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1. Introduction 

Greenhouse gas emissions alter carbon and hydrologic cycles, mean surface air 

temperature, the spatial and temporal distribution of energy, water, and nutrients, 

atmospheric CO2 concentration, and the frequency and severity of storms (Adams et al., 

1990; National Research Council, 2001; Reilly 2002; Wang and Schimel 2003; Smith 2004; 

IPCC, 2007). A major consequence of increasing greenhouse gas emissions is climate 

change and variability (CCV). CCV alters annual levels and intra-annual patterns of 

temperature, precipitation, and other climate-related variables, which can impact crop 

yields and the profitability of crop farming. Such impacts are likely to vary across 

agricultural production areas. Crop yields are projected to increase in agricultural 

production areas experiencing slightly higher surface air temperature and growing season 

precipitation, and decrease in production areas experiencing significantly higher surface air 

temperature, lower growing season precipitation, and inadequate irrigation water supplies 

(McCarthy et al., 2001). Even if future CCV causes crop yields to decrease, crop farmers may 

be able to reduce those negative impacts by adapting their crop enterprises and crop 

production systems (CPSs) (i.e., combinations of crop enterprises) to actual or expected CCV 

(Stewart et al., 1998; Smit et al., 2000; Walther et al., 2002; Spittlehouse & Stewart, 2003; Antle 

et al., 2004; Easterling et al., 2004; Inkley et al., 2004). Most previous studies of CCV impacts 

on agriculture: (1) focus on how CCV is likely to impact regional or national crop yields; 

(2) do not consider CCV impacts on net farm income; and (3) do not evaluate the extent to 

which adapting crop enterprises and farms to CCV reduces adverse impacts of CCV. 

Because crop farming is a business, crop farmers need to consider the potential impacts of 

CCV on their financial returns; particularly impacts on crop enterprise net returns and net 

farm income.  
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2. Objectives 

The objectives of this chapter are: (1) to assess the impacts of climate change on the levels of 

crop enterprise net returns and net farm income (NFI) in a future period (2006–2050) relative 

to their levels in an historical period (1960–2005) for small and large representative farms in 

Flathead Valley, Montana-the study area; and (2) to determine whether adapting CPSs to 

future climate change in Flathead Valley results in superior or inferior levels of net farm 

income compared to not adapting to future climate change. Small and large representative 

farms use a mix of crop enterprises, farming operations, and crop acreages, and have total 

sizes similar to actual small and large farms in the study area.  

3. Previous research 

Several studies have examined how climate change might affect agriculture. Reilly (2002) used 

the Hadley Center and Canadian climate models to estimate potential impacts of climate 

change on 2030-2090 crop yields for the entire US. He found that future climate change could 

result in: (1) higher yields for cotton, corn for grain and silage, soybeans, sorghum, barley, 

sugar beets, and citrus fruits; (2) higher or lower yields for wheat, rice, oats, hay, sugarcane, 

potatoes, and tomatoes, depending on the climate scenario; (3) large increases in average grain 

yields for the northern half of the Midwest, West, and Pacific Northwest; (4) depending on the 

climate scenario and time period, either increases or decreases in crop yields in other regions 

of the US; and (5) large reductions in crop yields in the South and Plains States for climate 

scenarios with low precipitation and substantial warming. For the Midwestern United States, 

Brown and Rosenberg (1997) simulated the impacts of climate change on crop yields and 

water use under different future climate scenarios using the Environmental/Policy Integrated 

Climate (EPIC) model (Williams et al., 1989). In a similar study, Izaurralde et al. (2003) used 

the EPIC model to evaluate the potential impacts of climate change on US crop yields, yield 

variability, incidence of various crop stress factors, evapotranspiration, and national crop 

production. That study evaluated how a baseline climate scenario for the period 1961–1990 

and two Hadley Center climate scenarios for the periods 2025–2034 and 2090–2099 impact 204 

representative farms. Reilly (2002), Brown and Rosenberg (1997), and Izaurralde et al. (2003) 

did not evaluate how future climate change is likely to impact crop enterprise net returns and 

NFI for representative farms as does this study. Kaiser et al. (1993) evaluated the economic and 

agronomic impacts of several climate warming scenarios, mainly temperature changes, on a 

grain farm in southern Minnesota and alternative ways to adapt the farm to those scenarios. 

That study did not evaluate the impacts of other climate variables, such as precipitation and 

atmospheric CO2 concentration, on crop yields as does this study. 

Antle et al. (1999) evaluated the impacts of climate change on crop enterprise returns in the 

Great Plains. That study showed: (1) with adaptation of crop enterprises to climate change, 

climate change and CO2 enrichment caused mean crop enterprise return to change by -11% 

to +6% and variability in crop enterprise return to increase 7–25% relative to the baseline 

climate; and (2) without adaptation, mean crop enterprise return decreases 8–31% and 

variability in crop enterprise return increases 25–83% relative to the baseline climate. Antle 
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et al. (2004) examined relative and absolute economic measures of the vulnerability of 

dryland grain farms in Montana to climate change with and without adaptation using data 

from a statistically representative sample of farm fields. That study allowed inferences to be 

drawn about the vulnerability of a heterogeneous population of farms to climate change 

with and without adaptation, and showed that when both climate change and higher 

atmospheric CO2 concentrations are taken into account, average crop enterprise return was 

higher relative to the baseline climate for five and lower for three of the eight adaptation 

scenarios evaluated. Although Antle et al. (1999, 2004) evaluated the potential impacts of 

climate change on crop yields and crop enterprise returns, they did not consider potential 

impacts of future climate change on NFI as does this study. 

4. Study area 

Flathead Valley, Montana is the study area (Fig. 1). It is located in Flathead County. The 

county is approximately 13,605 km2 in area (roughly the size of the State of Connecticut in 

the US) of which approximately 79% is managed by the federal government (Flathead 

County Planning and Zoning Office, 2009). In 2007, Flathead County had 1,094 farms with 

an average farm size of 93 ha. Of the 1,094 farms, 1,048 were less than 405 ha and 46 

exceeded 405 ha in size. Sixty-one farms had annual sales less than $100,000 and 1,033 farms 

had annual sales greater than $100,000. In 2007, major crops grown in Flathead County in 

order of area harvested were spring wheat, alfalfa hay, winter wheat, other hay, barley, and 

canola. In 2006, cash receipts from the sale of principal agricultural commodities in Flathead 

County amounted to $33.5 million (Montana Agricultural Statistics Service, 2008; National 

Agricultural Statistics Service, 2011).  

 

Figure 1. Location of Flathead County in Montana (a) and Flathead Valley (oval-shaped area) (b) 
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Daily and monthly climate data from the Creston, Montana weather station located in the 

Flathead Valley show that during the historical period: (1) average monthly maximum and 

average monthly minimum temperature for the winter months (i.e., December through 

February) were 0.41°C and -7.93°C, respectively; (2) average monthly maximum 

temperature and average monthly minimum temperature for the summer months (i.e., June 

through August) were 24.88°C and 8.32°C, respectively; and (3) average annual 

precipitation was 488 mm.  

5. Methods and procedures 

This section begins with an overview of the methods and procedures used to assess the 

potential agricultural impacts of the three climate scenarios (i.e., impact assessment) and the 

potential benefits of adapting CPSs for representative farms to the three climate scenarios 

(i.e., adaptation evaluation), and describes in detail the methods and procedures used in the 

impact assessment and adaptation evaluation.  

5.1. Overview 

The impact assessment determines the potential agricultural impacts of CO2 emissions 

scenarios A1B, B1, and A2 developed by the Intergovernmental Panel on Climate Change 

Fourth Assessment Report (IPCC) (2007). The assessment involved: (1) specifying crop 

enterprises, CPSs, and soil types for small and large representative farms in Flathead Valley; 

(2) simulating crop yields; and (3) estimating net returns for crop enterprises and CPSs and net 

farm income in the historical and future periods. The adaptation evaluation determined the 

potential benefits of adapting CPSs for representative farms to the three climate scenarios, 

which involved determining: (1) whether the most dominant CPS in the historical period is 

different than the most dominant CPS for each climate scenario in the future period; and (2) for 

cases where they are different, whether the most dominant CPS for each climate scenario is 

superior to the most dominant CPS in the historical period.  

5.2. Impact assessment 

5.2.1. Specifying crop enterprises, CPSs, soils types, and representative farms 

Ten crop enterprises, common to Flathead Valley, were specified for the study: spring 

wheat; winter wheat; oats; spring canola; spring barley; dryland (unirrigated) alfalfa; 

irrigated alfalfa; spring lentils; and dry (unirrigated) peas. Permanent pasture, a common 

forage crop enterprise in Flathead Valley, was excluded from the study because it does 

not produce a marketed crop. A CPS is a unique combination of crop enterprises. Two 

producer panels were established; one for a small representative farm (66 ha) and the 

other for a large representative farm (243 ha). Each panel consisted of 3-5 farmers that 

operated a small-scale or large-scale farm in Flathead Valley. Three CPSs were specified 

for each representative farm (Table 1) with the assistance of the producer panels. Two 

common soil types were evaluated for each crop enterprise: Creston silt loam (Ce), which 
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is on 0–3% slopes and accounts for 3.4% of the total agricultural area in Flathead Valley; 

and Kalispell loam (Ke), which is on 0–3% slopes and accounts for 2.7% of the total 

agricultural area in Flathead Valley. 

Crop enterprise Large representative farm 

  CPS 1 CPS 2 CPS 3 

Spring wheat − 81 162 

Winter wheat 81 − − 
Oats  − − 40 

Spring canola 40 − − 
Spring barley 61 61 − 
Dry alfalfa  61 − − 
Irrigated alfalfa − 61 − 
Spring lentils − − 40 

Dry peas  − 40 − 
  Small representative farm 

  CPS 4 CPS 5 CPS 6 

Spring wheat − 12 8 

Oats  − 8 − 
Spring canola 12 8 8 

Spring barley 10 − − 
Irrigated alfalfa 28 22 22 

Spring lentils − − 12 

Table 1. Hectares in crop enterprises for crop production systems (CPSs) for large and small 

representative farms   

5.2.2. Simulating crop yields 

Annual crop yields in the historical period were simulated for both soil types by inputting 

to the EPIC model (Williams et al., 1989) daily data on precipitation, maximum temperature 

(Tmax), minimum temperature (Tmin), relative humidity, solar radiation, and wind velocity 

from the Creston weather station in Flathead Valley and other sources, and field operations 

for crop enterprises (i.e., amount and/or timing of planting, fertilizer/pesticide use, tillage 

operations, and harvesting). Annual atmospheric CO2 concentrations for the historical 

period were determined using the dynamic CO2 option in the EPIC model. That option 

varies the annual atmospheric CO2 concentration according to the following quadratic 

equation: CO2 (X) = 280.33 - 0.1879X + 0.0077X2; where X equals the number of years between 

the prediction year and 1880. For example, for X = 2000 - 1880 = 120, the equation gives a 

CO2 concentration in 2000 of CO2 (120) = 280.33 - 0.1879 * 120 + 0.0077 * (120)2 = 368.7 ppm. 

This regression equation was estimated using the historical CO2 record from the Mauna Loa 

Observatory in Hawaii (Izaurralde et al., 2006).  
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Annual crop yields in the future period were simulated for each climate scenario and soil 

type by inputting to the EPIC model daily projections of precipitation, maximum 

temperature (Tmax), minimum temperature (Tmin), relative humidity, solar radiation, and 

wind velocity, and annual projections of atmospheric CO2 concentration for that climate 

scenario. Daily projections of precipitation and temperature were derived by applying the 

delta method (e.g., McGinn et al., 1999) to monthly bias-corrected, downscaled climate 

projections for each of the three climate scenarios. Monthly climate projections are based on 

the World Climate Research Program’s (WCRP’s) Coupled Model Intercomparison Project 

phase 3 (CMIP3) (Meehl et al., 2007), which are available through the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on 

Coupled Modeling (WGCM; see http://gdo-dcp.ucllnl.org/). CMIP3 climate projections 

synthesize monthly temperature and precipitation data from 112 projection-specific datasets 

representing 16 CMIP3 climate models and the three future CO2 emission scenarios for the 

period 1950-2099 (Meehl et al., 2007). In terms of which downscaled climate projection to 

use, the 12-km downscaled grid used in the study is the grid centered over the Creston 

meteorological station and the majority of the Flathead Valley. Annual CO2 concentrations 

for each climate scenario were interpolated assuming linear increases in CO2 concentration 

from 379 ppm in 2005 to the IPCC concentration for that scenario specified in 2100 (Table 2). 

The crop yield simulations take into account the fertilization effects of CO2 concentration for 

the three climate scenarios. 

The CMIP3 dataset does not contain monthly data on relative humidity, solar radiation, and 

wind velocity. Daily relative humidity and solar radiation projections were developed by 

applying the MTCLIM model (Hungerford et al., 1989; Kimball et al., 1997) to the daily 

temperature and precipitation projections for each climate scenario. Due to lack of data, 

daily wind velocity for each climate scenario was assumed to be the same as the 

corresponding daily wind velocity in the historical period. Specifically, daily wind velocity 

in month t+30 for each climate scenario equals the corresponding daily wind velocity in 

month t of the historical period. 

EPIC simulates annual crop yields for the 46 years in the historical period and 45 years in the 

future period based on operations for each crop (i.e., amount and/or timing of planting, 

fertilizer/pesticide use, tillage operations, and harvesting) specified by producer panels, weather 

data for the historical period, and weather projections for each climate scenario in the future 

period discussed above. These simulated annual crop yields are referred to as raw crop yields, 

which are then used to extract the underlying crop yield distribution and derive 100 values of 

crop yields for calculating crop enterprise net returns. The parameter estimation, simulate, and 

CDFDEV functions in the Simulation and Econometrics to Analyze Risk (Simetar) program 

(Richardson et al., 2006) were used to simulate 100 values of crop yields for each period as 

follows. First, the parameter estimation function with maximum likelihood estimation was used 

to fit 16 probability distributions (i.e., Beta, double exponential, exponential, gamma, logistic, 

log–log, log–logistic, lognormal, normal, Pareto, uniform, Weibull, binomial, geometric, 

Poisson, and negative binomial) to raw crop yields for the historical period and each climate 

scenario in the future period. Second, the simulate function in Simetar was applied to the 
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estimated parameters of each fitted probability distribution to simulate 100 values of crop yields 

for each distribution. Third, the CDFDEV function was applied to the 100 simulated crop yields 

for each distribution to determine the best-fitting probability distribution for crop yields. 

Fourth, a random sample of 100 values of crop yields was drawn from the best-fitting 

probability distribution was used to calculate 100 values of net returns per ha. 

 

Scenario 
Level of 

forcing 

CO2 concentration in 2100 

(ppm) 

Average increase in global 

temperature (°C)a 

B1 Low 530 1.8

A1B Medium 700 2.8

A2 High 800 3.4

 aMean temperature for years 2090-2099 minus mean temperature for years 1980-1989, Source: IPCC (2007)             

Table 2. Description of three climate scenarios  

5.2.3. Estimating net returns for crop enterprise and CPSs and net farm income 

Annual net return per ha for a crop enterprise equals annual crop yield times crop price per unit 

of output minus total cost of production per ha. The 100 values of crop yields simulated using 

the procedures described in section 5.2.2, and 100 values of crop prices per unit of output and 

annual total cost of production per ha were used to simulate 100 values of crop enterprise net 

returns for the historical period and each climate scenario for the future period. The 100 values 

of crop prices were randomly selected from the best-fitting probability distribution for crop 

prices determined by applying the three Simetar functions described in section 5.2.2 to annual 

inflation-adjusted (base year = 2008) crop prices for the historical climate period. The 100 values 

of total cost of production per ha for a crop enterprise were randomly selected from triangular 

probability distributions. The mean of the triangular distribution equals the mean annual total 

cost of production per ha for that crop enterprise given by crop enterprise budgets for the study 

area (Table 3). Mean annual total cost of production is the sum of average variable and average 

fixed costs per ha. Variable cost includes the costs of seed, fertilizer, pesticides, fuel and 

lubricants, hired labor, and, in the case of irrigated crops, the cost of pumping and applying 

irrigation water. Fixed cost includes the costs of land, equipment, machinery, vehicles, and 

owner/operator labor. The minimum value of the triangular probability distribution was set 

equal to 80% of the mean and the maximum value was set equal to 120% of the mean. It was 

assumed that inflation-adjusted crop prices per unit of output and mean annual total cost of 

production per ha in the future period were the same as in the historical period. For that reason, 

the same 100 values of crop prices and total cost of production per ha randomly selected for a 

given crop enterprise for the historical period were used for the future period. 

5.3. Adaptation evaluation  

The dominant CPS was identified for each representative farm and period by applying the 

stochastic efficiency with respect to a function (SERF) criterion (Hardaker et al., 2004) for a 

particular risk aversion coefficient (RAC) to the 100 simulated values of net returns for the three 
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CPSs specified for each farm. With the SERF criterion, the dominant CPS for a representative 

farm is the one with the highest certainty equivalent (Hardaker et al., 2004). The latter is the 

payoff amount that a farmer is willing to receive in exchange for accepting the variability in NFI 

associated with a particular CPS. Application of the SERF criterion was based on three 

assumptions: (1) RACs are in the range [0,0.03], where RAC = 0 implies the farmer is risk neutral 

and RAC > 0 implies the farmer is risk averse (Anderson and Dillon, 1992); (2) constant absolute 

risk aversion, which implies that the risk premium a farmer is willing to pay to reduce income 

risk does not vary with the level of income; and (3) the farmer’s utility function is exponential in 

NFI (i.e., u[NFI] = exp[-RAC * NFI]). In addition, the SERF criterion was used to determine 

whether the dominant CPS for a representative farm in the historical period is superior to the 

dominant CPS for that representative farm under each climate scenario. If the dominant CPS in 

the historical period is the same as the dominant CPS under a climate scenario in the future 

period, then adaptation to that climate scenario is not advantageous. If the dominant CPS in the 

historical period differs from the dominant CPS under a climate scenario (e.g., CPSi is the 

dominant CPS in the historical period and CPSj is the dominant CPS for climate scenario k) and 

CPSj dominates CPSi, then adapting CPSs to that climate scenario (i.e., switching from CPSi to 

CPSj under climate scenario k), is advantageous to the farmer.  

 

Crop enterprise Variable cost Fixed cost Total costd 

Spring wheat 307.54a 91.07a 398.61 

Winter wheat 274.42b 117.74b 392.16 

Oats 227.51b 129.03b 356.54 

Spring canola  383.59a 57.65a 441.24 

Spring barley 307.74a 91.07ac 398.81 

Dry alfalfa 152.23a 95.96a 248.19 

Irrigated alfalfa 498.67a 95.96ab 594.63 

Spring lentils 247.22b 130.47b 377.69 

Dry peas 253.67b 130.47b 384.13 

aBased on crop enterprise budgets supplied by Duane Johnson, former Superintendant of Montana State University’s 

Northwestern Montana Agricultural Research Center, Creston, MT 
bBased on predicted 2008 crop enterprise budgets for northwest North Dakota  

Table 3. Variable, fixed, and total cost for crop enterprises ($per ha in 2008 dollars) 

6. Results 

6.1. Impact assessment 

Simulated annual crop yields for the same crop were very similar across the three climate 

scenarios because IPCC climate projections of monthly temperature and precipitation are 

very similar across the three climate scenarios. The latter occurs because the divergence in 

the time paths of temperature and precipitation for the three climate scenarios does not take 

place until the latter half of the IPCC assessment period (i.e., 2055–2100), which occurs after 

the future period. Because simulated yields for a given crop are very similar across the three 



Potential Impacts of and Adaptation to  
Future Climate Change for Crop Farms: A Case Study of Flathead Valley, Montana 387 

climate scenarios and the 100 simulated crop prices and production costs for a given crop 

are the same across the three scenarios, crop enterprise net returns for the same crop and 

soil type and NFI for the same CPS and soil type are likewise similar across the three climate 

scenarios. For that reason, results for the future period are averages of the results for the 

three climate scenarios. 

6.1.1. Means and standard deviations of simulated crop enterprise net returns 

Means and one-standard deviation error bars for simulated crop enterprise net returns per 

ha are given in Fig. 2 for the historical period and Fig. 3 for the future period. Between the 

historical and future periods, enterprise net returns: (1) decreases by 84.3% on average for 

spring barley, dry canola, dry and irrigated alfalfa, oats (in Ce soil), and spring wheat (in Ce 

soil); and (2) increases by 44% on average for dry lentils, oats (in Ke soil), winter wheat, 

spring wheat (in Ke soil), and dry peas. Averaged over the nine crop enterprises and two 

soil types, mean simulated crop enterprise net return per ha is 24% lower in the future 

period than in the historical period. In summary, mean simulated net return per ha for the 

same crop enterprise is between 202% lower and 74% higher in the future period than in the 

historical period. 

6.1.2. Means and standard deviations of net farm income for crop production systems 

The mean and one-standard deviation error bars for simulated NFIs for the six CPSs in the 

historical period are shown in Fig. 4 for the historical period and Fig. 5 for the future period. 

Simulated NFIs for CPSs in the future period assume no adaptation to climate scenarios. As 

expected, for both periods, simulated NFI is higher for the large representative farm (i.e., 

CPS 1, CPS 2, and CPS 3) than for the small representative farm (i.e., CPS 4, CPS 5, and CPS 

6). In four of the six cases in the historical period, mean simulated NFI is higher for Ke soil 

than Ce soil. For the historical period and large representative farm, the mean simulated NFI 

is highest for CPS 3 in Ce soil at $87,275 and lowest for CPS 1 in Ce soil at $65,568. For the 

historical period and small representative farm, mean simulated NFI is highest for CPS 6 in 

Ke soil at $23,612 and lowest for CPS 4 in Ce soil at $21,599. For the future period and large 

representative farm, the mean simulated NFI is highest for CPS 3 in Ke soil for climate 

scenario B1 at $40,571 and lowest for CPS 3 in Ce soil for climate scenario A2 at $14,585. For 

the future period and small representative farm, the mean simulated NFI is highest for CPS 

6 in Ke soil for climate scenario A2 at $13,726 and lowest for CPS 5 in Ce soil for climate 

scenario A2 at $8,864. Mean simulated NFIs for the CPSs decrease 57% between the 

historical and future periods. The maximum percent decline in mean simulated NFI 

between the historical and future periods is 83% for CPS 3 in Ce soil for the large 

representative farm under climate scenario A2. The minimum percent decline in mean 

simulated NFI between the historical and future periods is 41.9% for CPS 6 in Ke soil for the 

small representative farm under climate scenario A2. In summary, mean simulated net farm 

income for the same CPS is between 42% and 83% lower in the future period than in the 

historical period. 
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Figure 2. Means and one-standard deviation error bars for simulated crop enterprise net returns per ha 

(in 2008 dollars) for the historical period, by soil type (drpe is dry peas, swht is spring wheat, wwht is 

winter wheat, iral is irrigated alfalfa, dral is dry (unirrigated) alfalfa, sple is spring lentils, drca is dry 

(unirrigated) canola, and spbl is spring barley) 

 

Figure 3. Means and one-standard deviation error bars for simulated crop enterprise net returns per ha 

(in 2008 dollars) for the future period, by soil type (crop enterprise legend given in Fig. 2) 



Potential Impacts of and Adaptation to  
Future Climate Change for Crop Farms: A Case Study of Flathead Valley, Montana 389 

 

Figure 4. Means and one-standard deviation error bars for simulated net farm income in 2008 dollars 

for crop production systems (CPSs) in the historical period, by soil type (crop enterprises for each CPS 

are listed in Table 1) 

 

Figure 5. Means and one-standard deviation errors bars for simulated net farm income in 2008 dollars 

for crop production systems (CPSs) for the future period without adaptation to climate scenarios, by 

soil type (crop enterprises for each CPS are listed in Table 1) 
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6.2. Adaptation evaluation 

Table 4 shows the dominant CPSs for the small and large representative farms and two 

soil types for the historical period and three climate scenarios. For the large 

representative farm: (1) CPS 2 dominates CPS 1 and CPS 3 for both soil types in the 

historical period and under climate scenarios A1B and A2 for the Ke soil type; (2) CPS 3 

dominates CPS 1 and CPS 2 under climate scenario B1 for the Ke soil type; and (3) CPS 1 

dominates CPS 2 and CPS 3 under all three climate scenarios for the Ce soil type. For the 

small representative farm: (1) CPS 4 dominates CPS 5 and CPS 6 in the historical period 

for both soil types; (2) CPS 4 dominates CPS 5 and CPS 6 under climate scenario A1B for 

both soil types; and (3) CPS 5 dominates CPS 4 and CPS 6 under climate scenarios A2 

and B1 for both soil types. These results indicate that switching CPSs between the 

historical and future periods (i.e., adapting CPSs to future climate change) is optimal in 

eight of the twelve cases evaluated. Specifically, it is advantageous to switch: (1) from 

CPS 2 to CPS 3 under climate scenario B1 for the Ke soil type and from CPS 2 to CPS 1 

under all three climate scenarios for the Ce soil type for the large representative farm; 

and (2) from CPS 4 to CPS 5 under climate scenarios A2 and B1 for both soil types for the 

small representative farm. 

Table 5 reports the dominance relationships for CPSs for the large and small representative 

farms and two soil types between the historical period and three climate scenarios. Of 

particular interest are the dominance relationships for the cases in which the dominant CPS 

differs between the historical and future periods because these relationships indicate 

whether NFI in the historical period is superior or inferior to NFI with adaptation of CPSs to 

climate change. For the large representative farm: (1) CPS 2 in the historical period 

dominates CPS 3 under climate scenario B1 for soil type Ke; and (2) CPS 2 in the historical 

period dominates CPS 1 under all three climate scenarios for the Ce soil type. For the small 

representative farm: (1) CPS 4 in the historical period dominates CPS 5 under climate 

scenarios B1 and A2 for soil type Ke; and (2) CPS 5 under climate scenarios B1 and A2 

dominates CPS 4 in the historical period for the Ce soil type. Combining the results in Tables 

4 and 5 indicates that while adapting CPSs to future climate change reduces potential losses 

in NFI in eight of the 12 cases evaluated, in only three of those eight cases is NFI in the 

future period after adaptation to climate change superior to NFI in the historical period. 

Conversely, in five of those eight cases, NFI in the future period after adaptation to climate 

change is inferior to NFI in the historical period.  

7. Conclusion  

It is difficult to evaluate the potential adverse impacts of future climate change on 

agricultural production because of uncertainty regarding the nature and extent of future 

climate change and how such change is likely to influence crop yields, crop enterprise net 

returns, and NFIs for CPSs. Most previous studies of the agricultural impacts of climate 

change focus on how past climate change has influenced crop yields and/or crop enterprise 

net returns at the regional and/or national levels. The unique contribution of this study is 
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that it developed a method for assessing the potential economic benefits (in terms of 

alleviating losses in NFI) of adapting CPSs to future climate change for representative farms 

in a local agricultural production area. This is an important contribution because farming is 

a business that requires farmers to understand the potential impacts of future climate 

change on NFI and determine whether adapting CPSs to future climate change alleviates 

negative impacts of those changes on NFI.  

Averaged over the two representative farms and two soil types in Montana’s Flathead 

Valley, simulated net return per ha for the nine crop enterprises decreases 24% and mean 

simulated NFI for CPSs decreases 57% between the historical and future periods. Although 

adapting CPSs to future climate change reduces potential losses in NFI in eight of the 12 

cases evaluated here, in only three of those eight cases is NFI in the future period after 

adaptation to climate change superior to NFI in the historical period. Therefore, for most 

part, adapting CPSs to future climate change alleviates but does not eliminate the negative 

impacts of that change on simulated NFI. The impact assessment and adaptation evaluation 

methods described here can be used to determine the potential impacts of future climate 

change on crop enterprise net returns and NFI for representative farms and evaluate the 

potential economic benefits of adapting crop enterprises and CPSs to future climate change 

in other agricultural production areas. 

 

Soil type Large representative farm Small representative farm 

 Historical period

Ke CPS 2 CPS 4 

   

Ce CPS 2 CPS 4 

 Climate scenario 

 A1B 

Ke CPS 2 CPS 4 

   

Ce CPS 1 CPS 4 

 A2 

Ke CPS 2 CPS 5 

 

Ce 
CPS 1 CPS 5 

 B1 

Ke CPS 3 CPS 5 

   

Ce CPS 1 CPS 5 

aBased on SERF method assuming a risk-averse farmer (i.e., 0.0013 < RAC ≤ 0.03) 

Table 4. Dominant crop production systems (CPSs) for the historical period and each of the three 

climate scenarios (B1, A1B, and A2), by large and small representative farms and two soil typesa  
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Soil Type Large representative farm Small representative farm 

Ke CPS 2 (H) Db  CPS 3 (B1) CPS 4 (H) D CPS 5 (B1) 

 CPS 2 (H) D CPS 2 (A1B) CPS 4 (H) D CPS 4 (A1B) 

 CPS 2 (H) D CPS 2 (A2) CPS 4 (H) D CPS 5 (A2) 

       

Ce CPS 2 (H) D CPS 1 (B1) CPS 5 (B1) D CPS 4 (H) 

 CPS 2 (H) D CPS 1 (A1B) CPS 4 (A1B) D CPS 4 (H) 

 CPS 2 (H) D CPS 1 (A2) CPS 5 (A2) D CPS 4 (H) 

aBased on SERF method assuming a risk-averse farmer (i.e., 0.0013 < RAC ≤ 0.03) 
bD indicates “dominates” 

Table 5. Dominance relationships for crop production systems (CPSs) across the historical period (H) 

and three climate scenarios (B1, A1B, and A2), by large and small representative farms and two soil 

typesa  
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