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1. Introduction 

Regulation of nutrient balance by the liver is important to ensure whole body metabolic 

control. Hepatic expression of genes involved in lipid and glucose metabolism is tightly 

regulated in response to nutritional cues, such as glucose and insulin. In response to dietary 

carbohydrates, the liver converts excess glucose into fat for storage through de novo 

lipogenesis. The liver X receptors (LXRα and LXRβ) are important transcriptional regulators 

of this process. LXRs are classically known as oxysterol sensing nuclear receptors that 

heterodimerize with the retinoic X receptor (RXR) family and activate transcription of 

nutrient sensing transcription factors such as sterol regulatory element-binding protein 1c 

(SREBP1c) (Repa et al., 2000; Yoshikawa et al., 2002; Liang et al., 2002) and carbohydrate 

response element-binding protein (ChREBP) (Cha & Repa, 2007). LXR also induces the 

transcription of the lipogenic enzyme genes fatty acid synthase (FAS), stearoyl-Coenzyme A 

desaturase (SCD1) and Acetyl CoA carboxylase (ACC), alone or in concert with SREBP1c 

and/or ChREBP (Chu et al., 2006; Joseph et al., 2002; Talukdar & Hillgartner, 2006). LXR 

activate transcription of hepatic lipogenic genes in response to feeding, which is believed to 

be mediated by insulin (Tobin et al., 2002). The mechanisms by which insulin activates LXR-

mediated gene expression is not clearly understood, but may involve production of 

endogenous ligand for LXRs and/or act by signal transduction mechanisms downstream of 

the insulin receptor (IR). Both glucose and insulin regulate de novo lipogenesis, however, 

some lipogenic genes can be regulated by glucose without the need of insulin which has 

been shown for SREBP1c (Hasty et al., 2000; Matsuzaka et al., 2004). A well known glucose-

mediator in liver is ChREBP, an important regulator of de novo lipogenesis in response to 

glucose (Yamashita et al., 2001). ChREBP is activated by glucose via hexose- and pentose-

phosphate-dependent mechanisms involving dephosphorylation of ChREBP and 
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translocation to the nucleus (Havula & Hietakangas, 2012). Interestingly, both LXR and 

ChREBP were recently shown to be post-translationally modified by O-linked -N-

acetylglucosamine (O-GlcNAc) in response to glucose potentiating their lipogenic 

capacity (Anthonisen et al., 2010; Guinez et al., 2011). Glucose flux through the 

hexosamine signaling pathway generates UDP-N-acetyl-glucosamine (UDP-GlcNAc), a 

substrate for O-GlcNAc modification of nucleocytoplasmic proteins by the enzyme O-

GlcNAc transferase (OGT). We have shown that O-GlcNAcylation of LXR is increased in 

mouse livers in response to feeding and in livers from hyperglycemic diabetic mice 

potentiating SREBP1c expression (Anthonisen et al., 2010). Furthermore, preliminary 

studies in our laboratory indicate that LXR potentiate ChREBP activity under 

hyperglycemic conditions establishing a link between glucose metabolism, LXR and 

ChREBP. These observations suggest that LXR, SREBP1c and ChREBP contribute to 

converting carbohydrates into fat in a cooperative manner in response to high circulating 

glucose levels and that O-GlcNAc signaling plays a role in this process. As O-GlcNAc 

cycling appear to be essential for proper insulin signaling and the sensitivity of OGT to 

glucose increases with decreasing insulin signaling (Mondoux et al., 2011; Hanover et al., 

2010) the relative roles of LXR, SREBP1c and ChREBP in regulating de novo lipogenesis in 

response to feeding and modification by O-GlcNAc signaling under insulin sensitive and 

insulin resistant conditions will be discussed.  

2. Liver X Receptors (LXR) 

2.1. LXR structure and function 

LXR(NR1H3) and LXR (NR1H2) are ligand-activated transcription factors belonging to 

the nuclear receptor (NR) superfamily (Lehmann JM (Lehmann et al., 1997; Willy et al., 1995; 

Janowski et al., 1996). LXR is primarily expressed in metabolically active tissues, such as 

liver, intestine, adipose tissue, kidney and macrophages, whereas LXR is ubiquitously 

expressed (Apfel et al., 1994; Teboul et al., 1995; Teboul et al., 1995). LXRs are intracellular 

sensors of cholesterol and oxidized cholesterol derivatives (oxysterols) have been identified 

as their endogenous ligands (Janowski et al., 1996; Lehmann et al., 1997). The two isotypes 

originates from two different genes on separate chromosomes, but share the same modular 

structure, which is characteristic of most NRs (Fig. 1). 

 

Figure 1. Structure of the LXRs 



 
The Role of Liver X Receptor in Hepatic de novo Lipogenesis and Cross-Talk with Insulin and Glucose Signaling 63 

The DNA-binding domain (DBD) and the ligand binding domain (LBD) are highly 

structured domains. LXRα and LXRβ share 78 % amino acid sequence identity in these 

regions, while the N-terminal domain (NTD) and the hinge domain are far more disordered 

and less conserved. DNA binding requires dimerization with RXR. Transactivation by the 

LXRs is mediated through the ligand independent activation function (AF1) in NTD and the 

ligand dependent activation function 2 (AF2) in the LBD. Binding of a ligand to the 

hydrophobic ligand binding pocket leads to a conformational change that releases 

corepressors (CR) and exposes binding sites for coactivators (CA), recruiting the general 

transcription machinery and RNA polymerase II (RNA Pol II) (Fig. 2). This leads to changes 

in LXR dependent gene expression. The interactions with coregulators can also occur 

independently of ligand to AF1, however this is far less characterized. Upon activation, 

LXRs regulate a number of genes involved in lipid, cholesterol and glucose metabolism by 

binding to LXR response elements (LXREs) in their promoter region. These consist of a 

direct repeat of the nucleotide hexamer AGGTCA spaced by four nucleotides. Insights into 

LXR function in metabolism was provided by the generation of LXR mutant mice. These 

mice accumulate hepatic cholesterol, ultimately causing liver dysfunction (Peet et al., 1998; 

Ulven et al., 2005). It was found that LXRcontrols cholesterol metabolism by conversion of 

cholesterol to bile acid by induction of the cholesterol 7 alpha-hydroxylase (Cyp7A1) gene, 

biliary cholesterol excretion and cholesterol efflux via induction of ABCG5/8 and 

ABCA1/ABCG1, respectively (Lehmann et al., 1997; Chiang et al., 2001; Yu et al., 2003; Repa 

et al., 2002; Graf et al., 2002; Costet et al., 2000; Sabol et al., 2005; Venkateswaran et al., 2000; 

Venkateswaran et al., 2000). LXRs are strongly implicated in the development of metabolic 

disorders and associated pathologies, notably, hyperlipidemia and atherosclerosis (Peet et 

al., 1998; Calkin & Tontonoz, 2010). Thus, LXRs are key players in maintaining metabolic 

homeostasis in health and disease by regulating inflammation and lipid/carbohydrate 

metabolism. 

 

Figure 2. Activation of LXR by coregulator switching 

2.2. Modulation of LXR activity by coregulators and PTMs 

The transcriptional activity of LXRs is highly dependent on the presence of coregulators which 

has been linked to several metabolic processes (Jakobsson et al., 2009; Kim et al., 2003; 

Huuskonen et al., 2004; Kim et al., 2008; Oberkofler et al., 2003). Coregulators constitutes large 

multisubunit protein complexes containing chromatin-remodelling and/or –modifying 
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enzymes with intrinsic histone acetylase (HAT)/ deacetylase (HDAC) and histone methylase 

(HMT)/demethylase (HDM) activities, depending on whether they act as activators or 

repressors, respectively (Kato et al., 2011). It has been assumed that that the unliganded LXRs 

are localized in the nucleus and interact with CRs, including nuclear receptor 

corepressor/silencing mediator of retinoic acid and thyroid receptor (NcoR/SMRT) (Wagner et 

al., 2003). However, recent chromatin immunoprecipitation (ChIP) studies, including ChIP-

sequencing (ChIP-Seq), have challenged this classical model. These studies put forward a more 

complex view, that ligands, pioneer factors, coregulators and posttranslational modifications 

(PTMs) play different roles in determining the LXR binding sites and actions in vivo (Boergesen 

et al., 2012; Heinz et al., 2010; Pehkonen et al., 2012). Furthermore, some coregulators have 

been shown to act as dual function activators/repressors, such as the coregulator protein 

receptor interacting protein 140 (RIP140). RIP140 has been shown to serve as a CA for LXR in 

lipogenesis but as a CR in gluconeogenesis independent of ligand activation (Herzog et al., 

2007). General mechanisms of coregulator actions are assumed to be conserved between LXRs, 

but based on the low amino acid sequence identity in the NTD (32%) and the hinge domain 

(25%) it is possible that they contain novel isotype specific interaction surfaces. Also, the 

specific coregulator requirement to lipogenic LXR target genes in response to different feeding 

regiments under normal and diabetic conditions remain largely unexplored. In addition to 

ligand binding, LXRs can be posttranslationally modified by phosphorylation, acetylation, and 

sumoylation, affecting their target gene specificity, stability, and transactivating and 

transrepressional activity, respectively (Li et al., 2007; Ghisletti et al., 2007; Chen et al., 2006; 

Yamamoto et al., 2007). We have recently shown that LXR can be modified by O-

GlcNAcylation in response to glucose (see section 4.3), increasing its transactivation of the 

SREBP1c promoter (Anthonisen et al., 2010). PTMs may alter the structural conformation of 

LXR thereby modifying the affinity of coregulators that determines whether a target gene is 

induced or suppressed. Modulation by PTMs can occur both in the absence and presence of 

natural ligand tuning LXR activities in a cell- and gene-specific manner (Rosenfeld et al., 2006) 

depending on the nutritional stimuli.  

3. LXR in hepatic de novo lipogenesis 

3.1. LXR lipogenic target genes 

In addition to being central regulators of cholesterol metabolism, the LXRs are involved in 

induction of fatty acid and triglyceride (TG) biosynthesis in response to feeding. De novo 

lipogenesis ensures that excess acetyl-CoA, which is an intermediate product of glucose 

metabolism, is converted into fats and subsequent TGs. LXRs are involved in hepatic 

lipogenesis through direct regulation of SREBP1c and ChREBP expression (Repa et al., 2000; 

Cha & Repa, 2007; Shimano, 2001). SREBP1c is a well described transcriptional regulator of 

hepatic lipogenesis (Shimano, 2001), and together with LXR and glucose-regulated ChREBP 

(see section 4.1), it controls expression of essential enzymes in lipogenesis, lipid storage and 

secretion (Fig. 3). SREBP1c deficiency does not fully abolish the expression of genes involved 
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Figure 3. Regulation of hepatic lipogenesis by LXR, SREBP1c and ChREBP. 

in hepatic lipogenesis. SREBP1c null mice treated with an LXR agonist results in induction 

of a subset of lipogenic genes and a modest increase in fatty acid synthesis (Liang et al., 

2002), which implies that LXR can act independently of SREBP1c. In particular, the SCD1 

gene is directly regulated by LXR in response to synthetic ligands, also in the absence of 

SREBP1c (Chu et al., 2006). SCD1 is central in desaturation of saturated fatty acyl-CoAs 

important for formation of cholesterol esters (CEs) and TGs. Thus, specific LXR-mediated 

regulation of SCD1 can be explained by the essential role of LXR in limiting toxic free 
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cholesterol in response to diets rich in cholesterol and saturated fat. The expression of LXR 

in liver is rapidly upregulated by insulin in vivo, increasing mRNA expression of SREBP1c, 

malic enzyme (ME), ACC and FAS. Furthermore, expression of these lipogenic genes was 

abolished in insulin-injected LXR/ double knock out mice (Tobin et al., 2002), indicating 

an essential role for LXR in insulin-mediated regulation of hepatic lipogenesis. The 

mechanisms by which insulin activate LXR-mediated gene expression is not clearly 

understood, but may involve production of endogenous ligand for LXRα/β (Chen et al., 

2004) and/or by signal transduction mechanisms downstream of the IR affecting CA 

recruitment to LXRs and/or PTMs of LXRs. This will be discussed in more detail below. Of 

note, PKA-induced phosphorylation of LXR has been shown to inhibit the expression of 

SREBP1c in liver from mice via reduced DNA binding and CA recruitment (Yamamoto et 

al., 2007). Since glucagon/cAMP/PKA signaling may, at least in part, explain down-

regulation of SREBP1c expression in response to fasting, it is likely that PKA-mediated 

phosphorylation of LXR contributes to the fasting signal on SREBP1c.  

3.2. Putative mechanisms regulating LXR-mediated de novo lipogenesis in 

response to insulin 

Insulin is the most important anabolic hormone in the body, regulating many processes 

important for cellular growth and energy storage such as glucose uptake and metabolism, 

glycogen and lipid synthesis, gene transcription and translation. A classic action of insulin is 

to mediate a metabolic switch from fatty acid oxidation to synthesis and suppress hepatic 

glycogenolysis and gluconeogenesis in response to carbohydrate excess, a process that is 

largely regulated at the transcriptional level. In this way, hepatic insulin signaling maintains 

whole body energy homeostasis. In the insulin-resistant state, only the ability of insulin to 

suppress hepatic gluconeogenesis is lost, while its ability to activate lipogenesis is retained 

(Shimomura et al., 2000; Matsumoto et al., 2006; Brown & Goldstein, 2008). This bifurcated 

insulin resistance can be explained by failure of insulin to inhibit the gluconeogenic 

transcription factor Forkhead box protein O1 (FoxO1), but maintaining signaling to 

lipogenic transcriptional regulators including LXR and SREBP1c. 

3.2.1. The insulin signaling cascade 

The insulin signaling cascade is initiated by the binding of insulin to the extracellular -

subunits of the dimerized IR followed by autophosphorylation on several intracellular 

tyrosine residues on the IR. Insulin receptor substrate (IRS) is an essential protein docking 

onto the phosphorylated IR which in turn is phosphorylated itself on multiple tyrosine 

residues. This creates docking sites for src homology 2 (SH2) domain containing proteins. 

The best studied SH2 protein that binds to tyrosine phosphorylated IRS proteins is the 

regulatory subunit of the phosphoinositide 3-kinase (PI3K). PI3K catalyzes the formation of 

the lipid second messenger phosphatidylinositol (3,4,5) trisphosphate (PIP3), which is 

necessary to recruit downstream kinases. PIP3 generates a binding site for proteins 

containing Pleckstrin homology (PH) domains, such as 3’-phosphoinositide-dependent 
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protein kinase (PDK1), the serine/threonine kinase Akt/protein kinase B and possibly also 

mammalian target of rapamycin complex 2 (mTORC2). PDK and mTORC2 are both 

necessary for full activation of Akt downstream of the insulin receptor via PDK1-mediated 

phosphorylation of Akt on threonine 308 and mTORC2-mediated phosphorylation on serine 

472 (Saltiel & Kahn, 2001; White, 2003; Jacinto et al., 2006). All these events occur transiently 

in specific cholesterol rich plasma membrane microdomains called caveolae, generating a 

specific signaling unit for proper downstream insulin signaling where Akt plays a central 

role.  

3.2.2. Regulation by mTOR 

One of the targets of Akt is mTORC1 (Zoncu et al., 2011). Recent evidence suggests that 

mTORC1 is involved in LXR-mediated lipogenic gene transcription including induction of 

SREBP1c, FAS and ACC in liver from mice subjected to a high fat diet (Hwahng et al., 2009). 

The authors show that the mechanism by which mTORC1 activates LXR is via p70 S6 kinase 

(S6K)-mediated phosphorylation of LXR. Conversely, in the fasted state, LXR was shown to 

be inhibited by AMPK-mediated phosphorylation. In agreement with these observations, Li 

et al (Li et al., 2010) showed that insulin-activated hepatic transcription of SREBP1c, FAS 

and SCD1 is mediated by mTORC1, however independent of S6K. As both LXR and 

SREBP1c induce lipogenic promoters in response to insulin, this might suggest that 

activation of LXR in response to insulin/nutrients is mediated, at least in part, by mTORC1 

and S6K, whereas insulin-signaling to SREBP1c requires mTORC2 independently of S6K, 

possibly via Akt-mediated inhibition of glycogen synthase kinase-3 (GSK3) (Hagiwara et al., 

2012). In this way, GSK3-mediated phosphorylation and degradation of SREBP1c is 

prevented by insulin signaling to mTORC2 and Akt. Of note, insulin has primarily been 

shown to act on the SREBP1c promoter by activating LXRs and not SREBP1c (Chen et al., 

2004) and the effect of insulin on SREBP1c is mainly at the posttranslational level. In a recent 

publication, mTORC1 was shown to phosphorylate a phosphatidic acid phosphatase, Lipin 

1, preventing its nuclear entry and subsequent inhibition of SREBP1c-mediated activation of 

the FAS promoter (Peterson et al., 2011). Furthermore, Yecies JL et al (Yecies et al., 2011) 

showed that Akt2 independently of mTORC1 downregulate the mRNA expression of 

insulin induced gene 2 (Insig2a), an inhibitor of SREBP1c. This finding has been debated by 

Wan M et al (Wan et al., 2011), who could not observe any downregulation of Insig2a by 

Akt2. They postulate that Akt2 acts independently of mTORC1 and SREBP1c, possibly via 

posttranslational mechanisms, and that nutrients have a direct role in the liver to promote 

lipogenesis by a process dependent on both mTORC1 and other insulin-dependent signaling 

pathways. In light of the above mentioned studies, both mTORC1 and mTORC2 (Soukas et 

al., 2009; Guertin et al., 2006; Lamming et al., 2012; Hagiwara et al., 2012) appear to play 

important roles in lipid synthesis and storage in hepatocytes. Further studies will reveal the 

relative roles of Akt1, Akt2, mTORC1/C2 and S6kinase on activation of LXR and SREBP1c in 

this regulation under insulin sensitive and insulin resistant conditions and cross-talk with 

glucose metabolism and signaling (Fig.4). 
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3.2.3. Regulation by FoxO1  

Another mechanism by which insulin may promote LXR-mediated SREBP1c transcription is 

through the transcription factor FoxO1. FoxO1, generally known as an activator of 

gluconeogenic genes during fasting, can repress the transactivating ability of LXR and 

cooperating transcription factors SREBP1c and Specificity protein 1 (Sp1) to activate 

SREBP1c transcription during fasting (Liu et al., 2010; Deng et al., 2012). FoxO1 does not 

seem to bind directly to the SREBP1c promoter, but appears to act as a repressor through 

protein-protein interactions, possibly by recruiting CR proteins (Deng et al., 2012). Upon 

feeding, FoxO1 is inhibited by insulin via PI3-kinase activation and phosphorylation by Akt, 

which excludes phosphorylated FoxO1 from the nucleus via association with the 14-3-3 

protein (reviewed in (Tzivion et al., 2011)). In this way, at least under insulin sensitive 

conditions, inhibition mediated by FoxO1 and associating CRs is relieved, enabling LXR, 

Sp1 and SREBP1c to activate the SREBP1c promoter in a cooperative fashion. Of note, an 

important role for the E-box transcription factor Upstream Stimulatory Factor (USF) in 

mediating insulin activation of the SREBP1c promoter has also been reported (Wong & Sul, 

2010). The relative roles of LXR, SREBP1c and cooperating transcription factors in regulation 

of the SREBP1c promoter after high-carbohydrate feeding under normal and insulin 

resistant conditions and the role of FoxO1 in this process in insulin resistance is currently 

not known. Recently, the role of Akt as a central regulator of both gluconeogenesis, through 

inhibition of FoxO1, and lipogenesis, through activation of mTORC1/2 in hepatic insulin 

signaling, was debated as the insulin resistant phenotype of mice lacking hepatic Akt1/2 

were normalized in mice with concomitant liver-specific deletion of FoxO1 (Lu et al., 2012). 

This work suggests that a major role for Akt as a metabolic regulator in response to insulin 

is largely to restrain FoxO1 activity, at least for suppression of liver glucose output. 

3.2.4. Regulation by insulin-mediated oxysterol production 

Considering the bifurcated nature of insulin resistance and the postulated central role of Akt 

in this process, a very recent work by Wu and Williams (Wu & Williams, 2012), put forward 

an interesting theory. They suggest that disturbance of a single molecule, NAD(P)H oxidase 

4 (NOX4), is sufficient to induce the key harmful features of insulin resistance. NOX4 is 

activated upon IR activation, generating a transient burst of superoxide (O2-) and its 

byproduct H2O2. This enhances signal transduction by disabling enzymes in the protein-

tyrosine phosphatase gene family. In this way, essential inhibiting enzymes in the insulin 

signaling cascade is blocked, notably the PI3K inhibitor PTEN and protein-tyrosine 

phosphatase-1B (PTP1B) (Wu & Williams, 2012). Intriguingly, NOX4 may also be the link 

between insulin signaling and production of oxysterol ligand for LXR, as NOX4 through its 

superoxide producing activity may mediate the production of oxygenated cholesterol. The 

evidence for this is that pharmacological inhibition of NOX4 blocked insulin-induction of 

SREBP1c mRNA in rat primary hepatocytes, even though phosphorylations upstream and 

downstream of mTORC1 remained responsive (Wu & Williams, 2012). Furthermore, NOX4 

is transiently localized to caveolae (Han et al., 2012), possibly via recruitment to the IR, 

placing the enzyme in close proximity to cholesterol-rich areas of the plasma membrane. A 
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complete summary of putative mechanisms of insulin-mediated signaling to LXR, SREBP1c 

and lipogenesis is depicted in Fig. 4. 

 

 

Figure 4. Insulin-mediated regulation of hepatic lipogenesis 
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4. Lipogenic gene expression in response to glucose metabolism  

Hepatic glucose metabolism activates the transcription of various genes encoding enzymes 

of glycolysis and lipogenesis independently of insulin. However, the initial modification of 

glucose into Glucose-6-phosphate (G6P) by the enzyme Glucokinase (GK; Hexokinase 4) 

required for transcriptional regulation by glucose is highly dependent on insulin (Bosco et 

al., 2000), possibly via SREBP1c (Foretz et al., 1999; Kim et al., 2004) in concert with LXR and 

Peroxisome Proliferator-Activated Receptor gamma (PPAR) (Kim et al., 2009). Thus the 

actions of glucose and insulin may be considered interdependent and that regulation of 

gene expression in response to glucose seems to require active LXR, SREBP1c and/or PPAR.  

4.1. Glucose regulation via ChREBP  

A majority of hepatic glucose-responsive genes is thought to be regulated by the 

transcription factor ChREBP (Yamashita et al., 2001; Ishii et al., 2004). ChREBP mediates 

transcriptional regulation of glycolytic and lipogenic enzymes and is particularly important 

for the induction of liver-pyruvate kinase (L-PK), one of the rate limiting enzymes of 

glycolysis, which is exclusively dependent on glucose (Matsuda et al., 1990; Dentin et al., 

2004). Furthermore, ChREBP is involved in regulating ACC and FAS in concert with LXR 

and SREBP1c in response to glucose and insulin, respectively, suggesting its involvement of 

the conversion of carbohydrates into fat (Joseph et al., 2002; Talukdar & Hillgartner, 2006). 

Moreover, stimulation by a synthetic LXR ligand, induces hepatic expression and activity of 

ChREBP (Cha & Repa, 2007). However, ChREBP is apparently not dependent on LXR for its 

hepatic expression and activity in mice fed a high carbohydrate/high fat diet (Denechaud et 

al., 2008), suggesting that ChREBP activity is reinforced by upstream LXR under certain 

nutritional conditions. At low glucose concentrations, the ChREBP protein is retained as an 

inactive phosphoprotein in the cytoplasm (reviewed in (Havula & Hietakangas, 2012)). The 

mechanisms by which glucose activate ChREBP is not clear, but involves induction of the 

ChREBP mRNA, dephosphorylation of the protein, shuttling to the nucleus and binding to 

the ChREBP response element at the promoter of its target genes (Uyeda & Repa, 2006). 

Early studies pointed to xylose 5-phosphate (Xu5P), an intermediate of the pentose 

phosphate pathway (PPP), as an activating signal through its ability to activate protein 

phosphatase 2A (PP2A) and subsequent dephosphorylation of ChREBP (Havula & 

Hietakangas, 2012). Recently, ChREBP was shown to be activated by fructose 2,6-

biphosphate (F2,6BP) in hepatocytes (Arden et al., 2012). The level of F2,6BP is regulated by 

the bifunctional enzyme 6-phosphofructokinase-2-kinase/fructose-2,6-biphosphatase 

(PFK2/FBP2). Thus, PFK2 catalyzes the synthesis and degradation of F2,6BP and as a result, 

the enzyme is involved in both glycolysis and gluconeogenesis. In the fed state, insulin and 

carbohydrates dephosphorylate PFK2 in the liver making the enzyme kinase dominant. 

Subsequently, F6P is converted to F2,6BP that activates PFK1, which in turn stimulates 

glycolysis (Fig. 6). Interestingly, LXR was recently shown to be a central regulator of hepatic 

PFK2 mRNA expression (Zhao et al., 2012). Activation of ChREBP in response to glucose 

appears to depend on multiple glucose metabolites, including G6P, X5P and F2,6BP. As LXR 



 
The Role of Liver X Receptor in Hepatic de novo Lipogenesis and Cross-Talk with Insulin and Glucose Signaling 71 

is involved in regulation GK- and PFK2-expression in response to insulin, this may suggest 

that ChREBP is dependent on insulin signaling via LXR for proper substrate availability.  

4.2. Glucose metabolism via the hexosamine biosynthetic pathway and O-

GlcNAc signaling 

Glucose metabolism from F6P can follow the alternative hexosamine biosynthetic pathway 

(HBP) where the enzyme glutamine fructose-6-phosphate amidotransferase (GFAT) controls 

the first and rate limiting step (Fig. 5).  

 

Figure 5. Nutrient flux and O-GlcNAc modification of nucleocytoplasmatic proteins through the HBP 

The end product of this pathway is Uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc), an essential building block for N-and O-linked glycosylation of proteins and 

lipids. Cytoplasmic and nuclear proteins can be dynamically modified by O-linked -N-

acetylglucosamine (O-GlcNAc) on serine and threonine residues by the enzyme O-GlcNAc 

transferase (OGT) using UDP-GlcNAc as substrate. OGT is an essential enzyme as targeted 

deletion of this gene is lethal (Shafi et al., 2000). The enzyme O-GlcNAc transferase (OGA) 

hydrolyses the sugar analogous to protein dephosphorylation of phosphorylated proteins 
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by phosphatases (Hart et al., 2007; Love, 2005). Because O-GlcNAc levels on proteins appear 

to be sensitive to increasing flux through this pathway in response to nutrient excess, OGT 

can be considered as a general sensor of glucose availability that modifies proteins 

according to changes in UDP-GlcNAc levels. There is no identified consensus sequence for 

GlcNAcylation, and unlike the multiple genes encoding kinases, there is only a single X-

linked gene encoding the catalytic subunit of OGT in mammals (Shafi et al., 2000). For this 

reason, it has been hypothesized that OGT is the catalytic subunit in large transient enzyme 

complexes where interacting proteins are able to target OGT to its many substrates. Many 

transcription factors are modified by O-GlcNAc in the liver (Dentin et al., 2008; Housley et al., 

2008; Kuo et al., 2008; Ozcan et al., 2010). Interestingly, FoxO1 has been shown to be a target 

for O-GlcNAcylation in hepatocytes in response to hyperglycemia in the insulin resistant state, 

resulting in elevated transactivating capacity for FoxO1 against its gluconeogenic targets 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) 

reinforcing hepatic glucose production (Housley et al., 2008; Kuo et al., 2008). Moreover, this 

activation was later shown to be dependent on targeting of OGT to FoxO1 via interaction with 

the coactivator PGC1α, which itself was shown to be modified by O-GlcNAc upon interaction 

with OGT (Housley et al., 2009). As PGC1 have been shown to significantly amplify LXR-

mediated activation of the SREBP1c promoter (Oberkofler et al., 2003; Kim et al., 2008), a 

possible recruitment of an OGT/PGC1-complex to LXR on lipogenic target genes under 

insulin resistant conditions remains to be explored. Recently, ChREBP was also shown to be a 

target for O-GlcNAcylation in response to hyperglycemia (Guinez et al., 2011). Adenoviral 

overexpression of OGT in liver increased ChREBP O-GlcNAc modification, protein stability 

and transactivating activity of L-PK, as well as potentiating expression of ACC, FAS and SCD1 

mRNA expression in response to refeeding (Guinez et al., 2011). In contrast, hepatic 

overexpression of OGA reduced lipogenic protein content (ACC and FAS) and hepatic 

steatosis (excessive accumulation of TGs and CEs) in db/db mice, suggesting that enhanced 

OGT signaling to ChREBP and cooperating transcription factors/coregulators contributes to 

hepatic steatosis under insulin resistant conditions. 

4.3. O-GlcNAc signaling activates LXR and hepatic lipogenesis  

In 2007, glucose was reported as an endogenous ligand for LXR (Mitro et al., 2007). This has, 

however, been debated considering the hydrophobic nature of the ligand binding pocket 

(Lazar & Willson, 2007). Instead, we asked the question whether glucose exert its effect via 

hexosamine signaling and posttranslational O-GlcNAc modification of LXR. In a recent 

publication, we show that LXR is O-GlcNAc modified in response to high glucose (25 mM) 

in absence of insulin (cells cultured in 2 % serum, approximately 1-2 pmol/l insulin) and 

synthetic LXR-ligand in Huh7 cells, a human hepatoma cell line (Anthonisen et al., 2010). By 

pharmacological inhibition we demonstrated that hexosamine signaling and O-GlcNAc 

cycling mediates LXR dependent activation of the SREBP1c promoter in response to glucose. 

Furthermore, we observed increased O-GlcNAc modification of LXR in livers from refed 

mice and streptozotosin (STZ) treated diabetic mice corresponding with increased SREBP1c 
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mRNA expression. Moreover, general protein O-GlcNAcylation was increased in STZ-

treated hyperglycemic mice compared to control mice. Our results suggest that LXR is 

regulated by O-GlcNAc modification, thereby increasing its lipogenic potential. Whether O-

GlcNAc-LXR is able to transactivate other lipogenic genes in addition to SREBP1c, is currently 

under investigation in our laboratory. Our preliminary studies point to a role for O-GlcNAc-

LXR in upregulating ChREBP, FAS, ACC and SCD1 expression (Bindesbøll et al, 

unpublished). Furthermore, preliminary reChIP experiments in our laboratory (LXR ChIP 

followed by O-GlcNAc ChIP), show a strong induction of O-GlcNAc-associated LXR binding 

to LXRE on the promoters of SREBP1c, ChREBP, FAS and SCD1 in response to feeding both in 

control mice and STZ treated mice. Our study is supported by the observation that the 

SREBP1c promoter activity and protein levels of SREBP1c are increased in response to elevated 

glucose concentration in the mouse hepatocyte cell line H2-35 (Hasty et al., 2000). 

Furthermore, treatment with azaserine, an inhibitor of GFAT, completely suppressed 

expression of both cytoplasmic and nuclear SREBP1c protein, suggesting that hexosamine-

dependent O-GlcNAc signaling indeed is involved in glucose-induced SREBP1c mRNA 

expression, possibly via activation of LXR and/or cooperating transcription factors/CAs.  

In our in vitro studies, we observed only modest LXR/RXR transactivation of the SREBP1c 

promoter in high glucose/low insulin-treated cells. This might be explained by constitutive 

phosphorylation competing for the same site(s) as GlcNAc on LXR and/or inhibitory 

phosphorylation occurring on adjacent GlcNAc sites. Housley et al. (Housley et al., 2008) 

reported elevated O-GlcNAc on FoxO1 by high glucose and a subsequent reduction by insulin. 

They further showed that O-GlcNAc modification increased substantially on the insulin-

insensitive mutant FoxO1 lacking three AKT phosphorylation sites (T24A, S256A, S319A), 

resulting in increased FoxO1-dependent luciferase reporter activity. These observations imply 

overlapping and/or adjacent phosphorylation and GlcNAc sites on FoxO1. Indeed, the authors 

also identified several O-GlcNAc sites on FoxO1, one of which is adjacent to an Akt 

phosphorylation site (Thr317). In the case of LXR, which is activated by insulin, apparently in 

part via S6K-mediated phosphorylation (Hwahng et al., 2009), GlcNAcylation and 

phosphorylation might act synergistically on LXR in response to glucose and insulin. In fact, 

extensive cross-talk between O-GlcNAcylation and phosphorylation appear to contribute to 

the pathology of various diseases (Hart et al., 2011). In addition, GlcNAc and inhibiting 

phosphate (in response to fasting via PKA and/or AMPK) may compete for the same sites or 

are situated at different serines and/or threonines on LXR. Furthermore, GlcNAcylation and 

phosphorylation of LXR might be affected by ligand binding, which has been shown for 

SUMOylation and acetylation of LXR (Venteclef et al., 2010; Lee et al., 2009). A study by Torra 

et al. (Torra et al., 2008) reported that Ser198 phosphorylation of LXRα in RAW macrophages 

was induced by both synthetic and natural oxysterol LXR ligands and reduced by the RXR 

ligand 9-cis-retinoc acid. As such, we cannot exclude the possibility that LXR O-GlcNAcylation 

may be positively or negatively regulated by LXR and/or RXR ligands. From our in vitro 

GlcNAcylation results (Anthonisen et al., 2010) we believe that the major O-GlcNAc site(s) on 

LXRα and LXRβ resides in the N-terminal region containing the AF1 and DBD, indicating that 

O-GlcNAcylation occur independently of ligand. However, under hyperglycemic conditions, 
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ligand binding may recruit OGT to LXR via CAs, possibly PGC1 as reported for FoxO1 

(Housley et al., 2009). A more detailed mapping of the GlcNAc sites on LXR and site-directed 

mutagenesis as well as identification of coregulators of LXR under hyperglycemic conditions, 

are under way in our laboratory to elucidate the biological role of O-GlcNAc on LXR. A 

complete summary of putative mechanisms of glucose-signaling to LXR, ChREBP and 

lipogenesis is depicted in Figure 6. 

 

 

Figure 6. Glucose-mediated regulation of hepatic lipogenesis 
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5. Cross-talk between O-GlcNAc- and insulin signaling 

Studies in C.elegans demonstrate that O-GlcNAc cycling phenotypes are very sensitive to 

insulin as well as nutrient composition and that levels of insulin and nutrients influence 

the role of O-GlcNAc cycling and vice versa (Mondoux et al., 2011; Hanover et al., 2010; 

Hanover et al., 2010; Whelan et al., 2008). Intriguingly, O-GlcNAc-marked promoters in 

C.elegans are biased toward genes associated with PIP3 signaling, hexosamine 

biosynthesis, and lipid/carbohydrate metabolism (Love et al., 2010a). Defects in O-GlcNAc 

cycling results in deregulation of genes necessary for carbohydrate and lipid metabolism 

in response to insulin (Forsythe et al., 2006; Hanover et al., 2010) suggesting that both O-

GlcNAc cycling and insulin-signaling are required for a robust and adaptable response to 

hyperglycemia. Several studies have implicated O-GlcNAc cycling in the development of 

insulin resistance (reviewed in (Mondoux et al., 2011)). Mice overexpressing OGT in 

muscle or fat and mammalian cells overexpressing OGA develop insulin resistance 

(McClain, 2002; Arias et al., 2004; Vosseller et al., 2002). Later studies revealed that a 

subset of OGT was able to transiently translocate to the plasma membrane via association 

with PIP3 generated by insulin-activated PI3K (Yang et al., 2008). In response to increased 

glucose metabolism, PIP3-associated OGT can O-GlcNAcylate IR, IRS and Akt 

antagonizing insulin signaling (Yang et al., 2008; Whelan et al., 2010). Moreover, OGT 

may also interact with the mTOR pathway (Hanover et al., 2010). As mentioned in section 

3.2.3, the downstream target for insulin signaling, FoxO1, is also modified by O-GlcNAc, 

apparently via OGT recruitment to PGC1, providing another mechanism for OGT to 

contribute to insulin resistance, at least for sustained hepatic glucose production in 

response to hyperglycemia (Housley et al., 2009). Directing OGT to transcriptional targets 

implies that PGC1α can integrate multiple nutrient signals to regulate gene expression. 

Whether OGT via PGC1 or other CAs is also recruited to ChREBP- and LXR-regulated 

promoters is currently not known. OGT is recruited to and O-GlcNAcylate several 

coregulators and histone modifying enzymes (acetylases/deacetylases, 

metylases/demetylases) and even histones themselves (Fujiki et al., 2009; Hanover et al., 

2012; Fujiki et al., 2011; Sakabe et al., 2010). Depending on the nutritional stimuli, all 

components of the transciptional machinery from specific transcription factors to 

coregulators, histones and RNA polymerase II are subject to epigenetic regulation by 

acetylation, ubiquitinylation, SUMOylation, phosphorylation and/or O-GlcNAcylation 

(Rosenfeld et al., 2006; Venteclef et al., 2011; Love et al., 2010b; Kato et al., 2011). The fine-

tuning of these modifications determines whether a gene is activated or repressed. 

Furthermore, as the substrate specificity of OGT is believed to be spatio-temporally 

regulated by transient interactions with large enzyme complexes, its binding to PIP3 may 

not occur solely at the plasma membrane, as PI3K is also active in the nucleus where it is 

involved in regulation of protein-chromatin interactions, transcription and mRNA export 

(Viiri et al., 2012; Kebede et al., 2012; Okada & Ye, 2009). As protein O-GlcNAcylation is 

rapidly increased at both the plasma membrane and the nucleus in response to serum-

stimulation (Carrillo et al., 2011), OGT-binding to nuclear PIP3 may also be instrumental 

in transcriptional regulation in response to feeding. Interestingly, nonalcoholic fatty liver 
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disease is often accompanied by hepatic insulin resistance, metabolic syndrome, and 

diabetes (reviewed in (Scorletti et al., 2011)) and the sensitivity of OGT to glucose 

increases with decreasing insulin signaling (Mondoux et al., 2011). These findings suggest 

that elevated O-GlcNAc cycling on key nuclear proteins contributes to the development of 

hepatic steatosis. This notion is also in line with the above mentioned observation by 

Guinez et al (Guinez et al., 2011), where overexpression of OGA reduced hepatic steatosis 

in db/db mice. A complete summary of a putative glucose-insulin cross-talk in regulation 

of hepatic de novo lipogenesis is depicted in Fig. 7.  

 

 

Figure 7. Glucose-insulin cross-talk in regulation of hepatic lipogenesis 
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6. Concluding remarks 

In mice and humans, hepatic de novo lipogenesis is activated by a high intake of both glucose 

and fructose (Scorletti et al., 2011; Schwarz et al., 1995; Schwarz et al., 2003). Fructose 

increase hepatic hexosamine signaling (Hirahatake et al., 2011) and induce SREBP1c and 

ChREBP expression in hepatic cells (Matsuzaka et al., 2004; Haas et al., 2012; Koo et al., 

2009), which may, in part be mediated by LXR. The response of LXR to glucose has been 

debated (Lazar & Willson, 2007), but a recent study support the notion of LXR as a 

glucose/fructose sensor as high sucrose fed mice exhibit elevated hepatic expression of 

SREBP1c and increased TG levels, which was not observed in LXR/ double knock out 

mice (Korach-Andre et al., 2011). LXR increases lipogenesis, in part by activating SREBP1c 

and ChREBP proteins. Thus, in response to feeding, they can cooperately activate most of 

the genes required for hepatic lipogenesis and TG secretion. Whether hepatic LXR drives the 

expression of SREBP1c and/or ChREBP to the same degree under different nutritional 

conditions is currently not known, as most studies have been performed using synthetic 

LXR agonists. We have preliminary results showing that hepatic expression of SREBP1c and 

ChREBP is upregulated in refed control mice and to a lesser extent in STZ-treated 

hyperglycemic mice, which is not observed in LXR/ double knock out mice (Bindesbøll et 

al, unpublished). O-GlcNAc modification of LXR is increased in STZ-treated mice 

(Anthonisen et al., 2010) and we postulate that O-GlcNAc modification of LXR in response 

to glucose activates LXR and drives the expression of ChREBP and SREBP1c and in 

particular the lipogenic genes, ACC and SCD1. Furthermore, RNA Pol II ChIP-Seq data 

show reduced binding of RNA Pol II to the L-PK promoter and no binding of RNA Pol II to 

the SCD1 promoter in LXR / double knock out mice compared to control mice. Moreover, 

a novel LXRE immediately downstream of SCD1 was found, to which LXR bound more 

strongly than the previously published upstream LXR binding site (Boergesen et al., 2012). 

This suggests an important role for LXR as an upstream activator of ChREBP-mediated 

transcription and argues for LXR acting independently on the SCD1 promoter, at least 

under certain nutritional conditions. Previous studies have demonstrated that LXR directly 

activates key lipogenic genes (Joseph et al., 2002), most notably SCD1 in the liver of SREBP1c 

knockout mice (Liang et al., 2002; Chu et al., 2006). Why there would be a need for LXR to 

activate lipogenic genes directly, may be explained by the nutritional conditions and 

redundancy in the system. Oxysterols bind the endoplasmic reticulum resident Insig protein 

and could inhibit the proteolytic maturation of SREBP1c (Radhakrishnan et al., 2007). This 

would limit transcription by SREBP1c, and direct activation by LXR would be required to 

stimulate lipogenesis. In the absence of active SREBP1c, however, LXR may act in concert 

with ChREBP in regulating lipogenic expression. A recent study show that hepatic 

overexpression of ChREBP induces SCD1 expression and hepatic steatosis, but not insulin 

resistance (Benhamed et al., 2012). Whether overexpression of ChREBP affected LXR protein 

expression and transactivation of the SCD1 promoter was not investigated in this study. In 

later studies, it would be interesting to investigate the SCD1 expression and activity in livers 

or hepatocytes with targeted deletion of ChREBP. Benhamed et al (Benhamed et al., 2012) 

also showed that ChREBP expression was increased in liver biopsies from patients with 
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steatosis and decreased in liver of patients with severe insulin resistance, suggesting that 

ChREBP, alone or in combination with LXR, drives SCD1 expression and steatosis 

independent of insulin resistance. This is in line with recent human studies showing no 

relationship between hepatic TG accumulation and insulin resistance (Cohen et al., 2011; 

Hooper et al., 2011). Thus, hepatic steatosis can either be the result or cause of hepatic 

insulin resistance. The mechanisms of hepatic insulin resistance is still not clear (Farese, Jr. et 

al., 2012), but may involve specific lipids, nutrition-induced metabolites and PTMs 

including O-GlcNAc. Hepatic TG synthesis may be a protective mechanism to limit 

accumulation of toxic free fatty acids, liver damage and fibrosis (Choi & Diehl, 2008) where 

particularly SCD1 seem to play a protective role (Li et al., 2009).  

As LXR is shown also to act anti-inflammatory in liver (Wouters et al., 2008; Venteclef et al., 

2010), LXR activation may be an important compensative mechanism in response to excess 

nutrients to limit liver damage, inflammation and fibrosis. SUMOylation is an important 

ligand-activated transrepressional PTM of LXR on inflammatory genes (Venteclef et al., 

2011) and future studies in our laboratory aim to elucidate a putative cross-talk between 

OGT and E3 ligases (SUMO conjugating enzymes) in liver in response to excess nutrients, 

especially high sugar levels (glucose and fructose). The relative roles of LXR, SREBP1c and 

ChREBP in driving lipogenesis is clearly dependent on both insulin and glucose signaling 

and cross-talk between these pathways. Both phosphorylation and GlcNAcylation appear 

instrumental in hepatic lipogenesis and future focus in our laboratory will be to elucidate a 

possible cross-talk between these PTMs, endogenous LXR ligands and interacting CAs in 

response to various feeding conditions (high glucose, fructose and/or fatty acids, 

cholesterol) and the impact on downstream ChREBP, SREBP1c and lipogenic enzyme 

expression and activity. ChIP and reChIP analysis in combination with loss of function 

studies have become powerful tools to analyze activation of specific genes by specific 

transcription factors in response to extracellular stimuli. By these methods, we anticipate 

that the signaling mechanisms and relative roles of LXR, ChREBP, SREBP1c and cooperating 

transcription factors in driving hepatic de novo lipogenesis will be revealed in the not too 

distant future. 
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