related to its structural stiffness properties. 

Tool dynamic and structural design for a reconfigurable machine tool 

(Gopalakrishnan, Fedewa, Mehrabi, Kota, & Orlandea, 2002, and, Moon & 

Kota, 2002] elevated new design challenges. Among them are methods for re-

ducing tool holder size or developing a special tactics in using smart actuators 

for reaching targeted precision.  

Tool cutting force predictions in dynamic calculations involve some difficulties 

due to the number of involved variables and the dynamic nature of the prob-

lem. In general approximate static force relation (Frankpitt, 1995) in terms of 
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depth of cut d (mm), cutting speed V (mm/s), feed f (mm/rev), and, coeffi-

cients describing nonlinear relationships ( γλκ ,,, and ) can be used as first guess 

to express the general trends, 

 

rrr KWheretfVdKNF ;)()( κγλ=  is a general constant. 

rrr KtfVdKF )(κγλ=    a general constant 

(13) 

 

The factors γλ,,rK and, κ are to be calibrated for each tool-workpiece. These 

constants are assigned to a specific material combinations, process types, tool-

wear condition, workpiece hardness, tool geometry, and speed. Fluctuation of 

the cutting force is inherent and associated with cutting tool motion. Such ran-

domness can vary with different cutting processes and material combinations.  

For present results, toolpost dimension and, material are given in Table 1. Pre-

vious work (Rashid, M. K. 2004) indicated the use of few PWM, cycles per 

force period produced unfavorable switching dynamic excitation. Twenty 

PWM cycles for each force period produce good results more than forty has a 

little effect. In all calculations a value of ten is assigned to tool bit to actuator 

stiffness ratio (TIP-Ratio) and tool carrier to actuator stiffness ratio (T-Ratio). 

On the contrary, the diaphragm to actuator stiffness ratio (D-Ratio) assigned a 

low value of one tenth. The importances of such ratios are related to the force 

availability for error elimination and accurate displacement detection. 

Figure 5 shows a tiny difference between resonant frequencies obtained from 

both FEM and lumped model solutions in case of existence of low diaphragm 

to actuator stiffness (D-Ratio) and high tool bit to actuator stiffness (TIP-Ratio) 

ratios. Under such conditions incorporating a classical dynamic absorber to a 

toolpost excited by harmonic inputs should attenuate vibration error. Our 

main concern is the effectiveness of such dynamic absorber for activated actua-

tor by a PWM voltage instead of a continuous harmonic input voltage as the 

case in this work. 

From classical dynamic absorber theory and for optimum damping, the ap-

plied force frequency must be tuned to absorber natural frequency. Also a 

mass ratio of 0.25 must be secured between dynamic absorber and tool carrier. 

Then the natural frequency ratio of absorber to tool carrier based on classical 

dynamic absorber under pure harmonic inputs and optimum-damping condi-

tion is obtained from Eq. (14). This natural frequency ratio is enforced to the 

FEM model by adjusting damper diaphragm stiffness in Fig. 4. Damper effec-
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No-A  No dynamic absorber   

Y-A  Yes absorber is incorporated  

Low-D Low Damping 

Hi-D High Damping (10 x Low-D) 

M-Sw Modified mean voltage during 

Switching 

Un-Sw Un-modified mean voltage during 

Switching 

No-volt No voltage applied to actuator 

Y-volt Yes voltage applied to actuator 

 

tiveness on error elimination is then compared to other toolpost design pa-

rameters under the condition of PWM voltage activation as shown in Figs. 9-

13. Graph legends terminology of Figs. 9-13 are given in table 2. 

 

Natural frequency ratio of 

absorber to tool carrier = 
)14(

)/(1

1

Td MM+
 (14) 

 

 

 

 

 

 

 

Table 2. 

 

Figure 9 shows a significant error reduction can be attained by modifying the 

mean voltage of the PWM during the force actuation period. A single scheme 

is used for conducting voltage modification based on harmonic sine wave of 

the tool actuation force and described by the following set of equations: 

 

If  |sin ωt| < 0.2 then multiply present mean voltage by four, 

If  |sin ωt | > 0.2 and  sin ωt < 0.6 do not change the mean voltage, 

If  |sin ωt| > 0.6 then multiply present mean voltage by (0.65). 

 
Applying smart material actuator with unmodified mean voltage might dete-

riorate the error elimination process as shown in Figs. 9-13. Utilizing smart 

material for tool error elimination require assurance for both force sensing di-

rection and proper voltage modification to reach the targeted beneficial results.  

Dynamic absorber effectiveness in error elimination is frequency dependent. 

Absorber presence in Figs. 9, 11 and 13 aggravated the error elimination im-

provement made by voltage modification. In all of these results, the dynamic 
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absorber natural frequency is tuned according to Eq. (14). Figures 9 and 11 are 

plotted for 2-cycles to improve comparison among error results. In Fig. 10, a 

small improvement is resulted due to the dynamic absorber presence but it is 

not a solid case to measure on. Figure 13 demonstrate a counteracting effect for 

the dynamic absorber even with existence of the applied modified voltage to 

the smart material actuator. The use of high damping (Hi-D) with ten folds the 

low damping (Low-D) does not have same effectiveness of using smart mate-

rial actuator with properly modified mean voltage during the PWM. Con-

ducted calculations demonstrated no significant effects for the time delay be-

tween applied voltage and activation force if the delay controlled to be within 

10% of the force period.  

 

 

 

 

 

 

 

 
Figure 9. PZT Voltage Intensity and Tool tip displacements Versus time at 500 Hz 

 

The estimated radial cutting force value from Eq. (13) and the static force-

displacement relationship shown in Fig. 7 are important in initial guessing for 

the required applied voltage. But the final magnitude of dynamic applied volt-

age is deduced from the associated error resulted from the modification meth-

odology for the mean voltage during PWM.  
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Figure 10. PZT Voltage Intensity and Tool tip displacements Versus time at 1000 Hz 

 

 

 

 

 

 

Figure 11. PZT Voltage Intensity and Tool tip displacements Versus time at 1500 Hz 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. PZT Voltage Intensity and Tool tip displacements Versus time at 2000Hz 
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Figure 13. PZT Voltage Intensity and Tool tip displacements Versus time at 2000Hz 

 

6. Conclusions 

 

Attenuating tool vibration error in old turning machines can reduce industrial 

waste, save money and, improve design flexibility for new cutting tools. Using 

smart materials in curing machine tool vibration require special attention. The 

modification of the applied mean voltage during PWM plays a major rule in 

the effective use of smart materials in tool error elimination.  The use of the 

dynamic absorber showed a slight error reduction in some cases and was not 

effective in the others. Increasing damping does not show a significant error 

variation in comparison to the use of smart actuator with modified mean volt-

age. The FEM solution provided the valid range for the lumped mass model-

ing to improve both dynamic system modeling and controller design. Tool bit 

and tool carrier (holder) to actuator stiffness are preferred to be high when 

both space and weight limitations does not exist. Error elimination requires at 

least twenty PWM cycles for each disturbing force period to reduce switching 

transient effects. A reasonable time delay of less than 10% between displace-

ment sensing and actuation has no significance on error elimination. There is a 

significant difference between the dynamic and the static prediction of the re-

quired actuator voltage for error elimination.  
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