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1. Introduction

This article seeks to provide an overview of the current energy policies, focusing on Brazil
and regarding biofuels in particular. It does not claim to put forward an exhaustive analysis
of the subject. Hence, it focuses on certain particularly relevant aspects, such as climate
change and CO2 emissions abatement, rather than entering into the details of all extant as‐
pects. It is aimed to serve as a policy instrument in order to provide a basis for decision-
making and planning actions, contextualizing the discussion within the global framework.
In this connection, special attention is paid to the impact of the initial soaring of the oil pri‐
ces, their subsequent drop with the onset of the economic crisis, which reached Latin Ameri‐
ca in 2009, as well as the latest hike in the price of oil. This impact has as a counterpoint the
discovery of off shore pre-salt oil in Brazilian deep waters, which significantly increases pe‐
troleum-producing potential of the country.

Among the different renewable primary energy sources in Brazil, the most relevant are hy‐
droelectricity and biomass, from which biofuels are derived. The former has been the subject
of several studies and, therefore, will not be discussed as thoroughly as biofuels in the
present text, especially sugar cane ethanol. Both hydro and ethanol have stirred heated de‐
bates and controversies internationally. The recent soaring food prices worldwide is attrib‐
uted by some to the supposed prioritization of biofuels production, which, in addition, is
blamed, in the case of Brazil, for contributing further to the deforestation of the Amazon. Al
of this, in spite of the continuous decrease of the deforestation rates since 2004[1], the in‐
crease of ethanol production [2] and the fact that sugarcane for ethanol plantations in Brazil
occupy less than 1.5% of the Brazilian crop area [3].

© 2013 Pinguelli et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



The present situation resembles the not too distant past experience of the crises provoked by
the skyrocketing in the price of crude oil on the international market which, until 1973, var‐
ied between US$ 1 and US$ 2 only to soar, for a spell in 1979, to US$ 40, then to plummet in
the second half of the 1980s, and left to follow an erratic path throughout the 1990s. In 1999,
oil prices fell to US$ 10 but, in 2006, exceeded US$ 70 and, in 2008, reached US$ 140. So, in 9
years, the price of oil increased 14-fold, nearly doubling in the span of two years, but then
dropped to below US$ 50, maintaining itself around this value for the rest of 2009, to in‐
crease again up to reach about US$ 100 in 2011.

For its part, natural gas has been the cause of disputes, in recent years, between Russia and
Europe, between Argentina and Chile, and, lately, between Bolivia and Brazil. An important
new factor is the increasing participation of shale gas in North America. In 2000 only 1% of
natural gas produced in the USA was shale gas, with its share growing to 20% in 2010 and
projected to reach 46% in 2035, due to its low cost. The share of natural gas in the Brazilian
energy matrix is not significant, although it shall became more important with the import of
LNG by ships as well as with the pre-salt natural gas production.

Where electricity is concerned, there were serious instances of rationing in 2001, lasting for
many months in Brazil and California - in both cases due to lack of adequate power sector
regulation. Energy deregulation played an important part in the process of economic liberal‐
ization in the course of financial globalization, which is at the root of the global crisis, which
first hit the USA in 2008, and worsening in 2009, it spilled over and reached South America,
in particular, Brazil.

The energy crisis has been further aggravated by the overlap of an environmental crisis and
a financial one, as a result of climate change, due to the intensification of global warming
from greenhouse gas (GHG) emissions, such as carbon dioxide from the burning of fossil
fuels. Global warming has become a major global political problem, because it bears on soci‐
ety choices which must not be left to business alone to make. The Nobel Peace Prize of 2008
awarded to the Intergovernmental Panel on Climate Change (IPCC) followed the release, in
2007, of its Fourth Assessment Report which caused great concern around the world.

The repercussions of the high international oil prices on the world economy have been signifi‐
cant, although today’s share of oil in the world economy is less than at the time of the 70s oil cri‐
ses. At a global level, this share in the cost of products is generally half of what it was at that time.

Some particular factors contributed to this strong variation in the oil market:

a. The forecasted decline in world output, despite major discoveries in the Brazilian pre-
salt, and increased oil consumption, especially in developing countries, led by China

b. The global geopolitical instability, especially in the Middle East oil producing regions,
and the strong dependence of OECD countries on oil imports. To a lesser extent, this
instability is felt in South America as in the case of the political tensions between the
USA and Venezuela.

c. The global economic crisis which first erupted in the USA in 2008.
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d. Environmental pressures, especially due to carbon dioxide emissions from the burning of
fossil fuels, which exacerbate the greenhouse effect, thus contributing to global warming.

Finally, with respect to point (d), it is important to point out that the share of renewable pri‐
mary energy sources is higher in Brazil and in South America as a whole than in other conti‐
nents, while the use of biofuels in Brazil is widespread and thus, the GHG emissions of the
country are mainly from deforestation.

Not considering nuclear energy, released from the fission of uranium and without any
chemical combustion, non-renewable fuels, such as coal, oil and natural gas, are responsible
for greenhouse gas emissions. Life cycle analysis show that renewable sources such as etha‐
nol from sugar cane and hydroelectricity emit little greenhouse gases.CO2 emitted from bio‐
fuels combustion is reabsorbed from the atmosphere during plant growth. However,
roughly half of all firewood and charcoal in Brazil comes from deforestation, charcoal main‐
ly used in steel production [4]. The net emissions in the case of alcohol come primarily from
the use of diesel for the tractors and trucks on the sugarcane plantations, as well as the pro‐
duction of the synthetic fertilizers and herbicides employed. In the case of hydropower,
COPPE’s research group carried out measurements at various reservoirs in the country and
recorded the carbon dioxide and methane emissions, confirming that those are much small‐
er than that of the thermoelectric power plants.

2. Survey of energy policy in South America

According to the latest IPCC report [5], there was a 70% worldwide growth in greenhouse
gas emissions between 1970 and 2004. Among these, CO2 emissions rose by 80% and repre‐
sented 77% of the anthropogenic emissions in 2004. The energy sector had the highest
growth in emissions between 1970 and 2004 (145%) followed by the transport sector (120%),
industry (65%), and land use and deforestation (40%). Table 1 provides the rates of primary
energy per capita and CO2 emissions per capita, per energy consumption and per GDP of
the South American countries in 2009. It can be seen that countries which have a large share
of renewable power, such as Brazil and Paraguay, have better emission indicators than
countries such as Argentina and Venezuela, which rely heavily on fossil fuels.

The meeting of the UN Convention on Climate Change in Copenhagen, in 2009, resulted in
frustration regarding finding a consensus for more effective commitments to reduce global
GHG emissions. However, the commitment to limit to 2° C the rise in global temperature
relative to the preindustrial era is encouraging. At the Copenhagen Conference the Brazilian
position included this limitation, which entails a major effort to reduce emissions on the part
of the rich countries and to keep emissions under control where the developing countries
are concerned. One controversial issue refers to the adoption of obligations by developing
countries regarding their own emissions. An argument in support of adopting such commit‐
ments is the growth of emissions in developing countries, especially China and India. Nev‐
ertheless, the per capita CO2 emissions in rich countries are still well above those in
developing countries.
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Countries TJ per capita ton CO2 / capita ton CO2/ TJ
kg CO2 / US$2000

GDP

Argentina 0.077 4.14 53.6 0.42

Bolivia 0.027 1.31 49.3 1.10

Brazil 0.052 1.74 33.6 0.39

Chile 0.071 3.84 53.9 0.63

Colombia 0.029 1.33 46.4 0.43

Ecuador 0.035 2.09 59.9 1.18

Paraguay 0.031 0.64 20.4 0.45

Peru 0.023 1.32 58.2 0.45

Uruguay 0.051 2.31 45.2 0.26

Venezuela 0.099 5.45 55.2 0.97

Source: [6]

Table 1. Energy Per Capita and CO2 Emissions Indexes from Energy (in Terajoules) Consumption in 2009

It is important to point out that CO2 emission is not the only indicator to analyze the respon‐
sibility among countries. For example, cattle grazing emit a huge amount of CH4 due to en‐
teric fermentation and N2O due to manure [7]. Nevertheless, these indicators need to be
balanced because they are related to food production, a basic need. In Brazil, an encouraging
development has been the creation of the National Climate Change Plan, with its targets for
reducing deforestation, responsible for most of Brazil's emissions.

On the other hand, the increased share of fossil fuel use in power generation in Brazil is
nothing to cheer about. But the growth of production and consumption of fuel alcohol in
cars and the fact that 45% of its primary energy matrix is comprised of renewable sources,
including hydroelectric generation and biofuels - as against 13% for the world and 6% for
OECD countries - is heartening.

Now, if we consider the different primary energy sources [8], Latin America's share in the
world’s energy production varies according to the source considered:

• 4.4% of total primary energy

• 9.5% for oil

• 4.9% for natural gas

• 1.4% for coal

• 0.8% for nuclear

• 20.1% for hydroelectricity.
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The share of nuclear electricity generation in Latin America represents less than 1% of the
world’s total, as it is limited to Brazil, Argentina and Mexico. Meanwhile, the share of hy‐
dropower exceeds 20%, as Brazil, Venezuela and Peru are among the ten countries with the
largest water resources in the world, the first two also being among the top ten producers of
hydroelectricity.

Table 2 shows the production, import and export of oil, natural gas, coal and hydroelectric
power in the major South American countries. Imports and exports related to oil include oil
derivatives in addition to crude oil. With respect to coal, the different types have been com‐
puted, as well as coke. The hydroelectricity columns show, in addition to production, the
import and export of electrical energy.

Country

Oil

(Million toe)

Natural Gas

(Million toe)

Coal

(million toe)

Hydroelectricity

(thousand MWh)

Prod Imp(a) Exp(a) Prod Imp Exp Prod Imp Exp Prod Imp(b) Exp(b)

Argentina 37.8 1.3 14.9 36.2 1.3 5.4 - 1.0 0.14 34.6 8.0 0.4

Bolivia 2.9 0.2 0.6 9.9 - 8.6 - - - 2.5 - -

Brazil 87.3 28.0 23.4 9.2 7.5 - 2.5 11.3 - 337.4 39.2 0.1

Chile 0.3 14.3 1.7 1.7 5.3 - 0.3 3.9 - 24.8 2.1 -

Colombia 27.4 0.9 16.1 6.1 - - 38.9 - 34.9 39.8 - 1.7

Ecuador 27.0 2.6 20.6 0.4 - - - - - 6.8 1.7 -

Paraguay - 1.1 - - - - - - - 51.2 - 43.8

Peru 5.2 5.9 3.5 1.4 - - 0.03 0.8 - 19.9 - -

Uruguay - 2.3 0.3 - 4.1 - - - - 6.7 1.6 0.8

Venezuela 169.3 - 138.1 23.2 - - 5. 2 - 5.2 75.0 - -

(*) Includes crude oil and derivatives; (#) Electricity including hydro and thermal generation

Source: International Energy Agency, 2006

Table 2. Oil, Natural Gas, Coal and Hydroelectricity

According to Table 2, the largest oil producers in South America are Venezuela and Brazil,
the latter far behind the former. Brazilian exports (mainly of heavy crude oil) match the im‐
ports (of light crude for refining). Argentina, Colombia and Ecuador have a similar produc‐
tion and also export oil.

Argentina is the largest producer of natural gas, followed by Venezuela, Bolivia and Brazil,
which is also an importer. The exporters are: Argentina (to Chile) and Bolivia (to Brazil and
Argentina). Important consumers of natural gas are: Venezuela, Argentina and Brazil. Coal
production is particularly significant in Colombia, also an exporter, while Brazil is the larg‐
est producer of hydroelectricity on the continent, followed by Venezuela and Paraguay, the
latter also being a major exporter.
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To understand the changes in South America, the following aspects should be taken into
account:

a. In the years 2000 there has been significant pick-up in economic growth in several coun‐
tries after a period of stagnation or low growth stretching over quite a few years, under
the monetarist policies of economic adjustment under the auspices of the International
Monetary Fund and the World Bank with the backing of the rich countries.

b. Social inequality remains high, even if significant improvements are taking place in the
social field in some countries. In Brazil, it has been estimated that some 40 million peo‐
ple have been lifted out from the poorer Class D, to the level of Class C income.

The two main energy integration projects in operation between Brazil and South American
countries are the bi-national Itaipu power plant with Paraguay, the world's 2nd largest in
electricity generation, whose expansion from about 12 GW to 14 GW was completed in 2008,
and the import of 30 million m3 per day of natural gas from Bolivia. Both were subject to
crises with Bolivia and Paraguay respectively, already settled.

There is an electricity connection between Brazil and Argentina in the South and another
one in the North with Venezuela. Furthermore, there is a small connection with Uruguay.

Given the variation in flow without a regulation reservoir to secure the power of these
plants, the reservoirs of the hydroelectric plants of the interconnected grid can be used to
store water when the flow is high, in order to offset the energy drop during the months with
a low flow. However, to avoid very large environment impacts, in the new hydropower
plants the flooding area is small. The Santo Antonio and Jirau hydroelectric projects under
construction on the Madeira River, near the border with Bolivia, are run of the river, the
same being the case of the new Belo Monte hydroelectric power plant.

Brazil is the foremost user not only of liquid biofuels, particularly ethanol in addition to its
biodiesel program, but also of solid biomass - firewood and charcoal, widely used in the
steel industry. Brazil and Argentina are currently among the world’s top five producers of
biodiesel, the latter also being a major exporter, mainly to Europe. However, since biodiesel
demand in general is still only a fraction of ethanol, most of this article’s focus will be on this
alcoholic biofuel.

3. Biofuels in Brazil and automotive ethanol

There is an international debate on biofuels, which are being blamed for the high food prices
worldwide and which affect the poor most. The Brazilian government has addressed this
concern adequately in connection to the production of alcohol from sugarcane. According to
[9], the country’s sugarcane crop was cultivated over an area of 8.4 million hectares (8.4
Mha) in 2011. 50.3% of all sugarcane was targeted for ethanol production, the remainder
used for sugar. On the other hand, soybean, Brazil’s most important crop, occupies 25 Mha
[10]. According to [11], Brazil has 152 Mha of arable land, of which 62 Mha are currently in
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use. 177 Mha are pastures So, if one excludes the 440 Mha of virgin forests, there remains 90
Mha left available for expanding agricultural production without deforestation. And these
figures do not include the reconversion of degraded pastures. Only a portion of these areas
is suitable for sugar cane cultivation and is economically and socially viable for producing
biofuels such as ethanol and biodiesel. The latter, to a large extent, comes from soybeans,
which, unlike sugarcane, can encourage deforestation in the Amazon, but recently this link
cannot be established, because the deforestation rates in Brazil have been decreasing in the
last decade [1] in spite of the increase in soy production.

US corn ethanol is subsidized, and, unlike Brazilian sugarcane alcohol, it affects the price of
corn, impacting the price of of food and feed. Production of corn ethanol also involves the
burning of natural gas. The sugarcane crushed stalk, called bagasse, by contrast, has more
than enough energy to meet the plant’s heat and electricity demand, even providing surplus
power to the grid. Therefore, alcohol produced in Brazil is more efficient energy and envi‐
ronmentally-wise. The capture of CO2 from the air during sugarcane growth roughly balan‐
ces out the emissions from the production and consumption of alcohol. As a gasoline
alternative, it is effective in avoiding the emissions of gases contributing to global warming.

The international biofuels market is poised to increase in the next few years. The US present‐
ly consumes twice as much fuel alcohol as Brazil, but its percentage in terms of displacing
gasoline is low, around 10%, because of its huge gasoline consumption - 8.74 million barrels
per day or roughly 540 billion liters in 2011 [12]. The National Renewable Fuel Standard
program (commonly known as RFS) has set an increasing volume of biofuels to be required
in the US market [13]. RFS categorizes fuels and caps the so-called “conventional” renewa‐
ble fuel (corn starch ethanol), so by 2022, 21 billion gallons of the 36 billion gallons (136 bil‐
lion liters) required must come from cellulosic biofuel or advanced biofuels derived from
feedstocks other than corn starch. This categorization of fuels contains specific lifecycle
GHG emissions for biofuels relative to lifecycle emissions from fossil fuels and will be fur‐
ther discussed in section 4.

The Energy Independence and Security Act of 2007 (EISA), which established the biofuels
mandate, stipulates that indirect, as well as direct, emissions must be accounted for in the
lifecycle analysis of any biofuel source, an issue to be explored later on this article. It suffices
to say that, currently, the only biofuel currently recognized by the Environmental Protection
Agency as being “advanced”, from a GHG mitigation standpoint, is Brazilian sugarcane
ethanol. If this situation does not change until 2022, at least 19 billion liters will have to be
imported from Brazil, for environmental reasons. Considering that Brazilian supply of etha‐
nol in 2011 was 23 billion liters, it will be a major undertaking to supply the projected US
demand.

On top of that, in December 2008, the European Parliament approved the Renewable Energy
Sources Directive (RED) setting an EU target of 10% for biofuel use in transportation fuels
by 2020.

In a nutshell, Brazilian ethanol has generally been regarded the most effective biofuel in
terms of mitigating GHG emissions, but, due to the huge markets under consideration, it is
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unreasonable to expect that Brazil would be able to meet their demands for environmentally
appropriate biofuels. Other countries would have to play their part as well.

The issue of biofuels has raised a controversy concerning the competition with food produc‐
tion. In view of the fact that Brazil has plenty of spare land for crop production, as stated
above, it should be clear that cultivating sugarcane for fuel alcohol does not interfere sub‐
stantially with food production, remembering that sugar cane for biofuel occupies 1.3% of
the country’s agricultural land[3].

In a recent paper, [14] made a comparison between sugar cane and corn for ethanol produc‐
tion, with focus on the present debate about land use dispute for food and energy produc‐
tion. The indicators used to compare the activities are CO2 emissions, energy consumption,
co-products from the processes and deforestation. From a methodological standpoint, the
study conducted a lifecycle inventory evaluation of sustainability issues, both for developed
and developing countries. Brazilian government plans to ensure sustainability are comment‐
ed. A synthesis of that paper together with other considerations follows below.

There are different biofuels feedstocks, such as forest resources; energy crops; agriculture
wastes and urban wastes. Table 3 shows biomass raw materials with the corresponding
technologies, products and uses in Brazil, as well as the fossil fuels that they replace. Direct
combustion of firewood is important in rural areas for cooking. This does not necessarily en‐
tail deforestation as families in rural areas, in general, collect twigs and fallen trees branches.
The use of charcoal in the steel industry is important for avoiding GHG emissions. For each
ton of pig iron produced, 1.7 tons of CO2 from coke and coal are emitted, while charcoal use
in steel production allows, on average, a net capture of 0.9 tons ton of CO2 from the atmos‐
phere, due to tree growth, assuming a planted forest is employed. Thus, if one third of all
pig iron were made with charcoal, the steel industry in Brazil could have zero net emission.
However, as mentioned, about half of the firewood for charcoal used in pig iron production
comes from deforestation, a problem yet to be solved.

The Brazilian Alcohol Program began in 1975 after the first oil shock and its first phase con‐
sisted in using ethanol as a gasoline octane booster. After the second oil shock in 1979, a sec‐
ond phase began, with ethanol replacing gasoline in cars, whose Otto cycle engines were
adapted for this purpose. Among the historical factors that contributed for the government
to deploy the Alcohol Program was the need to reduce the trade balance deficit, affected by
crude oil importation. Besides, the Program boosted job generation in sugar cane agro-in‐
dustry and reduced atmospheric pollution through the elimination of lead as an additive to
gasoline, as ethanol has a high octane index [15, 16].

By 1985 more than 90% of new cars sales consisted of ethanol fuelled engines, but in the
1990 decade there was a shortage of ethanol in the country. An ad hoc temporary solution
was to adopt a ternary mix composed of ethanol, methanol and gasoline to supply part of
the market. The result was a lack of consumer confidence in ethanol, with the consequent
reduction of sales of new ethanol fuelled cars to 11% in 1990, 2% in 1995 and 1% in 2000 [17].
The reasons for the ethanol shortage were the fall of crude oil price and lack of continuity in
governmental policy for ethanol.
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Technology Biomass

Raw Material

Products Main Use Fossil Fuels

Substitution

Direct Combustion Firewood

Sugar cane bagasse trash

and other wastes

Heat Cooking

Industry

Electric power

LPG

Fuel oil

Natural gas

Bioconversion:

- Fermentation Sugar cane Ethanol Transport Gasoline*

- Anaerobic digestion Wastes Biogas Potential Natural gas

Chemical and Thermal:

- Pyrolysis Wood Charcoal Industry Coal and fuel oil

-Gasification Biomass Synthesis gas Industry Natural gas

-Esterification Vegetable oil and others

materials**

Biodiesel Transport Diesel

- Cracking Vegetable oil Diesel R&D Diesel

- Hbio*** Vegetable oil Diesel Pilot Diesel

Hydrolysis Biomass Ethanol R&D Gasoline*

Obs: (#) Includes urban solid wastes, lixivia from pulp and paper industry, wastes from rice and others; (*) – It can sub‐
stitute also for diesel oil with some additive; in Brazil gasoline has 25% of ethanol as additive, besides the use of pure
ethanol in flex fuel cars; (**) Including animal fat wastes, garbage and micro-algae (R&D); (***) – Petrobras Technology
for processing vegetable oil in oil refineries.

Table 3. Uses of Bioenergy in Brazil

Beginning in 2003 there was an ethanol revival due to local production of flex fuel cars.
Their engines can work with two different fuels in any proportion, and were first made in
the US in the 1980s, but the technology developed by Brazilian engineers is innovative, as it
uses sensors that already exist in the car, which match their fuel readings against informa‐
tion stored in the on-board computer to adjust the engine. Early US flex cars used a special
sensor to identify the fuel mix and adjust the engine, but it was expensive and not viable for
the Brazilian fleet, dominated by low cost, small and midsized compact cars [18].

Figure 1 shows the behavior of ethanol consumption in Brazil, which surpassed 15 billion
liters in 1998, going down to 10 billion liters in 2001 and grew again in the years 2000, due to
the introduction of flex fuel cars, which boosted the demand for hydrated ethanol.
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Brazilian Ethanol Consumption
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Figure 1. Evolution of ethanol consumption in Brazil (billions liters a year)

Source: [9]

Figure 2. Sales of Gasoline, Alcohol and Flex Cars in Brazil
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Figure 2 shows how this phenomenon was correlated to the quick penetration of flex fuel
cars, which currently comprise more than half the total fleet of passenger cars in Brazil The
exponential growth of flexible cars after 2003, stimulated by the high gasoline price due to
the increase of crude oil price, global warming-related pressure, among others factors. The
cost of ethanol in Brazil went down from US$ 20/GJ in 1980 to US$ 6/GJ in 2006, correspond‐
ing to US$ 40/barrel of oil [21] following a learning curve. So, while subsides were necessary
to start the program they are not needed nowadays.

4. Avoided CO2 emission by ethanol substitution for gasoline

4.1. Life cycle avoided emission: Comparison of sugar cane ethanol with corn ethanol

A problem of ethanol in some OECD countries and China is that it is made from corn. From
a global warming standpoint, corn ethanol is less effective than sugar cane ethanol as a sub‐
stitute for gasoline.

The advantage of biofuels is that when biomass grows up it captures from the atmosphere
the CO2 emitted by biofuel combustion in the car engine. However, 1 GJ of fossil fuel is ex‐
pended to produce 1.3 GJ of ethanol from corn [22]. That is, for each energy unit trans‐
formed in heat through corn ethanol combustion, 0.77 energy units is spent producing
ethanol from corn, mainly in the natural gas needed for ethanol distillation, as well as the
embedded energy in synthetic fertilizers and herbicides.

On other hand, sugar cane has a surplus of biomass enough to generate heat and electricity
in the process of ethanol production. For each 1 GJ of fossil fuel consumed in sugar cane and
ethanol production there are, on average, 9 GJ of ethanol and this value can reach 11 GJ in
the best cases [22].

Therefore, for each unit of energy transformed in heat when sugar cane ethanol is burned in car
engines, an average of only 0.11 units of energy from fossil fuel is needed to product it. Besides
the bagasse, sugar cane has a significant amount of trash (leaves and top), which is usually
burned before harvesting, to allow manual cutting by laborers. However, crop residues are in‐
creasingly being recovered, as mechanization, mainly in São Paulo state (responsible for 50% of
ethanol produced in Brazil) [23], is becoming more commonplace to harvest cane. To calculate
the net avoided emissions, we must subtract, from the gross avoided CO2 emissions due to fos‐
sil fuel substitution, the emissions of CO2 from fossil fuels used in sugar cane and ethanol pro‐
duction process, as well as other GHG emitted also for producing cane and ethanol. Therefore,
there is the need to express the mass of each non CO2 GHG in terms of equivalent CO2 emission.

In the literature there is a range of values for emissions in sugar cane production1 and for the
avoided CO2, depending on the case study and on methodology. For instance, different pa‐
pers consider alternatively:

1 It is usual to express the emission in terms of mass of Carbon in the molecule. For instance, the mass of C in CO2 is
12/ (12+2x16) = 12/44 of the CO2 mass and the mass of C in CH4 is 12/ (12+ 4x1) = 12/16 of the CH4 mass.
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a. the best case, a particular one or the average among a set of farms and distilleries in a
period of time;

b. either only the gross avoided emission of the gasoline replaced with ethanol, or the
gross avoided emission of gasoline plus the surplus electricity sold to the grid;

c. either only the direct energy consumption or the life cycle analysis, including emissions
in ethanol production and also in gasoline production;

d. hydrated ethanol, anhydrous ethanol or a mix of them in the market.

Sometimes, the assumptions used in published papers are not clear, causing confusion in
quotations.

4.2. Numerical results from field research data on sugar cane ethanol

A detailed life cycle analysis was presented in a report supported by the Environment Secre‐
tariat of São Paulo State [21]. The data base was composed of three surveys, the first one
covering 26 to 31 distilleries, the second one 17 to 22, and the last one a larger set of 98 dis‐
tilleries throughout the country. From this reference, it is possible to calculate representative
values for emissions from sugar cane and ethanol production in percentages of CO2 equiva‐
lent (Table 4). The percentage of CO2 that is avoided by the ethanol industry can be found in
Table 4.

Emission Source Emission Type %

From life cycle (A): equipments, buildings, etc
in cane production

in ethanol production

6.6

9.5

From fertilizers, herbicides, pesticides etc (B) in cane production 20.6

From sugar cane burning before harvest (C )
CH4

N2O

19.1

18.2

From soil (C) N2O 6.9

From fossil fuel consumption (C ) CO2 19.1

Total

A

B

C

16.1

20.6

63.3

Source: Elaborated by using data from [21]

Table 4. GHG Emissions in Sugar Cane Ethanol Production (% of CO2 equivalent)

The results in Table 4 deserve some comments. The lower heat value of ethanol is compensated
by the higher compression rate and better efficiency of the engine. In the use of anhydrous etha‐
nol as an additive to gasoline, used in a proportion of 25% in Brazil (E25), 1 liter of ethanol corre‐
sponds to 1 liter of gasoline. In the case of hydrated ethanol the proportion is 1.3 liters of ethanol

Biofuels - Economy, Environment and Sustainability336



(E100) to 1 liter of E25, which means 1 liter of ethanol for 0.77 liter of E25 or 0.77 x 0.75 = 0.577 liter
of gasoline. The direct emission factor of gasoline is 0.0693 kg CO2/MJ [5], but in a life cycle it be‐
comes 0.0817 kg CO2 / MJ [24]. Instead of bagasse substitution for fuel oil to calculate H’ in Table
5, the emission by electric power generation in Brazilian interconnected grid established for the
Clean Development Mechanism can be applied.

More recent data on the average emissions can be obtained from [25], considering the 2005/
2006 harvest. Their case study focused on a set of Brazilian distilleries that process 100 Mt of
sugar cane per year.

Results from 2002/2003 Harvest Average Best Value Scenario

Energy consumption EC (Mcal/t cane)

Sugar cane agriculture

Ethanol production

Total

48.2

11.8

60.0

45.8

9.5

55.3

Energy production EP (Mcal/t cane)

(ethanol + electric energy from bagasse surplus)

499.4 565.7

Energy gain (EP/EC) 8.3 10.2

GHG emissions (kg CO2 equiv. / t cane)

From fossil fuel consumption

Others

Total

19.2

15.3

34.5

17.7

15.3

33.0

Total GHG emission (kg CO2 equiv./ m3 of ethanol) = (A+B+C) 405.8 358.7

Net avoided CO2 (kg CO2 / m3 of ethanol) from gasoline (H) and fuel

oil (H’) used for electric energy: H+H’- (A+B+C)

For anhydrous ethanol

For hydrated ethanol

2600

1700

2700

1900

Percentage of avoided CO2

For anhydrous ethanol

For hydrated ethanol

86%

81%

88%

84%

Source: Elaborated by using data from [21]

Table 5. Energy gain, GHG emissions and percentage of CO2 avoided by the Ethanol industry in Brazil

Using data from this article it is possible to calculate the net avoided CO2 in terms of per‐
centage of fossil fuel CO2 emission. The results are:

a. For sugar cane and ethanol production the total GHG emissions, using GWP [26], are
436 kg CO2 equivalent / m3 of ethanol.

b. The net CO2 avoided emissions are 2323 kg CO2 / m3 of anhydrous ethanol.

c. In [14] the percentage of avoided fossil fuel CO2 emission due to anhydrous ethanol
is 84.1 %.
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The above results, confirmed by Table 5, conclude that a very high percentage of GHG emis‐
sion is avoided by sugar cane ethanol substitution for gasoline.

In Brazil about 1 toe of bagasse is consumed to produce 2 m3 of ethanol [19], equivalent to
20,900 MJ/m3. Taking this value as the self consumption of energy in the distillery (from
bagasse combustion) and assuming that, instead of bagasse, natural gas is burned, whose
emission in life cycle is 0.095 kg CO2/MJ [24], 20,900 x 0.095 = 1985 kg CO2, in a first approx‐
imation, the emissions are reduced by 12%.

The above calculation roughly shows the avoided percentage of CO2 when fossil  fuel is
not  necessary  to  produce  ethanol  as  in  corn ethanol.  Other  factors  that  make the  latter
more energy intensive than sugarcane ethanol:  better photosynthetic  efficiency of  sugar‐
cane, producing more biomass; corn produces starch, which must be hydrolyzed (broken
down into sugars),  before fermentation; corn demands significantly more nitrogen fertil‐
izers than Brazilian sugarcane, which employs biological nitrogen fixation techniques. Be‐
sides,  Brazilian  sugarcane  industry  is  increasingly  employing  high  efficiency  steam
boilers. All these factors explain why the avoided CO2 from sugar cane ethanol is much
higher than that from corn ethanol.

4.3. Potential of GHG emission mitigation through energy efficiency and harvest
mechanization

4.3.1. Potential energy improvement from ethanol, bagasse and residues

It is possible to improve the energy balance of sugar cane ethanol by:

a. Increasing sugar cane productivity in tons of cane per hectare;

b. Increasing the amount of ethanol produced from each ton of sugar cane;

c. Obtaining more agricultural residues through harvest mechanization;

d. Improving conversion efficiency of bagasse and trash (sugarcane top and leaves) into
heat, mechanical and electric energy.

Ethanol productivity grew up from 2024 liters per hectare in 1975 to 5931 liters per hectare
in 2005 [27]. The production of sugarcane in the period 1975-2006 rose from 89 million met‐
ric tonnes to 426 million metric tonnes [28]. However, for several reasons – old plantations,
poor weather prior and during harvest, sugarcane production and ethanol yield has de‐
creased in 2011, as shown in Table 6.

On average, 55% of sugar cane has been used for producing ethanol in the last five years,
but this percentage has decreased to 50.3% in 2011, one of the reasons for the steep decline
from 2010 [9]. The best average ethanol yield ever obtained, was 92 liters/t of cane [29], but
this performance will take some years to return, due to lack of investments in sugarcane
plantation renovation, linked to the Federal Government current gasoline price freeze poli‐
cy, which has also led to an increase of sugar production instead of ethanol.
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The energy available in bagasse and trash is quite significant. Each ton of cane has 280 kg of
bagasse with 50% of humidity and 2,130 kcal /kg [19], yielding 596 Mcal / ton of cane. The
average value for trash is slightly lower, but the combined energy of bagasse and trash is
more than the double of ethanol energy (Table 7) calculated with 92 liter with 0.8 kg/liter
and heat value 6,500 kcal/kg [19].

Processed Cane Ethano Productivity

Year Mt Mm3 liter/t

2003 359.3 14.5 74.8

2006 426.0 17.7 75.7

2009 622,6 26,2 84.1

2010 627,3 28,0 90,0

2011 565,8 23,0 80,0

Source: [9]

Table 6. Sugar cane and Ethanol Production and Productivity

Mcal/t of cane

92 liters of ethanol (best value) 478

280 kg of bagasse with 50% of humidity 596

280 kg of trash with 50% of humidity 596

Source: [22]

Table 7. Energy from 1 Metric Ton of Sugar Cane Considering Heat Values

In 2006 bagasse production was 121.0 Mt, from which 71.5 Mt (59.1%) was converted into
heat for sugar productiont, 42.0 Mt (34.7%) for ethanol production and 7.5 Mt (6.2%) for
electric power, part of it exported to the grid [19]. Sugar cane trash was not computed. So,
94% of bagasse is converted into heat and mechanical work for sugar and ethanol produc‐
tion. If there were a reduction of 20% in this percentage, through efficiency improvement,
the energy from bagasse available for electric power would increase by a factor of 4
(24.2+7.5/7.5).

Besides, if 50% of the trash is used, thermal energy for electric generation will increase by a
factor (61.5+24.2+7.5 / 7.5) = 12.4. As nowadays only a small part of electric energy from bag‐
asse is sold to the grid, the avoided GHG emission due to electric energy sale to the grid
could be multiplied even further.
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In this scenario, it would be possible to avoid more CO2 emissions than that from gasoline
replaced by ethanol, as can be shown below. The percentage of net avoided CO2 in terms of
percentage of fossil fuel CO2 emission is given by the following formula:

( )P’ = 1 – A + B + C – H’  / H (1)

A = emission from fossil fuels to make the equipments and to construct the buildings for
cane and ethanol production in an entire life cycle analysis;

B = emission from fossil fuel to produce fertilizers and other materials;

C = emission from fossil fuel in sugar cane production2 and from soil (N2O), as well as CH4
and N2O emission from cane (trash) burning before harvesting;

H = gross avoided emission of gasoline that is substituted with ethanol, in a life cycle analysis;

H’ = gross avoided emission of fossil fuel used for electric generation in the grid, replaced by
electric energy sold by the distilleries, using the bagasse (and trash) surplus after their self
consumption in ethanol production.

The electric installed capacity using bagasse in 2006 was 2.6 GW [19], 85% of which, 2.2 GW,
for self consumption and 15%, only 0.4 GW, sold to the grid. In the same year 8,357 GWh
was produced, 1,256 GWh relayed to the grid [BEN, 2007]. In the hypothesis of increasing by
a factor 4 the electric power generation from bagasse, as pointed above, the installed capaci‐
ty could become 10.4 GW and 10.4 – 2.2 = 8.2 GW could be sold to the grid, a twenty-fold
increase, expanding generation to 25,120 GWh.

Assuming that it will replace natural gas plants (which has a life cycle emission 0.095 kg
CO2/MJ [16]) with 40% conversion efficiency, the avoided CO2 yields 2.13 billion kg of CO2.
As in 2006 ethanol production was 17.7 Mm3, the avoided emission would be 1,200 kg
CO2/m3 of ethanol. The bagasse computed for electric generation in the above estimate
came from ethanol and sugar production as this industry is integrated. Considering that
55% of sugar cane is for ethanol production, H’= 660 kg CO2/m3 of ethanol. Using in formu‐
la (1) this figure and the average values from Table 4, the result is P’= 1.10, or 110%.

Therefore, besides compensating the full emission of sugar cane and ethanol production, for
each ton of CO2 avoided through ethanol substitution for gasoline, a further 100 kg of CO2
could be avoided due to bagasse surplus conversion into electric power.

4.3.2. Energy and emissions scenario with mechanization

Focusing only ethanol production and consulting again Table 6 and reference [19], it is easy
to calculate that bagasse consumption for heat and mechanical work in ethanol production
amounts to 42 x 2,130 / (426 x 0.55) = 382 Mcal/ t of cane. Subtracting this value from 596
Mcal (Table 6) there is a 214 Mcal bagasse surplus per ton of cane in ethanol production that

2 It includes emissions from diesel oil in tractors, mechanized harvesting and trucks for transportation
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can be used for electric energy. By the same token, it can be deduced that 68.2 Mcal of bag‐
asse per ton of cane was used for electric power in 2006.

Considering a substitution of 1 liter of ethanol (average of hydrated and anhydrous) for 0.79 li‐
ter of gasoline, with heat value 10,400 kcal / kg and density 0.74 kg / liter, the corresponding en‐
ergy is 0.79 x 0.74 x 10,400 = 6,080 kcal per liter of ethanol or 75.7 x 6,080 = 460,000 kcal/t of cane. In
the case of 92 liters/t of cane the equivalent energy will be 559 Mcal / t of cane.

There are limits for the sugar cane residues recovery because a portion is needed to recycle
nutrients as well as protect the soil from erosion and because mechanization cannot be used
in more than 50% of the area with present technology, due to declivity. On the other hand,
the burning of bagasse and residues could be done with improved thermodynamic efficien‐
cy. Table 8 shows a hypothetical scenario regarding the 2006 harvest, based in the above
considerations:

Brazil 2006 Future Scenario Increase

Ethanol (energy of displaced

gasoline)

460* 559** 21%

Bagasse for electric energy

(part to grid)

68 214*** 314%

Trash for electric energy (all

to grid)

- 298 **** infinite

* Considering 75.7 liters of ethanol per ton of cane (Brazil’s average in 2006)

** With the best value of 92 liters of ethanol per ton of cane

*** It is subtracted self consumption of 377 Mcal / t of cane

**** 50% of total mass

Table 8. Energy (Mcal) from 1 Metric Ton of Sugar Cane

The scenario of Table 7 does not take into account the possible improvement of efficiency in
energy transformation that can increase the bagasse surplus, for instance by changing low
efficiency steam systems for electric power. In many plants low pressure steam boilers are
used. tone can obtain more mechanical and electric energy per ton of cane with higher effi‐
ciency systems, decreasing bagasse self consumption. In general the sugarcane sector in Bra‐
zil employ boilers and turbines with 22 bars of steam pressure, which can be increased to 60
bars or 80 bars, improving efficiency by at least a factor of 2. Bagasse self consumption in
ethanol production is usually divided in the following way: 90% for heat in ethanol distilla‐
tion, 5% for mechanical work and 5% for electric power. If efficiency is improved in the con‐
version of heat into mechanical and electric energy, not only the bagasse surplus will be
higher, but there will also be more electric power available to the grid per ton of bagasse.
Therefore, H’ could be even higher.

Biofuels in Brazil in the Context of South America Energy Policy
http://dx.doi.org/10.5772/54419

341



Harvest mechanization, utilized in such a way to avoid cane burning, can allow not only a
higher value of H’ due to the use of trash in electric power generation, but also a lower val‐
ue of C emission in formula 1. 100% of mechanization is not feasible because of the slope in
part of the lands where sugar cane is planted. If mechanization is increased in 50% in rela‐
tion to the case study depicted in Table 3, there could be a reduction of 0.5x 37.3= 18.6% in
CO2 equivalent emission of CH4 and N2O from cane burning.

However, 50% more machine-based harvesting will increase emissions from diesel oil in the
same proportion. Assuming that half of fossil fuel consumption in Table 3 is diesel oil, the
corresponding emissions (0.5x.19.1%=9.5%) will increase by 4.75%. The net result should be
an emission reduction of 18.6 – 4.75= 13.85%. Diesel oil can be eliminated by fuelling diesel
engines with either biodiesel or ethanol with additive. In this scenario, the higher indirect
energy in life cycle of harvesting machines (A in Table 3) is considered negligible.

The problem of increasing harvesting mechanization is the drastic reduction of workers in
sugar cane crop. The number of workers in the year 2005 in sugar cane agriculture was 414
thousand, in sugar production 439 thousands and in ethanol industry 128 thousand [30].
However, manual harvesting of sugar cane is a very hazardous activity, often causing stress-
related diseases in workers. Also, sugar cane burning is a major source of air pollution, caus‐
ing respiratory illnesses to local populations.

5. Discussion on land uses, ethanol competition with food and
deforestation

5.1. Land uses and deforestation

The issue of food crop displacement due to biofuel competition has been raised recently by
several authors, which have concluded that land use change is the main cause of GHG emis‐
sions of biofuels in general. Land use change (LUC) is a complex process caused by the in‐
teraction of natural and social systems at different temporal and spatial scales. LUC can
induce GHG emissions due to oxidation of soil organic carbon and due to burning or de‐
composition of above-ground biomass.

However, it’s important to notice that biofuels account for a very small proportion of global
agricultural production; approximately 2%, or around 36 Mha [31] from a total cropland
area of around 1,527 Mha [32]. Therefore, the magnitude of GHG emissions due to LUC
from global biofuel production is small compared to the total emissions from all LUC: agri‐
cultural land expansion for food, feed, fibre, cattle ranching, fuel wood and timber (log‐
gings), and expansion of infrastructure generates the greater part of LUC emissions. With
respect to biomass cultivation, LUC can be divided into:

• Direct land Use Change (DLUC) – it occurs when bioenergy feedstock production modi‐
fies an existing land use, resulting in a change in above- and below-ground carbon stocks
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• Indirect land Use change (ILUC) - occurs when land that was formerly used for the cultiva‐
tion of food, feed or fiber is now used for biomass production shifting the original land use to
an alternative area that might have a high carbon stock, like forests and wetlands. This carbon
stock could be reduced if utilized for agricultural purposes. The resulting (indirect) GHG
emissions are (at least partly) caused by increasing biomass/biofuel production.

[33] were the first to address the issue of ILUC: they estimated that allocation of 12.8 Mha of
corn to produce ethanol in the USA would result in 10.8 Mha of new cropland around the
world. The conversion of native ecosystems to cropland would result in indirect emissions
potentially twice as large as direct lifecycle emissions, yielding emissions that surpass the
gasoline it would replace. As there are no direct measurements that can be made, the au‐
thors used a partial economic equilibrium model of the global agricultural sector to assess
the indirect emissions. ILUC will be discussed in more detail in the next section.

The problem of ILUC is not new in Brazil. It was exhaustively discussed since the displace‐
ment of food crops in São Paulo State by sugar cane was pointed out a long time ago by
[34;35]. There was indeed displacement of food crops; however, its dimension is very differ‐
ent in the case of sugar cane in Brazil as opposed to that of corn in US. The US participation
in World corn production is higher than the participation of Brazil in global sugar cane pro‐
duction, while the area used for corn production in US is almost 5 times the area for sugar
cane production in Brazil (Table 9).

US corn Brazil sugar cane

Percentage of World production 38% 21.7%

Crop area 37 Mha 8.4 Mha

Source: [9;36]

Table 9. Corn in US X Sugar Cane in Brazil

In 2011, the area used for sugar cane production in Brazil was 8.4 million ha, 4.2 million ha
each to produce ethanol and sugar. As previously mentioned, Brazil has 152 Mha useful for
agriculture, but only 62 Mha are currently cultivated for food, feed and biofuels. Thus, sugar
cane for ethanol utilizes only 2.7% of the area useful for agriculture, not taking into account
the recovery of degraded pasture lands. Native vegetation area of Brazil comprises 440 Mha,
most of it in Amazon rain forest, in the North. The production of sugar cane is concentrated
in the Southeast, followed by Center West, South and Northeast regions, but only 0.4% from
the North Region (Table 10).

Southeast - 63.7% Northeast – 11.8% Center West-16.7% North - 0.4% South - 7.3%

Source: [23]

Table 10. Sugarcane Production in Brazil per Region
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In September 2009, to emphasize the Brazilian Federal Government disposition to preserve
its main natural resources from sugarcane expansion, EMBRAPA, its agricultural research
agency, published the Agro Ecological Zoning of Sugarcane. In it, EMBRAPA surveys the en‐
tire territory, pointing out the appropriate sites to cultivate sugarcane, from a soil and cli‐
mate standpoint. The survey explicitly excluded any areas within the Amazon Rainforest,
the Pantanal Biome (Wetlands), as well as Indian territories and protected areas according to
the National System of Conservation Units. The study identified a total of 64.7 Mha of ap‐
propriate land for sugarcane expansion, 37.2 Mha from pasture land. It concludes that those
numbers demonstrate the country’s capacity to expand sugarcane production without caus‐
ing deforestation or displacing lands with other crops used for food and feed. Figure 3
shows the resulting map.

Source: [37]

Figure 3. Brazilian Sugar cane Agroecological Zoning

No correlation between expansion of sugar cane and soy beans crops and deforestation has
been established, since Brazil’s production of both crops has continuously increased, where‐
as deforestation rates have been decreasing since 2005 [1].

There are two points to be observed about biofuels and deforestation:

a. The presence of sugar cane in Center-West region (17%) has an impact on the Brazilian
Cerrado, although its savanna type vegetation is less dense than rain forest.

Biofuels - Economy, Environment and Sustainability344



b. Soybean, mainly used for feed, but also for biodiesel, is different, because its presence in
the North region is high, although Brazilian biodiesel production is only one-tenth of
ethanol’s. A multi-stakeholder initiative was established in 2006 with a commitment
from major buyers not to acquire soybeans from areas in the Amazon that have been
deforested after July 2006. The Soy Moratorium was signed by corporate unions which
represent more than 90% of Brazil’s soybean industry.

Among the goals of the Brazilian Biodiesel Program there is the cultivation of castor, palm, sun
flower and other crops by small farmers to supply the raw materials. But, since its inception,
soybean oil from large soybean plantations has been the dominant feedstock for biodiesel.

The commonly accepted drivers of deforestation are four, mainly in the rain forest:

a. wood extraction;

b. pastures for cattle grazing;

c. crop plantations;

d. mineral resource exploration.

But in the case of Brazil all these drivers increased in the last decade while the deforestation rates
decreased, showing that this mainstream deforestation model does not hold true in Brazil.

Different concepts of deforestation yield different values of deforested areas due to the ac‐
counting (or not) of deforested areas where vegetation is growing again. In some studies the
deforested areas are only the ones that really changed their land use definitively, but others
consider the burning of biomass as deforestation. Nevertheless these differences are mostly
qualitative for the Brazilian Legal Amazon. Another issue is the vegetation classification
which leads to varying results in terms of carbon emissions for the same area. It depends on
the adopted vegetation classification because carbon content can differ a lot. For example,
according to HYDE/IVIG database, the Brazilian Legal Amazon land use changes represent‐
ing agriculture and pasture lands added up to 422,070 km2, in 1990. The natural areas were
originally tropical forest, wooded tropical forest and savanna. According to INPE database,
the cumulative Brazilian Legal Amazon deforestation until 1990 was 415,000 km2. These
numbers show the compatibility of the 2 databases in terms of magnitude but the quality of
the information present huge differences. These differences indicate that it is important to
adopt a more detailed focus of analysis with new indicators [38].

Deforestation was responsible for about 78% of CO2 emissions of Brazil in 2000/2005 [39]. In
2006, Brazil proposed to the UN Climate Change Convention the creation of an International
Fund for Reducing Deforestation. In 2007, the Brazilian Forum on Climate Change3 present‐
ed the Government a formal suggestion for a National Plan of Action, with contributions
from universities and research institutions, NGO’s and private companies. In December
2008 the National Plan on Climate Change was published.

3 The President is the chairman of the Brazilian Forum on Climate Change. Members include the Minister of Science
and Technology, of the Environment, of Foreign Affairs of Energy, members from academia, NGOs and industry.
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To achieve its GHG emission targets, NPCC set as one of its main actions a sustained reduction
of deforestation rates in all Brazilian biomes, in particular the Amazon Forest. Specifically, it
calls for a reduction of 40% in the average deforestation rate by the 2006-2009 period in relation
to the average rate of the ten years preceding years (1996-2005). For each of the next two periods
of four years, it aims to reach a further 30% reduction, in relation to the previous period.

Since Brazil does not belong to Annex I of the UN Climate Change Convention, it does not
have to set a binding emission commitment. But its decision is compatible with the so called
road map decided in Bali (in 2007), which called for “Nationally Appropriate Mitigation Ac‐
tions by developing country Parties in the context of sustainable development, supported and enabled
by technology, financing and capacity building, in a measurable, reportable and verifiable manner”.
NAMAs are to act as a bridge between developed and developing country parties, following
the principle of ‘common but differentiated responsibilities’.

5.2. Indirect land use change and GHG emissions

Before [33], biofuel “well-to-wheel” LCAs were mostly attributional, consisting of a linear
chain-like series of analytical steps, carrying out no assessments of nonlinear feedback-like
effects. As already mentioned, the above authors suggested that when including ILUC, the
previously thought GHG-saving corn ethanol turned into a net producer of GHG emissions.
This raised serious concerns and new efforts were launched, particularly in the U.S. and Eu‐
rope, to study biofuels LUC.

The logic that supports ILUC is that biofuel production competes for agricultural resources,
which results in an increase in the price of agricultural products, and these price increases
cause additional conversions of the world’s grasslands and forests to cropland. This addi‐
tional land conversion results in loss of carbon previously sequestered in grassland and for‐
est ecosystems. These emissions are an indirect result of producing biofuels and should be
considered in calculating the GHG implication of adopting biofuels.

The quantification of the net GHG effects of DLUC occurring on a site used for bioenergy
feedstock production requires the definition of a reference land use as well as carbon stock
data. This data can be uncertain but still allows quantification of emissions with sufficient
confidence for guiding policy. ILUC emissions estimation, on the other hand, is highly prob‐
lematic given the complexities of the economic and social systems that connect biofuel pro‐
duction with land conversion throughout the world.

To make matters worse, ILUC due to the recent expansion of the biofuel industry is hard to as‐
sess because this expansion constitutes a very small driver as ILUC effects are not specific to bio‐
fuels or bioenergy, but to all incremental land use, so the biofuel impact is likely to be dwarfed
by other causes. Besides, as the name implies, ILUC cannot be measured, only modeled, al‐
though case studies could offer some useful evidence. The fact is, up to now, there is still no
sound and commonly accepted methodology either to calculate or to assign iLUC effects prop‐
erly. Hence, bioenergy policies worldwide face a dilemma: neglect iLUC effects that in fact exist
or take them into account although no sound methodology is available?
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Despite these difficulties, the US Environmental Protection Agency, as part of the updated
Renewable Fuels Standard (RFS-2), specified that life-cycle GHG are to include “direct emis‐
sions and significant indirect emissions such as significant emissions from land use change”
to determine if a specific biofuel is eligible to be counted towards the RFS-2 mandate. Bio‐
fuels in the RFS were divided into four categories:

• Renewable biofuel – any qualifying renewable fuel, including corn ethanol. Must meet
20% lifecycle GHG threshold

• Advanced biofuel – anything but corn ethanol, can include cellulosic ethanol and bio‐
mass-based diesel. Must meet 50% lifecycle GHG threshold

• Cellulosic biofuel – renewable fuel produced from cellulose, hemicellulose, or lignin. BTL,
green gasoline also apply. Must meet 50% lifecycle GHG threshold

• Biomass-based diesel – biodiesel, renewable diesel. Must meet 50% lifecycle GHG threshold

Using the FAPRI/CARD model, EPA published in 2009 an analysis of GHG emissions of a
set of biofuels: US corn ethanol, Brazilian sugarcane ethanol, soybean biodiesel, among oth‐
ers. Brazilian sugarcane ethanol, after taking ILUC into account, was found to reduce emis‐
sions by 26%, which would disqualify it as an advanced biofuel. Corn ethanol did not
qualify as a renewable fuel, except when cogeneration was used, nor did soybean biodiesel.
There was an immediate backlash from the industry.

ICONE, a Brazilian consultancy, sent a letter to EPA listing shortcomings of the agency’s
adopted model. It presented BLUM - Brazilian Land Use Model, more sophisticated, with
better spatial resolution, and whose calculations resulted in total emission reduction (DLUC
+ ILUC) of 60%.

On February 2010, EPA concluded that, in fact Brazilian sugarcane ethanol reduced emis‐
sions by 61%, qualifying it as an advanced biofuel. The impacts of this decision will be dis‐
cussed in the following section. EPA also revised the GHG emission reductions of other
biofuels: corn ethanol was found to reduce emissions by 21%, qualifying it as a renewable
fuel; soybean biodiesel was found to mitigate 57% of emissions, qualifying it as biomass-
based diesel.

In the European Union (EU), ILUC calculations were more carefully considered. On April
2009, the EU adopted the Renewable Energy Directive which included a 10% target for the
use of renewable energy in road transport by 2020. It set a minimum rate of direct GHG
emissions savings – 35% in 2009, rising over time to 50% in 2017. Moreover, the European
Commission (EC) was asked to examine the matter of ILUC, including measures to avoid it
and report back this issue by the end of 2010. In that context the EC undertook a review of
the scientific literature modelling the land use change impacts of biofuels, reviewing over
150 contributions on the topic and reviewing 22 different modelling exercises [40]. Large dis‐
crepancies were found in their results, reinforcing the arguments that good estimates of land
use indirect impacts are hard to achieve. Comments sent to the EC [41] in regard to the need
to improve sugarcane ethanol model assumptions from those studies include:
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• Projections on sugarcane and ethanol yield: models project smaller yields as compared to
historical trends

• Poor analysis or lack of analysis on pasture intensification, leading to an overestimation
of LUC resulting from the expansion of biofuels, as pasture is the largest land user in Bra‐
zil and there has been high cropland expansion in this land category in the current decade

• Lack of evidence supporting the criteria used to allocate marginal land demand over na‐
tive vegetation. The main criterion was historical data, either inaccurate or based on the
assumption that additional cropland due to biofuels expansion will determine a frontier
advancement similar to what has been observed historically.

The EC published a report in December 2010 setting out four policy options it was considering:

• Take no action for the time being while continuing to monitor.

• Increasing the minimum greenhouse gas threshold for biofuels.

• Introducing additional sustainability requirements for certain biofuels.

• Attributing GHG emissions to biofuels reflecting the estimated ILUC impact

Recognizing the difficulties in establishing a consistent methodology for calculating biofuels
ILUC emissions, as of this writing, no decision has yet been made by the EC.

5.3. Potential sugar cane expansion and external markets

The next question concerning possible impacts arising from the expansion of sugar cane
production is related to the potential exportation of ethanol to OECD countries.

The European car fleet uses a growing proportion of diesel engines, although there is a non
negligible consumption of gasoline either with or without ethanol as additive. For instance,
part of Sweden’s car fleet uses 80% of ethanol and 20% of gasoline (E80).

The most important ethanol producers, as well as the countries to which Brazil exports can
be seen in table 11. Only the USA and Brazil, which together supply 87% of the world’s pro‐
duction, use ethanol substitution for gasoline in a large scale. The current percentage of
ethanol mixed to gasoline in the US is 10%, due to an EPA blend “wall”, which has recently
expanded to a 15% threshold.

Until  recently,  the North-American market,  almost all  supplied by domestic  production,
was not open to Brazilian ethanol. However, at the end of 2011, a U$ 0.54/gallon levy on
Brazilian  ethanol,  as  well  as  a  US$  0.45/gallon  credit  for  American  producers  of  corn
ethanol  was waived,  paving the way for  a  better  relationship between these  two major
players. Also, due to EPA’s classification of Brazilian ethanol as an advanced biofuel, the
US market, where Otto cycle engines are predominant in the car fleet, has become more
attractive than ever. There are other potential importers, as Japan, where Petrobras creat‐
ed a joint venture with Mitsubishi to export ethanol. China, which uses corn to produce
ethanol,  has also become a major market.  Many foreign investors are being attracted to
ethanol agro-business in Brazil,  including oil majors (BP, Shell) as well as companies re‐
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searching 2nd generation biofuels, due to the widely held perception of sugarcane compa‐
rative advantages over corn, as seen on table 12:

a. Inefficacy of corn ethanol to mitigate global warming (as previously discussed).

b. higher competition of corn ethanol with food agriculture (as previously discussed);

c. lower productivity per hectare and higher cost of corn ethanol (Table 11);

Production in 2011 Brazilian Export Destination in 2010

USA 54.2 South Korea 334

Brazil 21.0 USA 233

China 2.1 Japan 230

Canada 1.8 Netherlands 221

France 1.1 United Kingdom156

Germany 0.8 Jamaica 107

Spain 0.5 Nigeria 80

TOTAL 86.1 billion liters TOTAL 1.650 million liters

Source: [42],[43]

Table 11. Ethanol Supply and Brazilian Exports

Productivity Costs

Sugar cane ethanol 4000 to 7000 liters / ha 0.19 US$ / liter (S.Paulo)

0.23 US$ / liter (Northeast Region)

Corn ethanol 3500 to 4700 liters / ha 0.33 US$ / liter

Source: [44;17]

Table 12. Comparison of Sugar Cane Ethanol with Corn Ethanol

Based on Brazilian ethanol’s competitive advantages, it is reasonable to imagine a virtual
extreme scenario for  future  ethanol  demand to  be supplied through international  trade.
According to  the  RFS2 mandate,  US biofuels  consumption will  total  136.5  billion liters/
year by 2022, 19 billion from advanced biofuels, for which only Brazilian sugarcane etha‐
nol  currently  qualifies.  The entire  American market  alone will  be  equal  to  7  times Bra‐
zil’s current production.

If  we  consider  a  technology  and  productivity  freeze,  land  requirement  should  increase
seven-fold,  resulting  in  28  Mha for  sugar  cane  ethanol,  approximately  25% of  the  land
still available to expand agriculture in Brazil. This percentage is not small taking into ac‐
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count  the  need of  cropland for  food and feed to  supply  the  internal  market  (including
biofuels), as well as exports to other countries. If the EU ethanol market expands, due to
a more favorable ILUC-wise view of this biofuel over biodiesel, the area needed for sug‐
ar cane exports could become too large,  especially if  we consider the inherent problems
of  very  large  monocultures.  Second  generation  technology  for  ethanol  production  can
change the present prospects.

6. Conclusion

At this point there is no major obstacle from a land use point of view to expand ethanol sup‐
ply for Brazil’s internal market, but it should not attempt to supply all the global ethanol
market, if it is decided that biofuels is a valid global warming mitigation scheme. Converse‐
ly to aforementioned studies, emissions due to indirect land use change in Brazil cannot
beattributed to the increase of biofuel production, because deforestation and ethanol pro‐
duction have presented opposite trends for almost ten years.

Government’s scenarios predict a domestic demand of 63 billion liters of ethanol in 2020
[45]. However, due to the recent downfall of ethanol exports from a peak of 5.1 billion liters
in 2008, the amount exported in 2020 has been revised to only 6.8 billion liters. Brazil can
comfortably supply such quantities as the area needed – 10 Mha - is compatible with the
available land for agriculture.

As was pointed out in the present paper, CO2 is dominant among GHG emissions and auto‐
motive fleet contributes with 20% of World CO2 emission. It amounted to 890 million light
vehicles in 2005 and it consumes half of petroleum products in the World [46]. Besides, the
fleet increases 20% per year in China and 3.5% in Brazil, where more than half the cars are
flex fuel vehicles running with either gasoline or ethanol. As in Brazil cars use from 25% to
100% of ethanol, CO2 avoided emissions are substantial.

Ethanol per se is not enough to mitigate CO2 emissions at the World level. A deeper change
in energy technology, transport, and consumption pattern is needed, including in public
transportation, which use more efficient diesel engines. But ethanol can become an impor‐
tant fuel for different technologies, besides Otto cycle engines in cars. With additives, etha‐
nol could feed Diesel engines used in buses, trucks and railway trains. It serves as fuel in
hybrid vehicles of electrical propulsion - in which an Otto or Diesel engine is coupled to an
electric generator that supplies current to an electrical motor and to accumulate energy in
batteries – or in fuel cell vehicles to replace combustion engine based ones.

Sugar cane is the better way to produce bio-ethanol, from both an economic and environ‐
mental view point, including GHG mitigation through gasoline replacement. However,
ethanol industry in Brazil has to improve, undergo technological changes, some of them
concerning efficiency in energy transformation and natural resource use, by applying the
best available technologies. The main changes must be, at a first level:
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a. Efficiency improvement in the transformation of sugar cane bagasse chemical energy
into heat, mechanical and electric energy for self consumption and export to the grid;
current participation of bagasse in the Brazilian electric generation matrix is too small
and must increase.

b. Utilization of the sugar cane trash, which is burned before harvesting to allow access to
manual laborers; the amount of energy that could be converted into electric generation
is significant.

c. Item (b) implies the increase of harvesting mechanization in sugar cane agriculture, de‐
creasing the number of workers; however, manual harvesting is known to be hazardous.

d. Job conditions of workers in sugar cane plantation have to improve in some cases, in‐
cluding a social dimension besides the environmental one in clean energy production.

e. Technological improvement in agriculture.

On a second level there are:

a. Gasification of sugar cane bagasse and sugar cane residues;

b. Second generation ethanol production through hydrolysis;

c. Bio-refineries with multiple byproducts or integrated oil & bio-refineries, in an ad‐
vanced concept.

Gasification could allow either high efficiency conversion in electric energy through com‐
bined cycle or could be used to produce liquid fuel from gas. Second generation ethanol
consists in an acidic or enzymatic hydrolysis followed by fermentation that converts cellu‐
lose from biomass into ethanol.

The commercial use of hydrolysis can reduce sugar cane comparative advantage in relation
to other kinds of vegetable to produce ethanol. On the other hand, the entire sugar cane bio‐
mass could be used to obtain ethanol, including the hydrolysis of bagasse and residues, as
well as allowing fermentation of pentoses from hemicellulose to produce ethanol. [28] pre‐
dicts a time horizon between 2010 and 2020 for second generation ethanol to become com‐
mercial, while gasification will take a little bit longer, 2015 to 2025, in spite of already
existing technological uses of wood gasification. In the case of hydrolysis there are proto‐
types and some recent small scale industrial plants are in construction in the World, but no
2nd generation ethanol production has, to this date, become commercial.

Bio-refineries can produce ethanol together with other chemical byproducts. For instance,
biodiesel production needs ethanol or methanol and has glycerol as a byproduct that can be
used to produce biogasoline. Since the beginning ethanol production in Brazil was integrat‐
ed with sugar production in the so-called annex distilleries. A more advanced concept is the
integration of bio-refinery with oil refinery.

Finally, biofuels for private cars must not prevent the search for technical and social efficien‐
cy in transport, with an emphasis on public transport. Climate Change Policy must be de‐
voted to find realistic solutions for sustainable development with social justice. Elimination
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of poverty needs more energy per capita in developing countries, but, at same time, it is nec‐
essary to change the intensive energy use and consumption pattern of high income and mid‐
dle classes. It is not possible to radically mitigate global warming without any change in
business as usual energy consumption.
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