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1. Introduction 

The hormonal microenvironment surrounding endocrine-sensitive tissues may play an 

important role in the carcinogenesis of these tissues. Epidemiological evidence strongly 

suggests that steroid hormones, primarily oestrogens (E2), are implicated in ovarian and 

breast carcinogenesis.  

The breast is an endocrine-sensitive organ. The development of the breast from puberty 

through the cycles of pregnancy, lactation and involution is regulated through hormonal 

controls. Epidemiological studies have demonstrated that 50% or more of breast cancers are 

environmental in origin. Epidemiological evidence linking breast cancer incidence to 

oestrogen exposure and the ability of oestrogen to drive the growth of breast tumours in 

vivo is well documented in clinical studies. In addition, the mechanism of oestrogen action 

on the growth of breast cancer cells in animal models and in vitro has been extensively 

described in experimental studies. The involvement of oestrogen in the progression of breast 

cancer is the basis for the successful use of endocrine therapy as a treatment for breast 

cancer. In addition to the physiological steroidal oestrogens, many compounds have been 

found to have oestrogenic activity such that the human breast can be exposed to 

environmental oestrogens from a variety of sources. The link between breast cancer and the 

use of the oral contraceptive pill has been extensively studied, and a study involving a 

million women has documented an increase in breast cancer following the use of hormone 

replacement therapy (HRT). Such findings demonstrate that the development of breast 

cancer can be influenced at all stages of life after puberty through the voluntary exposure to 

exogenous oestrogens.  

Ovarian cancer is the fourth-ranking cause of cancer-related death in women from Western 

countries. The natural history of this cancer is characterised by the potential for particularly 

aggressive local invasion. Unfortunately, these tumours are often diagnosed at an advanced 
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stage (i.e., 70% of tumours are discovered at stage III). Although all cell types of the human 

ovary may undergo neoplastic transformation, the vast majority (80-90%) of tumours are 

derived from ovarian surface epithelium (OSE). One of the hypotheses regarding the causes 

of ovarian cancer argues that the repeated cycles of ovulation-induced trauma and repair of 

the OSE during ovulation, without pregnancy-induced rest periods, contribute to ovarian 

cancer development. This “incessant ovulation” hypothesis suggests that regenerative repair 

of OSE cells that occurs during ovulation results in the accumulation of mutations, which 

predisposes this cell layer to tumourogenesis. There is also growing experimental evidence 

that oestrogens may play an important role in ovarian carcinogenesis. Use of HRT for 

menopause-related symptoms could be associated with an increased risk of ovarian cancer 

incidence or mortality. 

2. Endogenous oestrogens 

 

Figure 1. A) Oestrone (E1); B) Oestradiol (E2); C) 2-hydroxyoestradiol (2-OH-E2); D) 4-

hydroxyoestradiol (4-OH-E2) 

2.1. Carcinogenesis of oestrogens 

Oestrogens are believed to play a critical role in the etiology of breast and ovarian cancer 

through two distinct pathways. First, the products of oestrogen metabolism damage DNA 

by forming adducts and oxidised bases, leading to mutations in oncogenes and tumour 

suppressor genes that normally control cell growth and proliferation [1]. Second, oestrogens 

may alter the expression of specific genes, which stimulate growth and proliferation of 

epithelial cells in the breast and ovary. Notably, oestradiol-17β has been classified as a 

carcinogen by the International Agency for Research on Cancer. Thus, natural oestrogens 

levels in men and women have the potential to act as carcinogens. For example, early 

menarche and late menopause are risk factors for breast cancer, due to longer oestrogen 

exposures. It is well established that chronic exposure to elevated oestrogen levels 
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contributes to carcinogenesis of multiple reproductive organs. Ovaries are not only the 

principal source of oestrogens in premenopausal women but are the key target tissue of 

oestrogen activity. Oestradiol and oestrone are mainly produced by follicular cells. Ovarian 

tissue oestrogen levels are at least 100-fold higher than the circulating levels and those in the 

follicular fluid of ovulatory follicles are even higher [2]. Additionally, active oestrogens are 

formed from circulating oestrone sulphate or oestradiol sulphate, as the result of de-

conjugation by sulphatase [3]. The local release of biologically active oestrogens from 

conjugates and their further metabolism prolong the effect of oestrogen on peripheral 

tissues [4]. Oestrogen is essential to the function of the female reproductive system and a 

major regulator of growth and differentiation in normal ovaries. Furthermore, oestrogens 

are required for the proliferation and differentiation of healthy breast epithelium. 

2.2. Classic ER mediated activity 

The classic oestrogen receptors (ERs) are nuclear hormone receptors that act as transcription 

factors, regulating genes involved in homeostasis, development and metabolism. Two forms 

of ER have been identified, ERα and ERβ. While ERβ is predominantly expressed by 

granulosa cells, theca cells, surface epithelium, and CL, oocytes have also been reported to 

express the receptor. Both receptors are ligand-inducible nuclear hormone receptors. The 

classic mechanism of ER action involves binding of the ER to its ligand, resulting in receptor 

dimerisation, interaction with consensus oestrogen-response elements (EREs), and 

recruitment of transcriptional co-regulators, resulting in the formation of a complex that 

modulates the transcription of oestrogen target genes. The best-described nuclear receptor 

cofactors are the p160 family of co-activators, namely, SRC-1, SRC-2, and SRC-3; however, 

the cofactor complexes that mediate the ultimate outcome of ER signalling are complicated 

with more than 300 cofactors described in the literature [5]. Numerous genes with diverse 

functions in energy production, cell growth, cell cycle regulation, and cytoskeleton 

organisation, whose expression is induced or repressed by oestrogen, have been identified 

by microarray analysis. Oestrogen receptors have been shown to interact with other 

transcription factors, co-activator proteins, and tyrosine kinase growth-factor receptors and 

to cross–talk with other signal transduction pathways [6]. Through regulating gene 

expression, oestrogen functions as a potent stimulus for proliferation and inhibition of 

apoptosis, which may lead to the development of cancer. 

2.3. Non-genomic ER mediated activity 

ER signalling may occur in a ligand-dependent, non-genomic (extra-nuclear) pathway. This 

pathway involves the activation of other signal transduction pathways that lead to rapid 

responses, generally within minutes, to oestrogen exposure. The mechanism of non-genomic 

ER signalling is not clear, but is potentially mediated by a membrane-associated receptor. A 

G-protein coupled receptor known as GPR30 mediates rapid oestrogen signalling 

independent of ERs, which can lead to activation of the MAPK or phosphoinositide-3-kinase 

(PI3) kinase signalling cascades, fluctuations in intracellular calcium, or stimulation of 

cAMP production [7]. E2 mediation activates the MAPK and PI3 pathways that are the 
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major effectors of cell proliferation and cell survival. Deregulations of cell proliferation, 

differentiation, and apoptosis may allow cells that have harboured mutations in proto-

oncogenes and tumour suppressor genes to survive and expand clonally. 

2.4. Metabolism of oestrogens 

There is growing evidence that E2 and its metabolites may be involved in breast cancer 

development. Endogenous E2 metabolites may play an important role by influencing the 

growth of oestrogen-sensitive target cells, both stimulating and inhibiting proliferation [8]. It 

is generally known that both the biosynthesis and metabolism of E2 occur in cancerous 

breast tissues. The cytochrome P450-dependent monooxygenases (CYP) are responsible for 

the biosynthesis and metabolism of endogenous compounds such as steroid hormones. 2-

hydroxyestadiol (2-OH-E2) and 4-hydroxyestradiol (4-OH-E2) are two major hydroxylated 

metabolites of E2 formed by cytochrome P450 1A1 and 1B1, respectively. The catechols 2-

OH-E2 and 4-OH-E2 can be oxidised to quinones, which are putative tumour initiators, and 

the 4-hydroxylated form of E2 appears to be one of the most genotoxic metabolites of E2 in the 

breast epithelium. The 4-OH-E2 to 2-OH-E2 concentration ratio has been reported to be 4:1 in a 

human breast cancer extract [9]. The catechol-O-methyltransferase (COMT), which methylates 

catechol estrogens, prevents their conversion to quinones. There are reports that 2-

hydroxylated E2/E1 are better substrates for COMT than their 4-hydroxylated isomers [10,11]. 

Thus, the 2OH-E2/4OH-E2 ratio may be a critical parameter of the carcinogenicity of E2. 

 

Figure 2. Major metabolic pathway in cancer initiation by oestrogens 

We propose that local activation of the cytochrome P450 enzymes CYP1A1 and CYP1B1 by 

E2 may generate active metabolites that affect apoptosis and thereby promote mammary 

carcinogenesis. To test this hypothesis, we measured the ability of E2 to induce CYP1A1 and 

CYP1B1 and assessed the influence of the parent compounds and their hydroxylated 

metabolites on apoptosis.  
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The previously published results demonstrated that E2 increased CYP1B1 protein 

expression after 48 h of cell culture but had no effect on CYP1A1 protein levels [12], Figure 

3. CYP1B1 has been suggested to play key roles in initiating breast cancers in humans, as 

this enzyme is active in catalysing oestradiol to a 4-hydroxylated metabolite. Cytochrome 

P450 enzymes, the products of the CYP genes, are components of the oestrone hydroxylase 

enzyme system. Elevated 4-hydroxyoestrogen production has been associated with breast 

tumours [13]. 

 

Figure 3. The effect of oestradiol (1nM) on expression of the CYP 1B1 protein in MCF-7 cells [12] 

2.5. Action of E2 and its hydroxylated metabolites (2-OH-E2 and 4-OH-E2) on 

MCF-7 breast cancer cell proliferation 

In our previously published data [12], we demonstrated that E2 can be locally metabolised 

to their hydroxylated derivatives via cytochrome P450 enzymes in breast cancer MCF-7 

cells. Additionally, E2 hydroxylated metabolites had a time-dependent affect on MCF-7 cell 

proliferation [14]. While E2 and 4-OH-E2 elicited a significant increase in cell proliferation 

over the entire time of exposure, 2-OH-E2 resulted in an increase of cell proliferation only 

after a long incubation period, Figure 4.  

Our observations were consistent with the results of [15], who demonstrated that 4-OH-E2 is 

more oestrogenic than 2-OH-E2. In [16] it was indicated that certain oestradiol metabolites, 

i.e., 4-OH-E2 and 16-OH-E2, are able to mimic the effects of 17β-oestradiol on proliferation 

and markers of tumour metastasis. The effect was more pronounced for 16-OH-E2. In 

contrast, the metabolite 2-OH-E2 did not show any significant effect on these parameters. 

The effect of the various oestrogen metabolites appears to be dependent on their ability to 

bind to the oestrogen-receptor. The most potent oestrogen regarding an influence on 

proliferation, apoptosis and metastasis is 17β-oestradiol. As this oestrogen appears to be 

metabolised intracellularly, the direction of oestradiol metabolism may influence breast 

cancer risk in certain predisposed women. Enhanced metabolism towards 2-OH-E2 may 

even be protective, as this metabolite is rapidly converted into 2-methoxyestradiol, which 

has been shown to be a potent anti-proliferative and anti-angiogenic agent in various 

tumour cells [17].  
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Figure 4. Action of E2 and its hydroxylated metabolites 2-OH-E2 and 4-OH-E2 on MCF-7 cell 

proliferation after 24, 72, 168, and 260 h of exposure to 0.1, 1.0 or 10nM concentrations of these 

compounds. (*) p < 0.05 [14] 

2.6. Molecular mechanisms of E2 and its hydroxylated metabolites (2-OH and 4-

OH) 

The human sex hormone-binding globulin (SHBG), a glycoprotein that specifically binds 

plasma androgens and oestradiol, participates in the mechanism of action of oestradiol in 

breast cancer cells. The SHBG protein has been detected, using reverse transcriptase-

polymerase chain reaction (RT-PCR), in ZR-75-1, MCF-7 and MDA-MB-231 cells, as well as 

in 11 breast tissue samples [18]. Although the data concerning the cell lines were convincing, 

no evidence for mRNA translation has been presented. Due to its unique property to 

regulate bioavailable oestradiol, several epidemiological studies have implicated SHBG as 

having a role in breast cancer, and it has been suggested that plasma SHBG levels are 

inversely associated with breast cancer risk in post-menopausal women. According to [19], 

for SHBG to be biologically relevant, the interaction of SHBG with its membrane-binding 

site (SHBG-R) requires the occurrence of a precise sequence of events. First, SHBG must 

bind to a membrane (through SHBG-R), and a ligand must then interact with the SHBG 

bound to the membrane. It is only at this point that the biological effect is elicited. If the 

ligand binds to SHBG before the protein binds to the membrane, it is blocked from 

interacting with membranes, Figure 5. In breast cancer MCF-7 cells, SHBG binds to the 

membrane, and through cyclic adenosine monophosphate (cAMP) induction and protein 

kinase A (PKA) activation, it inhibits oestradiol-induced cell proliferation [20]. 
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Figure 5. Model for SHBG-mediated signalling pathway 

Despite extensive years of research, the action of hydroxylated metabolites of E2 (2-OH-E2 

and 4-OH-E2) on SHBG intra/extracellular secretion as well as gene and protein expression 

in extrahepatic tissue has not yet been investigated. Our data demonstrated that 

hydroxylated metabolites of E2, with a potency of E2 > 4-OH-E2 > 2-OH-E2, increased 

intracellular and had no effect on extracellular SHBG levels [21], Figure 6.  

 

Figure 6. The effect of E2, 2-OH-E2 and 4-OH-E2 on intracellular SHBG levels in MCF-7 cells. (*) p<0.05, 

(**) p<0.01, (***) p<0.001 [21] 

Additionally, we demonstrated that E2, 2-OH-E2 and 4-OH-E2 increased SHBG mRNA and 

protein expression [21], Figure 7. 
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Figure 7. The effects of E2, 2-OH-E2 and 4-OH-E2 on SHBG mRNA and protein expression in MCF-7 

cells. SHBG mRNA determined by real time PCR. (*) p<0.05, (**) p<0.01, (***) p<0.001 [21] 

In addition to classical transcriptional actions, oestrogens also trigger rapid intracellular 

signalling events typically associated with membrane receptors. Oestradiol, a biologically 

potent oestrogen, can induce rapid activation of many signalling molecules, including 

cAMP/PKA and MAPK pathways [22]. An increasing number of studies indicate that the 

cellular action of E2 can be initiated at the plasma membrane, through membrane versions 

of oestrogen receptors (mERs) or via other membrane-resident E2-binding proteins [23]. The 

binding of E2 to the membrane receptor causes an increase of intracellular cAMP levels [23]. 

As a second messenger, cAMP is involved in a variety of intracellular signalling pathways 

that lead to diverse physiological effects, including the control of cell proliferation. The 

majority of cAMP signalling in eukaryotic cells is through PKA. It has been reported that 

activation of the cAMP/PKA pathway induces growth inhibition in a variety of human 

cancer cells, including the MCF-7 cell line [23]. Mitogen-activated protein kinases (MAPKs), 

such as extracellular signal-regulated kinases (ERK1 and ERK2), are also rapidly stimulated 

by oestrogens in various cell types, including breast cancer cells. Additionally, it has been 

reported that the cAMP/PKA and the MAPK pathways are connected in MCF-7 cells [23,24]. 

Notably, ERK can be activated or inhibited by cAMP and E2, although activation of the 

cAMP/PKA suppresses the activity of ERK1/2 [25]. However, controversies also exist 

regarding the extent to which E2 may influence ERK1/2 activation [26]. We have shown that 

E2 and its hydroxylated metabolites do not activate cAMP/PKA and ERK1/2 in breast cancer 

cells and confirmed previously published data, which demonstrated a lack of ERK1/2 

activation in a breast cancer cell line [27], Figure 8, 9. The observed reversible action of 

PD98059 on cell proliferation can be explained via the actions of hydroxylated estrogens, 

which similarly to E2, stimulate secretion of a number of growth factors that affect MAPK 

activity [28].  
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Figure 8. The effects of E2, 2-OH-E2 and 4-OH-E2 on cAMP and PKA levels in MCF-7 cells. [27] 

 

Figure 9. Time-dependent effects of E2, 2-OH-E2 and 4-OH-E2 on phospho- and total ERK1/2 protein 

expression in MCF-7 cells. [27] 

3. Xenoestrogens 

Xenoestrogens form a diverse group of man-made chemicals that have been released into 

the environment from agricultural spraying (herbicides, pesticides), by-products of 

industrial processes and waste disposal of polychlorinated biphenyls (PCBs) and dioxins or 

as discharges from treatment systems (alkyl phenols). They are also found in household 

products in daily use, such as plastics (bisphenol A, phthalates) and flame retardants 

(polybrominated organics) and cosmetic products (e.g., parabens, cyclosiloxanes). They may 

be present in diets, and because they are lipophilic, they can pass up the food chain 

dissolved in animal fat and accumulate in humans at the top of the food chain. 

3.1.1. Polychlorinated biphenyls and breast cancer  

Polychlorinated biphenyls (PCBs) are industrial chemicals that have been used as hydraulic 

fluids, dielectric fluids for transformers and cooling fluids for capacitors in the formulation 

of lubricating and cutting oils and as plasticisers in prints, copy paper, adhesives, sealants 
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and plastics. PCBs are complex chemical mixtures that comprise theoretically 209 congeners. 

Although the production and use of these compounds were banned in the late 1970s, a 

significant portion of the PCBs purchased by industry are still in use, mostly within 

capacitors and transformers. These compounds remain in our environment and are 

routinely found in human serum, breast milk and adipose tissue, including breast tissue. 

PCB exposure has been classically thought to alter normal endocrine signalling by 

mimicking endogenous hormone action by binding to hormone receptors, blocking 

receptors, or through interference with steroid metabolism. The relationship between 

exposure to PCBs and breast cancer has been addressed in numerous epidemiological 

studies since the early 1990s [29].  

 

 

Figure 10. Polychlorinated biphenyls (PCBs) 

3.1.2. Metabolism of polychlorinated biphenyls   

PCBs are not only efficacious inducers but also substrates for cytochrome P450 enzymes. 

This enzyme metabolises PCBs, as well as other environmental compounds that enter the 

body, into by-products that are mutagenic and carcinogenic. Notably, lower chlorinated 

PCBs (such as PCB3) are rapidly metabolised and therefore called “episodic congeners” [30]. 

One member of the CYP1 family, CYP1A1, has been shown to play an important role in the 

metabolism of PCBs [31,32]. 

 

 

Figure 11. The metabolic activation of the  4-chlorobiphenyl (PCB3) 

We demonstrated previously in MCF-7 breast cancer cells that PCB3 modestly increases 

CYP1A1 but not CYP1B1, protein levels and activity, Figure 12. This alteration may change 

metabolic activation pathways of PCB3 itself or local oestrogen metabolism and excretion 

[32]. The metabolic activation of PCBs and/or E2 by CYPs leads to the formation of arene 

oxide intermediates and reactive quinones, which can bind covalently to macromolecules 

such as DNA, RNA and proteins [33].  
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Figure 12. The effects of PCB3 on CYP1A1 activity (EROD assay) and protein levels in MCF-7 cells (*) 

p<0.05, (**) p<0.01, (***) p<0.001 [32] 

3.1.3. Action of PCB3 (4-chlorobifenyl) and its metabolites (4-diOH-PCB3 and 3,4-diOH-

PCB3) on MCF-7 human breast cancer cell proliferation and apoptosis  

The balance between proliferation and apoptosis determines tissue homeostasis under 

physiological conditions. Apoptosis is recognised as a major barrier that must be 

circumvented by tumour cells to survive and proliferate under stressful conditions. 

Apoptosis can be initiated via two different types of signals: intracellular stress signals 

(intrinsic pathway) and extracellular ligands (extrinsic pathway). Previous studies have 

provided conflicting data regarding the proliferation and apoptosis effects of PCBs on breast 

cancer cells. As opposed to the action of oestrogen on MCF-7 proliferation, we showed that 

PCB3 and its metabolite 4-OH-PCB3 had no effect on cell proliferation at any time during 

exposure, while at the highest concentration, 3,4-diOH-PCB3 decreased cell proliferation 

[14]. Additionally, we showed that PCB3 and both of its hydroxylated metabolites had no 

effect on caspase-8 (extrinsic pathway) and caspase-9 (intrinsic pathway) activity when cells 

were grown in medium deprived of oestrogen, but they reduced caspase-9 activity when 

cells were grown in medium supplemented with serum containing oestradiol, Figure 13. 

Interestingly, a decrease in DNA fragmentation was observed upon treatment with 3,4-

diOH-PCB3 in both culture conditions, suggesting that 3,4-diOH-PCB3 inhibits a caspase-

independent pathway of cell death [34]. 

3.1.4. Molecular mechanisms of PCB3 and its hydroxylated metabolites (4-diOH-PCB3 

and 3,4-diOH-PCB3) 

Similarly to endogenous oestrogens, xenoestrogens can also contribute to the activity of the 

SHBG pathway and the MAP kinase pathways. Several studies have demonstrated that 
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human SHBG binds phytoestrogens, fatty acids and 4-OH-2’,3’,4’,5’-PCB and 4-OH-

2,2’,3’,4’,5’-PCB [35]. Our previously published data indicated that 3,4-diOH-PCB3 does not 

interact with SHBG through the membrane-binding site or directly. However, an increase in 

intracellular SHBG levels was noted under the influence of 3,4-diOH-PCB3 in MCF-7 cells 

[34], Figure 14.  

 

 

 

Figure 13. Effects of PCB3 (300 nM) and its metabolites on DNA fragmentation, as determined by 

ELISA; caspase-8 activity and, caspase-9 activity after 24 h of growth in medium supplemented with 5% 

FBS (left panel) or deprived of estrogen and by treatment with activated charcoal-dextran (5% FBS CD) 

(right panel). Staurosporine (St; 0.1 μM) was added during the last 3 h to induce apoptosis. (*) p<0.05, 

(**) p<0.01, (***) p<0.001 [32] 
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Figure 14. The effects of PCB3, 4-OH-PCB3 and 3,4-di-OH-PCB3 on extracellular (medium) and 

intracellular (cells) SHBG levels’ in MCF-7 cells. (*) p<0.05 [34] 

Furthermore, 3,4-diOH-PCB3 is ineffective in the activation of cAMP. Moreover, using a 

PKA inhibitor, we demonstrated that neither PCB3 nor its metabolites act through PKA [34], 

Figure 15.  

 

Figure 15. The effects of PCB3, 4-OH-PCB3 and 3,4-di-OH-PCB3 on cAMP and PKA levels in MCF-7 

cells. (p < 0.05) [34] 

Thus, the anti-proliferative action of 3,4-diOH-PCB3 is not due to inhibition of the ERK1/2 

pathway via the SHBG/AMP/PKA pathway, but rather a direct inhibitory action on the 

ERK1/2 system [34], Figure 16.  

 

Figure 16. The effect of PCB3, 4-OH-PCB3 and 3,4-di-OH-PCB3 on  phospho- ERK1/2 levels in MCF-7 

cells. (*) p<0.05 [34] 



 

Carcinogenesis 76 

Others have demonstrated that xenoestrogens can lead to the oscillating activation of ERK. 

Compounds from different classes of endocrine disruptors such as phytoestrogen 

(coumestrol), organochlorinated pesticides and their metabolites (endosulfan, dieldrin, 

DDE) and detergents (p-nonylphenol) can produce the same time-dependent activation 

pattern for ERKs [36]. These xenoestrogens produced rapid (3–30 min after application), 

concentration-dependent ERK1/2 phosphorylation. In addition, [37] demonstrated that the 

mitogenic effect of PCB153 was ERK1/2-mediated. Moreover, they showed that inhibition of 

ERK1/2 with PD98059 completely blocks the mitogenic effect of PCBs.  

 

Figure 17. Proposed mechanism of antiproliferative action of 3,4-di-OH-PCB3 in MCF-7 cells [34]. The 

down arrow indicates a ERK1/2 decrease and proliferations decrease. AC, adenylyl cyclase; Ras-Raf, 

mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase. 

3.2. Bisphenol A and ovarian cancer 

Bisphenol A (BPA) is a small monomer (228 Da) commonly used as plasticiser in the 

manufacture of polycarbonate plastics and epoxy resins. It is present in a multitude of 

products, including the interior coatings of food cans, milk containers, and baby formula 

bottles, as well as in dental composites and sealants. BPA was found in the serum, milk, 

saliva, and urine of humans at nanomolar concentrations. Many studies in the United States, 

Europe, and Japan have documented BPA levels ranging from 0.2 to 18.9 ng/mL (0.5–100 

nM) in adult and foetal human serum [38]. Epidemiological studies have highlighted the 

correlation between the increase of BPA levels in the environment and the incidence of 

cancer in humans. BPA can act as an endocrine disruptor and a mitogenic substance 

inducing cell proliferation. As a mitogen, BPA induces susceptibility to neoplastic 

transformation [39]. 
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Figure 18. Bisphenol-A (BPA) 

3.2.1. BPA action on cell proliferation 

BPA can increase cell proliferation in a dose-dependent manner in OVCAR- 3 human 

ovarian cancer cells [40], MCF-7 breast cancer cells [41] and HeLa cells [42], Figure 19.  

 

Figure 19. The effect of BPA on the proliferation of OVCAR-3 cells. (**) p<0.01, (***) p<0.001 [40] 

Alterations in the mechanisms controlling cell cycle progression play a relevant role in the 

pathogenesis of different types of human neoplasia. As the cell cycle is regulated by the 

coordinate action of cyclin-dependent kinases (cdk), specific cyclin proteins and cdk 

inhibitors, we focused on cell cycle associated gene analysis. The cell cycle has four 

sequential phases: the S phase, when DNA replication occurs, and the M phase, when the 

cell divides into two daughter cells, as well as two gap phases referred to as G1 and G2. The 

G1-S transition in normal cells requires phosphorylation of the retinoblastoma protein (Rb) 

by cyclin D/Cdk4 or cyclin D/Cdk6 in mid G1 and by cyclin E/Cdk2 complexes later in G1. 

As cells progress into the S phase, cyclin A is expressed and becomes the primary cyclin 

associated with Cdk2. Progression from G2 into mitosis requires the activity of the Cdk and 

Cdc2 (also known as Cdk1) complexed with cyclin B, which has been shown to 

phosphorylate proteins regulated during mitosis. Basal and mitogen-induced cell growth is 

regulated by cell cycle inhibitors, which can bind to and inhibit the Cdks (such as p15, p16, 

p21, p27, p57). The results of our study [40] demonstrated that BPA promotes G1 to S-phase 
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progression by stimulating the expression of cyclin D1, CDK4, E2F1, E2F3 and PCNA while 

inhibiting the expression of inhibitors (p21WAF1/CIP1, Weel-1 and GADD45 alpha) and 

progression from G2 into mitosis by stimulating the expression of cyclin A in ovarian cancer 

cells OVCAR-3, Figure 20. The results of our study [40] additionally demonstrated that the 

suppression of p21/WAF mRNA, a marker of poor overall survival in ovarian cancer 

patients, was under the influence of BPA.   

 

Figure 20. Selected cell cycle gene expression changes in OVCAR-3 cells exposed to BPA identified by 

real-time PCR [40] 

3.2.2. BPA action on apoptosis 

Studies on the effects of BPA on apoptosis have generated conflicting results, largely due to 

the micromolar concentrations of BPA utilised by most studies. BPA, in doses of 10, 1 and 

0.1 mM, was a potent inhibitor of apoptosis in MCF-7 cells [43]. In contrast, BPA increased 

the expression of Bax (pro-apoptotic) and concomitantly decreased the expression of Bcl2 

(pro-survival) at both protein and mRNA levels in granulosa cells [44]. In addition, BPA at a 

concentration of 100 μM decreased cell viability and increased necrosis in human 

endometrial endothelial cells (HEECs) [45].  

A hallmark of apoptosis is the fragmentation of nuclear DNA. The intrinsic apoptosis 

pathway is activated when intracellular stress signals lead to the release of cytochrome c 

and other pro-apoptotic proteins within the mitochondria, which is regulated by members 

of the Bcl-2 family of proteins. The consequent release of cytochrome C leads to the 

formation of the apoptosome (cytochrome C, Apaf-1 and procaspase-9) in which 

procaspase-9 is auto-activated, thereby activating the executioner caspases. The extrinsic 

pathway is activated when extracellular ligands (such as Fas ligand, TNFα, TRAIL) bound 

to the death receptor domains of these receptors, recruit adaptor proteins (such as FADD 

and TRADD) and initiator caspase-8 and -10 (DISC). Both apoptotic pathways lead to the 

activation of the executioner caspases-3, -6 and -7, which are the main proteases that 
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degrade the cell. A hallmark of apoptosis is the fragmentation of nuclear DNA. 

Endonuclease G is essential for DNA fragmentation during caspase-independent apoptosis. 

In response to apoptotic stimuli, it is also released from the mitochondria into the cytosol, 

where it translocates to the nucleus and generates oligonucleosomal DNA fragmentation.  

In our previously published study, we demonstrated that inhibition of the caspase-3 activity 

had no effect on DNA fragmentation in cells exposed to BPA [40]. We demonstrated that 

BPA acts by suppressing the expression of pro-apoptotic genes, such as FAS, FADD, 

RAIDD, caspase-8, -10, -3, -6, -7, CAD, Bax, Bak, Bok and Apaf-1, and inducing the 

expression of pro-survival genes, such as Bcl-x and Mcl-1. Moreover, BPA activates the 

caspase-independent apoptotic pathway via the induction of endonuclease G gene 

expression, Figure 21. The absence of an effect of BPA on DNA fragmentation is 

hypothesised to result from the simultaneous activation of the caspase-independent 

pathway and an inhibition of caspase-dependent DNA fragmentation. The observed 

induction of p53 (a nuclear transcription factor that accumulates in response to cellular 

stress, including DNA damage and oncogene activation) and suppression of caspase-3 and -

7 is thought to activate the DNA repair process. Therefore, despite the observed induction of 

endo G gene expression, an action of BPA on DNA fragmentation was not observed [40].  

 

Figure 21. Selected apoptosis gene expression changes in OVCAR-3 cells exposed to BPA identified by 

real-time PCR [40] 

3.2.3. Mechanism of action of BPA in OVCAR-3 cell cycle regulation 

BPA can elicit rapid responses in cells via the involvement of a non-genomic signalling 

pathway though the activation of second messenger systems. Our data demonstrated that 

BPA stimulated proliferation of ovarian epithelial cancer cells via the induction of a rapid 

activation of ERK1/2, Stat3, and Akt signalling systems [46], Figure 22, 23. Previous studies 

demonstrate that BPA triggers a rapid biological response through the phosphorylation of 

Stat3, ERK1/2 and Akt in 3T3-L1 cells [47] and ERα/β-positive and -negative breast cancer 

cells [48].  
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Figure 22. The effect of BPA on cell proliferation. OVCAR-3 cells were pretreated with AG490 (50 μM), 

PD098059 (100 μM) or LY294002 (10 μM) for 1 hr, then the cells were treated BPA (8 ng/ml) and an 

alamarBlue assay was performed. (***) p<0.001 [46] 

 

Figure 23. The effects of BPA on the activation of Stat-3, ERK1/2 and Akt in OVCAR-3 cells. Western 

blot analysis was performed following BPA treatment in a time-dependent manner (5, 15, and 30 min 

and 1, 2, 4, 6 and 24 hrs). Total Stat-3, ERK1/2 and Akt were used to normalise the level of 

phosphorylated Stat-3, ERK1/2 and Akt, respectively [46]  

3.3. Combinatory effects of endo- and exogenous oestrogens.  

Recently, an increasing amount of data has demonstrated that xenoestrogens can interfere 

with endogenous oestrogens. In our previously published data, we investigated the 

contribution of specific representative PCBs and PBDEs on the oestrogenic action of 
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endogenous oestradiol on the proliferation and apoptosis of the breast cancer cell line MCF-

7. The structure of polybrominated diphenyl ethers (PBDEs) is similar to that of PCBs. 

PBDEs are a series of 209 possible congeners that differ in the number and position of 

bromine atoms. These chemicals are widely used as flame retardants in plastic foams, 

textiles, electronic devices, and building materials. As a result, they are widely found in the 

environment and can be found in human blood and milk. Some of the PBDE congeners most 

commonly found in human samples are BDE-47, BDE-99, and BDE-153 [49].    

Our data demonstrated that all PCB congeners (118, 138, 153 and 180) and all concentrations 

tested increased MCF-7 cell proliferation while decreased cell apoptosis to a greater extent 

than oestradiol. However, in co-treatment experiments with oestradiol, cell proliferation 

decreased in comparison to the cell proliferation observed for cells exposed to PCB 

congeners alone, and no additional effect on cell apoptosis was observed [50], Figure 24.  

 

Figure 24. The effects of PCB (0.1, 0.5 and 1 mM) and oestradiol, alone (black bar) and combination 

treatment (open bar) on proliferation after 72 hours of culture and on caspase-9 activity after 24 hours of 

culture in MCF-7 cells. (a<b<c<d) p < 0.05 [50] 
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Despite the similarity in structure, PCBs and PBDEs had different effects on proliferation 

and apoptosis in MCF-7 breast cancer cells. None of the PBDE congeners tested (47, 99, 100, 

209) had an effect on basal cell proliferation; however, all PBDE congeners tested 

significantly decreased basal cell apoptosis. In the presence of oestradiol, additive anti-

apoptotic activity and an ability to induce cell proliferation were observed [51], Figure 25. 

 

Figure 25. The effects of PBDE (0.1, 0.5 and 1 mM) and oestradiol, alone (black bar) and combination 

treatment (gray bar) on proliferation after 72 hours of culture and on caspase-9 activity after 24 hours of 

culture in MCF-7 cells. (a<b<c<d) p < 0.05 [51] 

4. Conclusion  

Despite a reduction in the doses of natural oestrogens used in HRT and contraceptives, as 

well as the production and use of environmental oestrogens, these compounds remain in 

our environment and are routinely found in human serum, breast milk and adipose 

samples, including breast tissue. Importantly, differences in activity as potential carcinogens 

are being studied. The potencies of these compounds in nuclear transcription reporter 
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assays, compared with the endogenous oestrogens, range from very weak (e.g., PCBs) to 

somewhat weak (e.g., bisphenol A) to strong (DDE). Moreover, both endogenous and 

exogenous oestrogens form metabolites during metabolism that act more strongly than their 

corresponding parental compounds. The results of a published study suggest that the 

genomic and nongenomic actions of the parent endogenous and exogenous oestrogens lead 

to the activation of secondary messenger systems responsible for proliferation and 

apoptosis. The results of our study indicate that it is necessary to consider local metabolism 

in peripheral tissues, such as ovary and breast. Therefore, an accurate assessment of the 

carcinogenicity of oestrogens and xenoestrogens requires an understanding of not only the 

potential mode of action of the parent compounds but also their hydroxylated metabolites. 

These include the promotion of tumorigenic progression, genotoxicity, and the 

developmental reprogramming that increases susceptibility to other carcinogenic events. 
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