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1. Introduction

In the chapter, we give results of investigation of dynamics of linear and nonlinear photonic
crystals (PhC).

It is well-known fact that modern semiconductor electronic data processing systems are
experiencing fundamental problems with further improvement of the microprocessors
productivity. One of the alternative ways is to use hybrid or all-optical circuits on the basis
of PhCs.

The heart of such all-optical circuit is nonlinear PhC which may provide the basis for logic,
memory cells, switching, local routing, power limiters, isolators, etc. Therefore, it is of crucial
importance to understand the processes taking place in such components and optimize their
characteristics. One of the most important points of view to the PhCs is their interaction with
short and ultra-short pulses which may limit the productivity of an optical circuit. Recently,
there have been proposed a great number of PhC components bases on different operating
principles. However, being resonant-transmitting structures, PhCs themselves reduce the
possibility to work with ultra-short pulses.

In the papers of the authors, it have been proposed to use wideband PhC filters instead
of high-Q ones [9], [6]. Lower resonant properties as compared to high-Q filters, allow to
reduce distortion of the signal passing through such filters. In this chapter we present the
investigation results and analysis of the temporal response of different kinds of wideband
PhC filters. Namely, we consider filters made of linear optical materials which can be used
for local multiplexing and routing and the ones made of nonlinear optical materials which
properties strictly depend on the radiation intensity.

© 2013 Guryev et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



We explain the computation process of such characteristics of the PhC filters as transmission

spectra, eye-diagrams and the band structure.

The chapter is organized as follows:

In the first section of the chapter, we briefly explain theoretical background under the

computation of dynamic characteristics of micro-devices. Then, in the second section, we

give the results of investigation of linear wideband PhC filters. We concentrate attention on

transmission spectra and an eye-diagram of such filters. Finally, we demonstrate application

of the PhC filters to the wavelength division multiplexing and analyze their limitations. The

third section of the chapter is dedicated to nonlinear PhC filters and their characterization.

We first present one of the methods of the band structure computation of nonlinar PhCs.

After this, we investigate such important application of the nonlinear PhC filters as all-optical

flip-flop which may become the basis of optical data processing systems.

Although we do not provide here the detailed description of the physical processes below the

presented characteristics, the reader can find them in the book “Photonic Crystals: Physics

and practical modeling” [8]

2. Computing the temporal response of the PhC filter

The term PhC is usually used to define infinite periodic structure. However, such structures

do not have many practical applications since they only possess artificial reflecting and

refracting properties and cannot control effectively the radiation flow. To implement effective

radiation flow control, we have to create at least one defect of the periodic structure to be

able to localize the radiation. However, in real devices, we should be able to provide light

guiding, localization and dynamic routing.

Therefore, speaking of PhC devices we are usually assume their complex structure which

cannot be represented by strictly periodic variation of the refractive index. In this situation,

the only way to find the field distribution inside the PhC device is to apply numerical

methods. Due to recent advance in computing technologies, there have been appeared a wide

variety of numerical methods giving time-dependent field distribution in complex nonlinear

media. Most of them are highly time- and resource-consumable. However, the most easy

to implement and, yet, quite effective is the finite difference time-domain (FDTD) method

which allows computing field distribution in nonlinear complex media such as PhC devices.

In general, there have to be considered complete system of Maxwell’s equations which, in

linear case represents six (or even twelve [1]) equations. One simplification can be made

though. Namely, most of the models are based on 2D PhC of different configuration since

they possess wide photonic band gap and, on the other hand, provide enough flexibility to

design wide variety of the components.

The system of Maxwell’s equations can be reduced to 2D case considering certain

polarization. Namely, in case of TM polarization (as referred to in [7]), we have the following

system of equations [11]:
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where ~J is an electric current density which, properly defined, determines nonlinearity of the
material.

Particularly, in case of non-saturable Kerr nonlinearity polarization current density is given
in following form [4]:

~J =
∂~P

∂t
=

∂

∂t
ε0χ(1)~E +

∂

∂t
ε0χ(3)|~E|2~E (3)

where χ(1) and χ(3) are the terms of linear and nonlinear susceptibility.

However, materials usually possess non-saturable Kerr properties only within low radiation
intensity range and, therefore, we consider Kerr-saturable nonlinear materials and nonlinear

susceptibility terms. Assuming slowly varying amplitude of the field

(

∂

∂t
|~E|2 ≈ 0

)

, we can

present nonlinear polarization term, by the analogy with [2], in following form:
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0
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and corresponding polarization current takes form:
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where nonlinearity term is now presented in form of saturable function.
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Applying the FDTD technique expanded with auxiliary differential equation for the
nonlinear medium [4] with polarization current given in form of (5) and assuming
perfectly-matched layer [1] at the boundary of computation region, we can compute
time-dependent electromagnetic field distribution in nonlinear saturable media.

3. Passive wideband PhC filters

Modern trends in data processing and transmission systems require new compact and
high-speed solutions for all-optical circuits. Particularly, this concerns precise spectral
filtering which can be implemented on the basis of PhCs. Recently, two wide categories
of the PhC filters have been investigated, namely, high-Q and wideband ones. The first
kind of filters possesses incredible spectral characteristics and suppose to be used in
telecommunication for dense WDM demultiplexing. However, such filters have several
disadvantages which make them hardly implemented in the nearest future. Particularly,
recently designed high-Q filters require technology precision which is only possible in
laboratory conditions. Moreover, due to their resonant nature, such filters cannot be used in
the systems utilizing ultra-short pulses.

On the other hand, wideband filters which Q-factor is much lower than the one of the
high-Q filter, possess comparatively low resonant properties which makes them suitable for
ultra-short pulses application. Moreover, their characteristics are not affected too much by
slight variation of the geometric parameters.

3.1. PhC filters spectrum

When designing wideband PhC filters, first thing we need to know is their spectral
properties. Various numerical methods can be applied to compute such characteristics.

Particularly, when using the FDTD method, there are two different ways to find transmission
or reflection spectrum of the PhC device. The first one is based on analysis of the response
to continuous wave (CW) radiation. The second method uses Fourier analysis of the pulsed
signal.

Analysis of the pulsed response is fast and accurate way to compute the spectrum. Basically,
it is computed as a Fourier transform of the temporal response of the structure taken in
certain spatial point.

However, this technique is only suitable when dealing with transversally-confined radiation
(i.e. in case of the PhC waveguides as shown in Figure 1a). When it is necessary to find the
spectrum in case of scattered radiation distribution (as presented if Figure 1b), the spectrum
should be computed for each spatial point of interest.

3.1.1. Analysis of the CW response of the structure

CW signal usually possesses very narrow spectra and, therefore, computing the structure
response to the CW we find its transmission of reflection at a specific wavelength. To compute
the whole spectrum of the structure the response should be obtained at several wavelengths
according to required spectrum.

To provide high accuracy of the method, several criteria should be satisfied:
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Figure 1. Confined or concentrated (a) and scattered (b) field distribution

• Every moment of time the radiation should be integrated along all the area of interest.

• Computation time should be long enough to achieve constant radiation intensity at the
output (i.e. to pass all the transition processes).

• Spectral points should be selected close enough to avoid discontinuities of the final
spectrum.

In case of PhC devices, the main application of such technique is computing the transmission
spectra of bulk PhCs where the radiation is scattered.

3.1.2. Analysis of the pulse response of the structure

Unlike the CW radiation, pulsed one possesses wide spectrum which can be easily found
from its Fourier transform.

To find the transmission spectrum of the PhC filter, it is first necessary to find temporal
response of the filter to the launched Gaussian pulse (or any other wide-spectrum pulse).
The temporal response is taken at a single spatial point. After a certain time, the Fourier
transform of the temporal response can be taken. However, the spectrum obtained in such
a way depends on the spectrum of the pulse launched to the system. Therefore, to find the
final spectrum of the structure it is necessary to divide it by the spectrum of the initial pulse.

In general, to implement the method, certain steps should be made:

1. Set up the structure (i.e. define the refractive index distribution)

2. Set up the launch field before the structure

3. Run the simulation for a time much longer than the pulse lasts. The longer the simulation
lasts, the higher the resolution of the spectrum will be.

4. Save the temporal distribution of one the field components after the structure

5. Find the Fourier transform of this temporal distribution.

6. Normalize the frequency.
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3.2. Building an eye-diagram

In the electronic devices design and testing, it is usually used an eye-diagram to determine
the quality of the transition characteristics. In fact, an eye diagram is represented by the
series of the device work cycles drawn one over another. During this cycles the device is
randomly turned on and off. Resulting characteristic resembles a human eye. If an “eye” is
“closed” this points to poor quality of the device. In its “open” state, an eye’s dimensions
define parameters of the device such as bit error rate (BER).

In case of active and passive PhC wideband filters, an eye diagram can be used as well
to define the quality of the device. Since a PhC possesses resonant transmission (i.e. the
radiation is propagated from one element to another) after the device working cycle a
fraction of an optical radiation is still remaining in the PhC elements. If this fraction is
large enough, it will interfere with the next pulse resulting in radiation accumulation from
pulse to pulse. After several pulses, the remaining radiation level can be large enough to
affect the functioning of the nonlinear device or produce an error bit.

To detect such effects and also to find the pulse shape variation at the output of the PhC
filter, an eye-diagram of the device can be built and analyzed.

Let us consider the process of building an eye-diagram of a simple nonlinear PhC wideband
filter working at the edge of the photonic band gap. The filter is confined with linear
PhC waveguide. We will now investigate its response to the sequence of Gaussian signals
of different periods. In the first case, the period is large enough to release the radiation
completely. The second pulses series possesses higher frequency.

The response of the filter in both cases is given in top of the Figure 2. To build an eye-diagram,
it is important to know the period of the pulses (which in most cases is not obvious from
the response). Since we know the repetition rate of the input pulses, we will use it. Now
we only need to skip the transition time of the filter and split the response characteristic into
equal pieces. Here we present the Matlab program which builds an eye-diagram from the
response to the random pulses series. The response should be saved into a separate file in
form of sequence “Time E(Time)”.

%The program is intended to represent computed
%temporal response of an optical structure to
% a series of pulses, as an eye diagram. The
%response should be given in form of amplitute vs
%time

%Number of pulses in the response
num_pulses=30;
%Number of time points within one pulse
%It should be determined from a computation method
period=1280;
%Initial point of the series (non zero due to
%finite value of the speed of light)
t0=period;
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%Loading the data with stored temporal response
data=load(’response.dat’);

%Creating a figure
figure;
subplot(2,1,1);
%Plotting the response
plot(data(:,1), data(:,2));
ylabel(’|E|ˆ2’);

ax=subplot(2,1,2);

hold on;
%The data for the X axis (time within the period)
time=data(1:period+1,1);
%Plotting every period in the same figure
for i=0:num_pulses 1

plot(time, data(t0+(i∗period:(i+1)∗period),2), ’o’)
end

set(ax, ’XGrid’, ’on’);
set(ax, ’YGrid’, ’on’);
xlabel(’Time, s’);
ylabel(’|E|ˆ2’);

(a) (b)

Figure 2. Examples of generated eye-diagrams. a) With weak pulse perturbation and b) with strong pulse perturbation
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In the bottom parts of the Figure 2 we give two cases of an eye-diagram computed for a
single PhC filter at different pulse duration. In the first case, an “eye” is clearly opened which
tells us that the radiation is not accumulated in the filter. On the other hand, when pulse
repetition rate is too high, the radiation is accumulated within the PhC which is reflected in
the diagram (an “eye” is closed in Figure 2b). Investigating the shape of the pulse, we can
also make a conclusion about how much does filter distort the pulse shape. For instance,
even in the Figure 2a, the output pulse shape is obviously non-Gaussian due to distortions
introduced by the filter.

3.3. PhC wavelength division demultiplexer

One of the most basic and, on the other hand, important applications of a passive PhC
is a wavelength division demultiplexer. In multi-wavelength systems it provides spatial
separation of the wavelength-mixed signal.

One of possible structures providing two-channel demultiplexing is presented in the
Figure 3a. A signal containing two wavelengths enters through the bottom part of the device,
travels to the coupler where it is separated by the wideband filters.
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Figure 3. Structure of the PhC demultiplexer (a) and the spectra of the output channels (b)

Resulting spectra found by analyzing temporal response of the filters is presented in
Figure 3b.

However, knowing spectral properties is not enough to characterize the demultiplexer
completely. Since each PhC device possesses resonant properties, it is necessary to investigate
distortions introduced to the signal when passing this device. This can be done by computing
an eye-diagram of each wavelength channel (see Figure 4). Here we presented the diagrams
computed for the pulses sequence with period T = 160 f s and pulse width of about τ = 80 f s

Presented eye-diagrams demonstrate that the demultiplexer can be used to process the
ultra-short pulses. However, in case of λ = 1.55 µm the filter introduces more distortion
into a pulse shape (i.e. pulse shape is not Gaussian at the output of the filter). This fact does
not affect too much if a single device is used. However, when implementing an integrated
optical circuit including series of linear and nonlinear filters, such distortions should be
minimized to prevent data losses in the circuit.
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(a) (b)

Figure 4. Eye diagrams of the PhC demultiplexer at 1.31 µm (a) and 1.55 µm (b)

4. Temporal characteristics of active PhC filters

4.1. Nonlinear PhC band structure

The band structure of the PhC can be computed by means of different methods. Among
them, the most fast is the plane wave expansion (PWE) method. However, PWE has
drawbacks which do not allow it to be applied to active PhCs. Namely, it is impossible
to take into consideration the chromatic dispersion, absorption and gain as well as nonlinear
material properties when refractive index depends on the radiation intensity.

One of possible ways to overcome the problem is to apply the FDTD technique. In contrast
to the PWE method, the FDTD allows to take into account the refractive index variation
during the computation process [11] and, therefore, to compute the light propagation in the
nonlinear materials.

Here, we consider basic principles underlying the band structure computation by means of
FDTD technique which are briefly discussed, for example, in [12].

In general, PBG computation using FDTD should be carried out as follows:

1. Determine the computation area.

2. Set up periodic boundary conditions.

3. Define the radiation excitation function. The radiation spectrum should be wide enough
to cover whole investigated frequency range.

4. Carry out the spectral analysis of the time-dependent response of the structure on the
probe pulse by searching all of local maxima and plotting them over frequency axis.

5. Repeat steps from 2 to 4 at different values of the phase shift in periodic boundary
conditions corresponding to all selected points within the PhC Brillouin zone the band
structure is computed for.

Dynamic Characteristics of Linear and Nonlinear Wideband Photonic Crystal Filters
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Figure 5. Computation domain for 2D PhC with square lattice

Let us now consider in details each step.

To perform any FDTD simulation, it is first necessary to determine the computation domain.
However, since the PhC is considered as an infinite structure and computation over an infinite
structure takes infinite time, the response of such a structure is impossible to find. Solution
in this case is considering a single unit cell since it carries the information about whole
structure. The computation domain in case of 2D PhC with square lattice is presented in
figure 5.

The periodicity of the structure is achieved by setting up periodic boundary conditions at the
edges of the computation domain.

Besides the translation emulation the periodic boundary conditions should provide
simulation of electro-magnetic field propagation with certain wave vectors. Such kind of
periodic boundary conditions are referred to as Bloch periodic boundary conditions [10].
The expressions of Bloch’s periodic boundary conditions for electric and magnetic field
components take following form:

~E (x + a, y + b, z + c) = ~E (x, y, z) · e−
~i·kx ·a−~j·ky ·b−~k·kz ·c,

~H (x + a, y + b, z + c) = ~H (x, y, z) · e
~i·kx ·a+~j·ky ·b+~k·kz ·c.

(6)

where a, b, c are linear dimensions of the unit cell along X, Y and Z axes respectively; kx, ky,
kz are wave vector components.

When applying simple periodic boundary conditions, the electric or magnetic field intensity
is taken from one boundary of the computation region and is added to the corresponding
field component at the opposite boundary. However, in contrast to simple periodic
conditions, the Bloch ones include phase shift achieved by multiplying the field intensity
by the exponential function which argument contains radiation wave vector.

Therefore, setting up the Bloch periodic boundary conditions provides the possibility to
investigate propagation of radiation possessing different wave vectors to compute the band
structure.

The next important moment is an input signal parameters.
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Figure 6. Temporal response (a) and its spectrum obtained by FFT (b)

The radiation can be introduced to the structure in various ways. However, we will consider
excitation from a single point of the computation region. Since we are going to search for
the resonant frequencies of the PhC within wide spectrum range, an input pulse should
possess wide spectrum. The simplest signals used in this case are delta-pulse and Gaussian
pulse. The delta-pulse in introduced in a single moment of time while the modulated
Gaussian signal should be excited continuously during all simulation. It is obvious that
using delta-pulse is the most simple case which we will use in our example:

δ (t − t0, x − x0, y − y0, z − z0) = 1. (7)

It is widely known that the spectrum of the delta-pulse is infinitely wide so it gives structure
responses at any frequency. After the delta-pulse is introduced, the excitation is turned off,
however, due to periodic boundary conditions, radiation exists infinitely long time in the
structure without absorption.

After the pulse response of the structure is obtained, it should be properly analyzed. This
analysis gives eigen-states of the PhC.

The spectral analysis of the time dependent pulse response can be carried out by Fourier
transform. The accuracy of the method achieves its maximum when computation time is
infinite. However, since we have finite computer resources, the computation time is taken
long enough just to prevent spurious solutions.

Fast Fourier transform (FFT) [3] is usually used within this technique since the response
function is discrete one and in this case the FFT performance is much faster then general
Fourier transform. As a result of the FFT, we have the discrete spectrum as well. The
example of the FFT of the structure response to the delta-pulse excitation is shown in figure
6

The eigen-states of the structure are searched for as local maxima at the response spectrum.
Detailed analysis should be made to avoid spurious solutions. Such spurious solutions are
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usually appear as inessential peaks at the spectrum. Therefore, the local maximum does not
always correspond to the eigen-state. The maxima corresponding to spurious solutions are
just a little bit higher than neighbor spectrum points while valid solutions values give peaks
with magnitudes several times larger than the one of neighbor points.

Here, we present the Matlab program for computation of the band structure of 2D PhC with
square lattice. For simplicity, we consider a PhC made of linear material. To obtain the band
structure of a nonlinear PhC, an auxiliary differential equation technique should be added
in the FDTD part.

%The program is intended to compute
%the band structure of 2D PhC by means of
%the FDTD method.

%Cleaning up previous workspace
clear all;

%Setting up parameters of the PhC
%PhC period in each direction
maxX=1e 6;
maxY=1e 6;
%Radius of the cilinder
r=maxX∗0.3;
%Refractive index of the cilinder
eps1=9;
%Background refractive index
eps2=1;
%Permeability (is always 1 for non magnetic materials)
mu=1;

%Speed of light
c=3e8;

%Setting up FDTD parameters
%Computation time
maxT=2ˆ13;

%Number of spatial points in the grid in each direction
accuracyX=16;
accuracyY=16;
%Number of k points between high symmetry points
accuracyK=5;

%Defining statial and temporal steps
Dx=maxX/accuracyX;
Dy=maxY/accuracyY;
Dt=Dx/2/c;
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%Defining the unit cell permittivity distribution
%Central coordinates
x0=maxX/2;
y0=maxY/2;

%For smooth permittivity profile, defining the width of
%transition zone
dd=sqrt(Dxˆ2+Dyˆ2);
%Correcting the radius according to transition zone
r=r dd/2;
%Generating the permittivity profile
eps=ones(accuracyX, accuracyY)∗eps2;
for i=1:accuracyX

for j=1:accuracyY
if sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2)<r

eps(i,j)=eps1;
elseif sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2) r<dd

if(eps1>eps2)
eps(i,j)=eps1 abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...

(j∗Dy y0)ˆ2) r);
else

eps(i,j)=eps1+abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...
(j∗Dy y0)ˆ2) r);

end

end

end

end

%For faster FDTD computation we find the coefficients
%in the FD equations
eps_x=c∗Dt/Dx./eps;
eps_y=c∗Dt/Dy./eps;

%Defining k path
kx(1:accuracyK+1)=0:pi/maxX/accuracyK:pi/maxX;
ky(1:accuracyK+1)=zeros(1,accuracyK+1);

kx(accuracyK+2:accuracyK+accuracyK+1)=pi/maxX;
ky(accuracyK+2:accuracyK+accuracyK+1)=...

pi/maxY/accuracyK:pi/maxY/accuracyK:pi/maxY;

kx(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxX pi/maxX/accuracyK: pi/maxX/accuracyK:0;

ky(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxY pi/maxY/accuracyK: pi/maxY/accuracyK:0;
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%Crating the figure
figure;
ax1=axes;
hold on;

%Counter of the wave vector points
curr_vector=0;

%% The cycle for all the points in k path
for phase=1:length(kx)

curr_vector=curr_vector+1;
%Computing phase shift for a specific wave vector
rotatex=(exp( 1i∗(kx(phase)∗maxX)));
rotatey=(exp( 1i∗(ky(phase)∗maxY)));

%Cleaning the computation region
Ez=zeros(accuracyX,accuracyY);
Hx=zeros(accuracyX,accuracyY);
Hy=zeros(accuracyX,accuracyY);

%Ecxitation is defined as Delta function in a single point
Ez(round(accuracyX/3),round(accuracyY/4))=100;

%% Cycle for time
for t=0:Dt:maxT∗Dt

%% Computing H field

%Defining periodic boundary conditions for H field

for x=1:accuracyX
Hx(x,1)=Hx(x,1) c∗Dt/mu/Dy∗(Ez(x,1) rotatey∗...

Ez(x,accuracyY));
end

for y=2:accuracyY
Hx(1,y)=Hx(1,y) c∗Dt/mu/Dy∗(Ez(1,y) Ez(1,y 1));

end

for x=2:accuracyX
Hy(x,1)=Hy(x,1)+c∗Dt/mu/Dx∗(Ez(x,1) Ez(x 1,1));

end

for y=1:accuracyY
Hy(1,y)=Hy(1,y)+c∗Dt/mu/Dx∗(Ez(1,y) rotatex∗...

Ez(accuracyX,y));
end
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%% Computing the H field distribution

for y=2:accuracyY
for x=2:accuracyX

Hx(x,y)=Hx(x,y) c∗Dt/mu/Dy∗(Ez(x,y) Ez(x,y 1));
Hy(x,y)=Hy(x,y)+c∗Dt/mu/Dx∗(Ez(x,y) Ez(x 1,y));

end

end

%% Computing E field

for y=1:accuracyY 1
for x=1:accuracyX 1

Ez(x,y)=Ez(x,y)+eps_x(x,y)∗(Hy(x+1,y) Hy(x,y)) ...
eps_y(x,y)∗(Hx(x,y+1) Hx(x,y));

end

end

%% Defining periodic boundary conditions for E

for x=1:accuracyX 1
Ez(x,accuracyY)=Ez(x,accuracyY)+...

eps_x(x,accuracyY)∗(Hy(x+1,accuracyY) Hy(x,accuracyY)) ...
eps_y(x,accuracyY)∗(Hx(x,1)/rotatey Hx(x,accuracyY));

end

for y=1:accuracyY 1
Ez(accuracyX,y)=Ez(accuracyX,y)+...

eps_x(accuracyX,y)∗(Hy(1,y)/rotatex Hy(accuracyX,y)) ...
eps_y(accuracyX,y)∗(Hx(accuracyX,y+1) Hx(accuracyX,y));

end

Ez(accuracyX,accuracyY)=Ez(accuracyX,accuracyY)+...
eps_x(accuracyX,accuracyY)∗...
(Hy(1,accuracyY)/rotatex Hy(accuracyX,accuracyY)) ...
eps_y(accuracyX,accuracyY)∗...
(Hx(accuracyX,1)/rotatey Hx(accuracyX,accuracyY));

Eres(round(t/Dt)+1)=Ez(round(accuracyX/3),round(accuracyY/7));
Time(round(t/Dt)+1)=t;

end

%% Analyzing the temporal response
%Computing the Fourier transform of the response
fourier=abs(fft(Eres));

%Normalizing frequency
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f=1/Dt∗(0:length(fourier) 1)/length(Eres);

%eigen frequencies counter
wcount=1;

%Analyzing the first point of the spectrum
if(fourier(1)/(max(fourier(2:4)))>1.1)

weigen(curr_vector, wcount)=f(1);
wcount=wcount+1;

end

%Analyzing the rest of the spectrum
for u=3:length(fourier) 3

if(fourier(u)/(max(fourier(u+1:u+2)))>1.01)&&...
(fourier(u)/max(fourier(u 2:u 1))>1.01)

weigen(curr_vector, wcount)=f(u);
wcount=wcount+1;

end

end

%Plotting 5 solutions maximum
if(wcount 1>=5)
plot(curr_vector,abs(weigen(curr_vector,1:5))∗maxX/c,’ob’);

else

plot(curr_vector,abs(weigen(curr_vector,1:wcount 1))∗maxX/c,’ob’);

end

%Decoraring the plot
set(ax1,’xtick’,[1 accuracyK+1 2∗accuracyK+1 3∗accuracyK+1]);
set(ax1,’xticklabel’,[’G’;’X’;’M’;’G’]);
ylabel(’Frequency \omegaa/2\pic’,’FontSize’,14);
xlabel(’Wavevector’,’FontSize’,14);
set(ax1,’XGrid’,’on’);

drawnow;

end

The results computed by the presented code are given in figure 7 . The parameters in the
program are selected to eliminate the spurious solutions. However, if an input power is
changed, one should change the accuracy in the spectrum analysis part.

4.2. Bistable nonlinear PhCs

Nonlinear PhC filters with properly selected parameters, possess bistability and can be used
as logical gates in all-optical data processing systems. In this section, we give an example of
such filters on the basis of 2D PhC [5].
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Figure 7. Band structure of 2D PhC computed by the FDTD method

(a) (b)

Figure 8. The structure of the investigated nonlinear PhC confined by the PhC waveguide on the basis of hexagonal (a) and

square (b) lattice

The schematic of investigated nonlinear PhC filter confined by the PhC waveguide is shown
in the figure 8.

In both cases, the PhC filter is presented by three PhC elements with parameters similar to
the confined PhC. The photonic bandgap (PBG) of the filters are shifted as respect to the
background PhC. As it has been demonstrated for the linear PhCs, such filters almost do not
disturb an ultra-short pulses shape.

Initially, the operating wavelength λ = 1.05 µm is selected to fall at the PBG of both
background PhC and filter. However, due to optical nonlinearity the spectral characteristic
of the filter appears to be shifted when increasing the radiation intensity.
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Figure 9. Transmission of the filter as a function of the input intensity in case of hexagonal PhC (a) and square PhC (b)

The reaction of the structure to increasing radiation intensity is presented in figure 9. The
figure represents filter transmission as a function of the intensity of the CW monochromatic
radiation. The insertions demonstrate the field behavior inside the waveguide with nonlinear
PhC filter in case of low and high radiation intensity.

The results in the figure 9 allow to conclude that starting at certain value of the intensity, the
radiation wavelength appears outside the PBG which increases transmission of such a filter
dramatically. The further growth of the nonlinearity no longer increases the transmission as
is seen from the figure 9. Therefore, in our investigation we have selected operating intensity
slightly below the switching-on intensity.

Since the PhCs and, particularly, PhC-based filters possess resonant radiation transmission
(the radiation is propagating from one element to another), the nonlinear spectrum shift
require certain time which does not rely on response time of the nonlinear material. In order
to investigate such a phenomena, we carried out the study of temporal response of such a
filter to Gaussian pulses of different durations. Each of the pulses in serie possesses the same
magnitude but different duration. The photorefractive properties of the materials remain the
same for all pulses. This allows investigating only the contribution of the resonant processes
inside the PhC into the bistability.

After the temporal response is obtained, it is represented in form of the dependence of output
intensity on the input one as presented in figure 10. The intensity growth corresponds to the
lowest branch of the hysteresis loop and lowering of the intensity stands for highest branch.
Both in case of hexagonal and square lattices such characteristics look almost the same and,
therefore, we provide here only the ones for the hexagonal PhC.

In case of linear optical materials, the branches are coincide since no processes affect the
properties of the PhC. However, in case of nonlinear materials the light trapped inside the
filter due to resonances holds the refractive index of the nonlinear material and, consequently,
the transmission of the filter, high, thus, providing the difference in propagation of the
leading and trailing edges of the pulse.
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Figure 10. Hysteresis loops at different durations of the Gaussian pulse: a) τ = 50 f s, b) τ = 200 f s, c) τ = 400 f s, d)
τ = 800 f s

Due to finite saturation time of the resonances in the PhC, the minimum allowed pulse
duration exists for a specific PhC filter. Normally, during the front edge of Gaussian pulse,
the intensity inside the filter grows which causes refractive index changes and, consequently,
the changes in the filter characteristic. However, if the pulse duration is lower than the
time required to excite the eigen-state in the filter, the significant nonlinear effects such as
transmission growth appear after the input pulse maximum (see figure 10(a)). On the other
hand, when the pulse duration is large, it is enough to excite the filter and, therefore, the
maximum intensity of the input and output pulses are coincide.

Thus, the study of the temporal responses carried out in the work demonstrates the
possibility of all-optical switching of the filter by the pulses which increase of reduce the
intensity temporarily and, consequently, change the filter state.

After this we have studied its nonlinear switching dynamics. For this reason the continuous
wave pump signal is launched into the waveguide. Then, with certain delays, the Gaussian
control signals are launched which turn on and turn off the transmission of the filter. The
power of the pump signal corresponds to the maximum magnitude of the hysteresis loop.
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Figure 11. The CW pump (a), ON (b), OFF (c) and resulting signal in hexagonal (d) and square (e) PhC

Switching ON occurs when the Gaussian signal is launched with the same phase as the pump
one. If the signal possesses opposite phase, switching OFF occurs.

The temporal response of the investigated filter is demonstrated in the figure 11. The topmost
figure shows the intensity of the pump signal. The figures 11(b) and 11(c) demonstrate turn
on and turn off pulses sequences. In two lowest figures, the resulting output signals are
shown in case of hexagonal and square PhC lattices.

The pump signal intensity is slightly below the nonlinearity threshold. Therefore, switching
ON requires low intensity Gaussian pulse. On the other hand, when switching OFF, the
signal intensity should be reduced down to 2 · 1014

W/m
2 as follows from the figure 10(d).

Therefore, the switching OFF signal maximum intensity is taken the same as that of the
pump signal.
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Comparing two nonlinear wideband filters we can mention their efficiency as bistable
devices. However, at the same conditions transition time is larger in case of hexagonal PhC.
On the other hand, in square PhC the lower radiation level is not as stable as the higher one
and the output intensity in this case grows raising the probability of bit error.

Nevertheless, both these filters can be used as a basic logic in all-optical data processing
circuits and the choice will be determined only by the technological factors.

4.3. Conclusions

In the chapter, we have demonstrated several applications of temporal characteristics as well
as their computation method for both linear and nonlinear PhC wideband filters. Such
micro-devices as wideband filters, wavelength division multiplexers and bistable elements
may become a basis for future all-optical integrated circuits.

Presented Matlab codes for building an eye-diagram and for computing the band structure of
2D PhC by means of the FDTD methods will be useful for master and PhD students working
on design and optimization of PhC-based micro-devices.
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