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1. Introduction 

A critical issue in climate prediction and climate change projection is to estimate their 

uncertainty. The estimation of uncertainty has been an intensive research field in recent 

years, which is also called the potential predictability study. The terminology of the 

uncertainty of prediction and the potential predictability are often alternatively used in 

literature due to their inherent linkage, although they have some difference in a rigorous 

framework of predictability theory. For example, when a system has a high potential 

predictability, we may think the uncertainty of its predictions to be small, and vice versa. In 

this chapter, unless otherwise indicated, the uncertainty of prediction and potential 

predictability have the similar meaning in describing and measuring the prediction utility, 

and are thus used alternatively. For simplicity, we also often use the term of predictability to 

denote the potential predictability.  

The uncertainty of prediction or predictability study is usually conducted using the strategy 

of ensemble prediction, from which there are a couple of metrics to quantify the potential 

predictability. Among them are variance-based measure and information-based measure, 

both quantifying the predictability or prediction uncertainty from different perspectives. In 

this chapter, we will introduce the two kinds of metrics. Emphasis will be placed on the 

similarity and disparity of these measures, and the realistic applications of the measures in 

studying the uncertainty of climate prediction and climate change projection. It should be 

noted that these potential predictability metrics do not make use of observation, which is 

essentially different from the actual prediction skills measured against observations like 

correlation skill or root mean square of errors (RMSE).  
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2. Two methods of measuring potential predictability 

2.1. Signal-to-Noise Ratio (SNR) and potential predictability  

The SNR has been a widely used measure of potential predictability [1, 2]. At seasonal time 

scale, the signal is usually regarded as the atmospheric responses to the slowly varying 

external forcing such as sea surface temperature (SST), sea ice, snow cover, etc., whereas the 

noise is induced by the relatively high frequency atmospheric variability such as weather 

processes. In an ensemble seasonal climate prediction, the amplitude of signal and noise can 

be approximately quantified by the variance of ensemble mean and the averaged ensemble 

spread over all initial conditions [3-5], namely, 
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where ,i jX is the j-th member of the ensemble prediction starting from the i-th initial 

condition. The X itself can be a scalar such as an index or a two dimensional field. K is the 

ensemble size and M is the total number of initial conditions (predictions); and 
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Considering the sampling errors in estimating signal variance, the more accurate estimation 

of signal variance S is modified as below: 
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Two common measures of potentially predictability are the signal-to-noise ratio (SNR) and 

the signal-to-total variance ratio (STR), i.e., 

 ( ) ( )
,     

( ) ( ) ( )

Var S Var S
SNR STR

Var N Var S Var N
 


   (3) 

It can be derived that the square root of STR is equivalent to the correlation of the signal 

component (S) to the prediction target itself. Thus, the STR  is often defined as potential 

correlation (PCORR).  

It is easy to derive that the STR  is actually a perfect correlation skill, which assumes that 

the observation is an arbitrary ensemble member. The perfect correlation skill ignores the 

imperfectness of model itself. To see this equality, we denote the ensemble mean   as the 

prediction, thus the ‘observation’ can be written by   , where the  is a normally 

distributed white noise with the mean of zero and variance of 2
e . 
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The correlation of prediction against the ‘observation’ can be written as follows: 
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Comparison between (3) and (4) reveals the equality of pefCorr and STR . 

2.2. Information-based potential predictability  

2.2.1. Relative Entropy and predictive information  

Entropy is a measure of dispersion level (e.g. uncertainty). The entropy of a continuous 

distribution p(x) is defined as 

( ) ( )ln ( ) ,H x p x p x dx   

where the integral is understood to be a multiple integral over the domain of x. Larger 

entropy is associated with smaller probability and larger uncertainty.  

The information-based potential predictability measures include relative entropy (RE), 

predictive information (PI) and predictive power (PP). The central idea of these information-

based measures is that the difference between two probability distributions: the forecast 

distribution and climatology distribution, quantifies the extra information brought from the 

prediction.  

Suppose that the future state of a climate variable is predicted/modeled as a random 

variable denoted by   with a climatological distribution ( )p  . One ensemble prediction 

produces a forecast distribution which is the conditional distribution ( | )p i  given the initial 

condition i . The climatological distribution is also the unconditional distribution and we 

have  

 ( ) ( | ) ( )p p i p i di   ,  (5) 

where the ( )p i  is the probability distribution of the initial condition i . Usually various 

statistical tests are used to examine the difference between two distributions [6-7]. Relative 

entropy RE, or Kullback-Leibler distance, is a quantitative measure of the difference 

between two distributions from information theory [8]. In the context of predictability, it is 

defined as 

 ( | )
( | )ln

( )

p i
RE p i d

p


 


  .  (6) 

In terms of information theory, the quantity RE measures the informational inefficiency of using 

the climatological distribution ( )p  rather than the forecast distribution ( | )p i and 0RE   with 
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the equality if and only if ( | ) ( )p i p  [ 8]. In Bayesian terminology, the climatological 

distribution is a prior distribution which can be usually derived from the long term historical 

observations. An ensemble prediction augments this prior information, and the additional 

information measured by RE is a natural measure of the utility or usefulness of this prediction 

and thus implies the potential predictability. In practice, ( | )p i and ( )p  can be estimated 

directly from samples or approximated alternatively using kernel density estimation. 

Another natural measure of predictability is the predictive information (PI), defined as the 

difference between the entropy of the climatological and forecast distributions: 

 ( ) ( | )PI H v H v i      (7) 

Considering (7), then 

 ( )ln[ ( )] ( | )ln[ ( | )]PI p v p v dv p v i p v i dv      (8) 

The first term on the right hand side of Eq. (8) denotes the entropy of the prior distribution 

p(v) (climatological distribution), measuring the uncertainty of a prior time when no extra 

information is provided from the observed initial condition and forecast model; whereas the 

second term represents the entropy of the posterior distribution ( | )p v i  (forecast 

distribution), measuring the uncertainty after the observed initial condition and subsequent 

prediction becomes available (An elaborated illustration can be found in [9]). Thus a large PI 

indicates that the posterior uncertainty will decrease because of useful information being 

provided by a prediction (e.g., the larger ( | )p v i the smaller uncertainty) that is, the 

prediction is to be more reliable in a “perfect model” context.  

The predictive power (PP) was defined by [10]  

 1 exp( )PP PI      (9) 

In the case where the PDFs are Gaussian distributions, which is a good approximation in 

many practical cases (including ENSO prediction, e.g., [11]). The predictive and 

climatological variances, and the difference between their means. The resulting analytical 

expression for the relative entropy RE, PI and PI are given as follows [1]: 
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where, q and P are the climatological and predictive covariance matrices respectively;det is 

the determinant operator and tr is the trace operator; q and p are the climatological and 

predictive mean state vectors of the system, and n is the number of degree of freedom;. RE is 

composed of two components: (i) a reduction in climatological uncertainty by the prediction 

[the first two terms plus the last term on the right-hand side of (10)] and (ii) a difference in 

the predictive and climatological means [the third term on the rhs of (10)]. These 

components can be interpreted respectively as the dispersion and signal components of the 

utility of a prediction[12]. A large value of RE indicates that more information that is 

different from the climatological distribution is being supplied by the prediction, which 

could be interpreted as making it more reliable [1]. A key difference between relative 

entropy (RE) and predictive information (PI) is that RE vanishes if and only if the forecast 

and climatological distributions are identical (i.e., same mean and spread), while PI is zero 

as long as the two distributions have the same spread [9]. Remarkably, predictive 

information and relative entropy are invariant with respect to linear invertible 

transformations of the state [9-10].  

For a scalar variable (e.g., an index), RE, PI, and PP can be simplified as  
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2.2.2. Mutual information 

RE or PI is a predictability measure for individual predictions. The average of REs or PIs 

over all initial conditions reflects the average predictability and was proved to be equal to 

mutual information (MI), another quantity from information theory [9]. In the context of 

predictability, MI is defined as [9]  

 
( , )

( , )ln[ ]
( ) ( )

p v i
MI p v i dvdi

p v p i
    (16) 

where ( , )p i  is the joint probability distribution between  and i . MI measures the 

statistical dependence between   and i , and vanishes when   and i are independent (

( , ) ( ) ( )p i p p i  ).The equality of MI and average RE indicates that predictability can be 



 
Climate Change – Realities, Impacts Over Ice Cap, Sea Level and Risks 402 

measured in two equivalent ways: by the difference between forecast and climatological 

distributions or by the degree of statistical dependence between the initial condition i and the 

future state [ 13]. If the future state  is on average unpredictable, individual forecasts 

should have the probability distribution identical to the climatological distribution, i.e.,

( | ) ( )p i p  and RE =0 for all predictions. This is equivalent to independence between i and 

 . Therefore, independence indicates unpredictability and dependence implies predictability. 

MI is invariant with respect to nonlinear, invertible (nonsingular) transformations of state[9]. 

Thus, the MI between   and i equals to the MI between  and ensemble mean |i . The latter 

is probably more straightforward in understanding MI-based predictability since the 

dependence between   and ensemble mean |i  can be interpreted as the dependence 

between observation ( ) and prediction ( |i ) under the assumption of a perfect model. 

When forecast and climatological distributions are Gaussian, MI can be expressed, using 

(13), by[13] 

  2 2
|

1
ln ln

2 iMI       (17) 

Eq. (17) is the formula often used to calculate MI. Joe [14] and DelSole [15] showed that the 

transformations 1 exp( 2 )MI  and 1 exp( 2 )MI  produce “potential” skill scores which 

exhibit proper limiting behavior: they have values between 0 and 1, and the minimum 

(maximum) value 0 (1) occurs when MI vanishes (approaches infinite). Here “potential” 

indicates that they are perfect model measures. In this study, we will use the two “potential” 

skills to represent MI. Furthermore, if the forecast and climatological distributions are 

Gaussian, and forecast variance is constant, the above two “potential” skills respectively 

reduce to another two conventional “potential” skills: “potential” anomaly correlation (

pAC ) and “potential” mean square skill score ( pMSSS )[9,13]. 

 1 exp( 2 ) ,pAC MI    (18) 

 2 1 exp( 2 )p pMSSS AC MI        (19) 

2.3. Relationship between SNR-based metrics and MI-based metrics  

The averaged RE and PI ( RE and PI ) over all predictions (initial conditions) are identical to 

MI, as mentioned before. For seasonal climate prediction, the total variance (i.e., climate 

variance) can be decomposed into signal (S) variance and noise (N) variance, if the signal 

and noise are assumed to be independent of each other ([16-17]), namely,  

 ( ) ( ) ( )Var T Var S Var N    (20) 

where 
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,i jX is the j-th member of the ensemble prediction starting from the i-th initial condition. The 

K is the ensemble size and M is the total number of initial conditions (predictions); and  

,
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1 1
, .

K M

i i j i
j i

X X X X
K M 

    

Without the loss of generality, the climatological mean is assumed to be zero, thus (20) can 

be expressed by 

 2 2 2
q p p       (21) 

where the overbar denotes the expectation over all predictions (initial conditions).Eq (14) 

and Eq. (21) can easily verify the property of MI, for example,  
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Using (21), the information-based potential predictability measures MI , ( RE or PI ) and PP  

can be rewritten as the function of the mean signal and noise, or their ratio SNR. The q and 

p in (21) are actually v  and |v i  in (17), thus we have [18] 
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  (23) 

The inequality in (23) is due to the fact that arithmetic mean is larger than or equal to 

geometric mean, or more strictly is a result of Jensen's inequality from information theory. 

Therefore, we have  

 1 exp( 2 ) ,pAC MI     (24) 
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 1 exp( 2 ).pMSSS MI     (25) 

The equalities in (24), (25) and (23) hold if and only if 2
|i is constant, as addressed in (18) 

and (19). The conditions that the forecast and climatological distribution are both Gaussian 

and the forecast variance 2
|i  is constant are equivalent to the condition that i and  are 

joint normally distributed [13,18]. If i and  are joint normally distributed, the probability 

distributions ( )p i , ( )p  and ( | )p i are all Gaussian distributions and there are [13,18-19] 

  | 0 ,i
i

i i



 


    (26) 

 2 2 2
| 0(1 ) tan ,i cons t        (27) 

 2
0

1
ln(1 ),

2
MI      (28) 

where(26) is obtained using a linear regression with 0 being the linear correlation between 

the initial state i and the future state . As mentioned earlier, MI measures the statistical 

dependence between i and  . As can be seen from (26), the statistical dependence reduces 

to a linear correlation 0  if the two variables are joint normally distributed. Because 

conditional mean |i is a linear function of initial state i  (see (26)), 0  is also the linear 

correlation between |i and  , which is the potential anomaly correlation skill pAC . Note 

that if i and  are not joint normally distributed, 0  is usually different from pAC .  

One interesting question arises here, namely that, how we understand the MI-SNR 

discrepancy when there is significant variability of prediction variance, as expressed in (24) 

and (25)? As discussed earlier, the MI-based potential predictability measures the statistical 

dependence, liner or nonlinear, between the ensemble mean prediction |i  and the 

hypothetical observation  (an arbitrary ensemble member), whereas the SNR-based 

potential skill only measures their linear correlation. When |i and  are joint normally 

distributed, their statistical dependence reduces to linear correlation. When |i and  are 

not joint normally distributed, MI naturally disagrees with SNR. The joint normally 

distributed variables have constant conditional variance. Note that prediction variance is 

also the conditional variance of  given the ensemble mean |i . Thus, if the prediction 

variance is varied, |i and  are definitely not joint normally distributed, making the SNR-

based potential skill, a linear correlation between |i and  , underestimate the nonlinear 

statistical dependence between |i ( or i  ) and  , which is a strict statistical definition of 

potential predictability. 

It should be noted that the above conclusion should not be challenged by a possible fact that 

SNR-based skill might have a better relationship to actual skill than MI-based skill, simply 
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because the actual skill is often measured by the linear correlation (or related quantity), 

which is inherent to the SNR-based skill. Thus, a more challenging issue is how to design 

new metrics to measure actual forecast skill which could appreciate the MI-based extra 

predictive information beyond SNR. In principle, the MI between ensemble mean prediction 

|i  and actual observation O  could have the potential capability to quantify the MI-based 

potential predictability [15]. However, how to effectively estimate MI in this context is not 

an easy issue.  

In summary, there are connections between information-based potential predictability and 

SNR-based potential predictability, as built by the above equations. In other words, all the 

averaged information-based potential predictability measures are better than SNR-based 

predictability in characterizing ‘true’ potential predictability. When the climatology and 

prediction distribution are both Gaussian and the prediction variances are constant, the 

information-based measure is equivalent to the SNR-based potential measure.  

3. Maximum SNR and PrCA 

The signal and noise are theoretically statistically irrelevant when the ensemble size is 

infinite. However, the ensemble size is always finite in reality, thus the estimation of the 

signal is often contaminated by the noise. An optimal estimate for the largest potential 

predictability should be to maximize the SNR, from which the resultant signal component is 

the most predictable.   

We denote by S and N signal and noise of variable X, where S and N are matrixes of a two-

dimension field describing temporal and spatial variation of the signal and noise of one 

variable of interest, namely, this section is at the framework of the multivariate statistics. 

where, iX X S   ; i, j iX X N  

,i jX is the j-th member of the ensemble prediction starting from the i-th initial condition. The 

K is the ensemble size and M is the total number of initial conditions (predictions); and 

,
1 1

1 1
, .

K M

i i j i
j i

X X X X
K M 

    

Our goal is to look for a vector q, which can maximize the ratio of the variance of signal and 

noise that are projected onto the vector, namely,  

S Nr * ;   r *T Tq q S N  

 S

N

2
r

2
r

SNR            max



    (29) 

where  
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Mathematically such an optimization by (29) leads to a generalized eigenvalue-eigenvector 

problem based on the Rayleigh Quotient theorem[10,20] 

 T T
S Nq q        (30) 

Where, S  is the covariance matrix of signal, N  is the covariance matrix of noise. The 

solution of (30) can be obtained by solving the below eigenvalue equation  

 1T T
S Nq q      (31) 

Thus, the analysis of the largest potential predictability is also called the maximum signal-

to-noise EOF (MSN EOF) analysis, first introduced by Allen and Smith [21] to estimate the 

signal optimally by suppressing the influences of noise, and widely used already in climate 

predictability study [20,22-23]. 

Practically, the number of grid points is always much larger than the number of total 

samples in climate studies, thus usually N  doesn’t have full-rank, leading to a solution of 

ill-conditioned inversions. There are two common methods to solve this issue, as introduced 

below.  

3.1. The SNR is optimized in a truncated EOF space  

Denote by T
ie  (i=1,2…,k) the EOF modes1 , and the signal and noise components projected 

on them are  

௦ܶ = ݁௜் ∗ ܵ 

 	 ேܶ = ݁௜் ∗ ܰ    (32) 

ST and NT are PC components with dimension of k*n where the n is the time samples. Thus, 

the signal and noise variance used in (31) should be calculated by * , *T T
S S S N N NT T T T    , 

respectively. If k truncated modes remain, where k is usually much smaller than the number 

of spatial grids, the signal and noise covariance matrix is a full-rank of k matrix. Thus, eq. 

(31) can be easily solved and the vector q (denoted as qeof ) is called filter pattern, which is a k-

element vector, the filter pattern on the truncated EOF space. The leading predictable 

component is  

                                                                 
1

ie is a matrix of m*k, where m is the number of spatial grids and k is the number of the truncated modes. EOF could 

be employed using signal, or noise matrix or corresponding data matrix.   
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 *T
S eof Sr q T    (33) 

If projecting eofq back to data space, we have  

 
SPr _ * * *S *TT T T T

eof eofC data q S q e q       (34) 

Eq. (33) and (34) are identical each other, i.e., PrC is invariant with respect to a linear 

transformation.  

The q is the filter pattern, rather than the most predictable pattern. The most predictable 

pattern v can be obtained using the regression method, i.e., 

 * V      NN r  (35) 

 

T T
N N N

T
N

N

1
* /(r *r ) N*r

MK
1

N*T *q
MK

1
* * *

*e*q                          

T
N

T

V N r

N N e q
MK

 





     

Also it can be written by 

 * VSS r  (36) 
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3.2. Solving eq (29) using whitening approach  

The approach is to whiten the noise variance (i.e., the denominator), making N an identity 

matrix and whitening the covariance matrix of signal( S ) simultaneously. Thus, eq. (29) 

becomes 

 
' '

  max
' '

T T
S WS

T T
N

q q q q
SNR imum

q q q q

 
  


   (37) 

Based on the matrix theory, the SNR in eq. (37) reaches maximum when q’ is the eigenvector 

of WS , the whitened signal covariance associated with the whitening noise N . The q’ is a 

modified q by a whitening factor. The algorithm is briefly summarized as follows: 
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i. Make the covariance matrix of noise ( N ) identity, namely, 

 1/2 1/2T
ND E ED I       (38) 

D and E  are the eigenvalue and eigenvector matrices of N . 1/2ED is the transformation 

matrix that makes the covariance matrix of noise ( N ) identity. 

ii. Whiten the signal covariance matrix by the transformation matrix 1/2ED , using the k 

leading modes  

 1/2 1/2T
WS SD E ED         (39) 

iii. The SNR of (37) reaches maximum when q’ is the leading eigenvector of the whitened 

signal covariance matrix WS  (in descent order). It is easy to see the relationship 

between q and q’ 

 1/2 1/2' ' ' 'T T T T
WS S Sq q q D E ED q q q        (40) 

Thus,  

 1/2 'q ED q    

iv. After the filter pattern q is known, the most predictable component is easy to derive as 

shown in method 1, namely projecting the signal (ensemble mean) on the filter 

patterns  

 

Pr _

Pr _

Pr _

T

T

T

Cs s q S

Cs n q N

Cs t q T







    (41) 

The most predictable component is the one corresponding to the largest signal-to-noise 

ratio. All PrCs are temporally orthogonal (uncorrelated) with each other. It is noted that (41) 

is a little different from (33) or (34) where the PCs of truncated EOF spaces are used. It is due 

to a different truncation procedure in the two methods. In this first method, the truncation is 

applied before optimization whereas in the second method, the truncation is implicitly 

integrated into the whitening process. However both should be equivalent, which can be 

seen by another expression of (41) 

1/2 1/2Pr _ ' 'T T T T
SCs s q S q D E S q D T     

v. Obtain the corresponding predictable patterns V by,  

 T T
N N

1 1
* Pr _ /PrCs_n*PrCs_n N*PrCs_n N*N *q q  

MK MK
TV N Cs n         
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A reconstructed forecast based on PrCS leading modes can be obtained by  

 

ˆ * Pr _

ˆ * Pr _

ˆ * Pr _

N V Cs n

S V Cs s

X V Cs T







  (42) 

X̂ only remains the leading PrCS modes and removes noise components, thus it can be 

expected to have a better skill than simple ensemble mean.  

The variance explained by a PrCA mode can be obtained using (42). If all modes are 

remained in (42), the reconstructed filed should explain 100% of original field. We rewrite 

(42), applied into signal and noise, thus, 
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Where the ̂ is the estimated variance using PrCA modes. Thus, the variance explained by a 

specific mode measured in the original space, and the truncated space, is respectively as 

below:  

j j

j j

* *
relative to signal :  ;    

ˆ( ) ( )

* *
relative to noise:    ;     

ˆ( ) ( )

* * * *
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 

 

 

 

 
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4. Maximizing PI and PrCA 

Another interpretation to MSN EOF is its connection with information-based measure PI or 

PP defined in (11) - (15). For example, as argued in [10], the predictive power PP is a 

positively orientated predictive index, defined by the difference between posterior 

(prediction) entropy and prior (climatology) entropy, thus measuring the decrease of 

uncertainties due to prediction.  

The PrCA analysis is an approach to maximize PI, or maximum PP, equivalent to 

minimizing 2 2/p q  if the prediction variance is little changed, to derive the most predictable 

component. The 2
q  is climatology variance, often referred as to the total variance Var (T), 

which is composed of the signal variance and noise variance. Under the ‘perfect model’ 

assumption, the noise variance equals to the forecast error variance [24], namely,  
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 2 2( ) ( ) ( )q pVar S Var N Var S        (43) 

Thus, the minimization of 2 2/p q  is equal to the maximization of 2 21 /p q  , i.e., STR , 

which is equivalent to the maximization of SNR, i.e., MSN EOF. In some literature, the term 

of MSN EOF and PrCA are alternatively used due to their complete equivalence. Actually, 

both the MSN EOF and PrCA methods belong to the discriminant analyses because the two 

methods, though from different perspectives, can be understood to seek a best linear 

combination of variables that separates the signal and the noise as much as possible [13]. 

The both methods identify the “filter pattern”, or weight matrix, providing an optimized 

filter to discriminate the signal and noise, where the time series reflects the temporal 

evolution of the dominant mode of the signal, and the spatial pattern characterizes the 

spatial distribution of the dominant mode of signal, which are respectively referred to as 

spatial pattern, or the most predictable pattern.  

It should be noted that the equivalence of SNR-based and information-based PrCA approach 

is based on the condition that the climatology and forecast distribution are both Gaussian.It is 

apparent since the PI and PP cannot be only expressed by the form of prediction and 

climatology variance as (11) – (15) under non-Gaussian assumption. It is difficult to derive the 

optimization solution for PI or PP from their general definitions of  (8) and (9).  

A remark to the algorithm of Schneider and Griffies [10] is a technical issue. In Schneider 

and Griffies [10], the PrCA is proposed to derive by minimizing PP, i.e., minimizing 2 2/p q  , 

leading to the below eigenvalue equation:  

 1T T
N Tf f      (44)  

where T is the total variance. The optimal filter resulting in the most predictable is the 

eigenvector f with the smallest eigenvalue  . Comparing (44) with (31) reveals that 

eigenvalue  and q are reciprocal, indicating the equivalence of PrCA using maximization of 

(31) and minimization of (44). Usually, the eigenvector with the smallest eigenvalue often 

lacks of a stable, large scale-like pattern, making the approach of (44) impractical in real 

application. The truncated EOF space, which is used in solving (31) and (44), can greatly 

reduce this concern but still the most predictable pattern contains some noise. Thus, the 

MSN EOF approach, introduced above, is a better option. 

5. A practical application – Potential predictability of climate change 

projection in AR5 

In this section, we will explore the uncertainty of climate change projection using the above 

theoretical framework. The estimation of uncertainty is based on the Coupled Model 

Intercomparison Project Phase 5 (CMIP5), a new set of climate model experiments involved 

in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). 

The CMIP5 is promoted to address some crucial issues on climate modeling and future 
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climate state. More than 20 climate models were employed in this project with main focus 

on: 1) evaluate model predictability of future climate on different time scales (near term (out 

to about 2035) and long term (out to 2100 and beyond)), 2) understanding key mechanisms 

responsible for differences in model projections, and 3) quantify some important feedbacks 

of climate system like clouds and carbon cycle. 

One of experiments used in CMIP5 is the Representative Concentration Pathways (RCPs) 

scenario. All model experiments involved in this scenario are forced by four kinds of mixing 

greenhouse gases (GHGs) boundary conditions which will finally lead increasing of 

radiation by 2.6, 4.5, 6.0 and 8.0 watt per square at the end of 21 century.  

In this chapter, we will use the sea surface temperature (SST) projection of scenario R60 (the 

increasing of 6.0 watt per square experiment) to evaluate the potential predictability of 

climate projection of the scenario R60. At present, only nine models collected in R60 are 

available to download (From ESG-PCMDI Gataway), as summarized in table 1.  

 

Model Country Ocean Model Resolutions  Projection  

CCSM4-version16 USA (NCAR) 60 levels; 1.0 lon. x 0.5 lat. 2051-2100 

CSIRO-MK3.6.0 Australia (BMRC) 30 levels; 1.875 lon x 0.9375lat. 2051-2100 

GISS-E2-R USA (NASA) 32 levels;1 lon x 1.25 lat. 2051-2100 

GFDL-ESM2M USA (GFDL) 50 levels; 1- 1/3 lon. x 1 lat. 2051-2100 

HadGEM2-ES UK (Hadley Center) 40 levels;1-1/3 lon. x 1 lat. 2051-2100 

CM5A-LR France (IPSL) ORACA2 resolution in OPA 2051-2100 

MIROC5-Coco 4.5 Japan  Varied resolution  2051-2100 

MRI-CGCM3 Japan Varied resolution 2051-2100 

NorESM1-M Norway  Varied resolution  2051-2100 

Table 1. Models used for evaluation  

The SST outputs from these models are all monthly averaged data. For the purpose of the 

study of the climate change, we use annual mean in the following discussions. Because the 

lack of uniformity of ensemble member, only one member is used for each model here. In 

this study, we confine the domain to the Pacific across 60S to 60N. 

Shown in Fig. 1 and Fig 2a are the spatial pattern and time series of the first EOF 

(Empirical Orthogonal Function) for the Pacific Ocean from 2051-2100. As can be seen in 

Fig.2a, the Pacific SST has a striking increase, with the strongest response to the forcing of 

GHGs in the tropical Pacific along the equator as shown in Fig.1. In the extra-tropical 

beyond the 30S and 30N, the increase in SST is relatively weaker. On average, the mean 

temperature of the Pacific ocean of 60S to 60N increases around 0.5 to 1C from 2051-2010 

in these models, as shown in Fig. 2b, the evolution of the mean temperature over the 

Pacific ocean. The mean of multiple models has the increase rate of around 0.75C as 

shown by the red line in Fig. 2b.  
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 The first EOF mode of the project from each model.  
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 (a) The temporal variation of the time series of first EOF (99% variance) and (b) the averaged 

temperature over the north America. The blue line is for each model and red line is the mean of all 

models. The PCA1 of each model in Fig. 2a is normalized prior to plotting.  

Fig. 2 shows a visible divergence of projections among models, suggesting uncertainties 

existed in the responses of these models to the GHGs forcing. It should be noted that little 

divergence in Fig 2a is due to the normalization, a post-processing just for a good-looking of 

this figure.  

It is of great interest to explore the uncertainty of the above projections. As introduced 

aforementioned, one can use the above information-based framework to measure the 

uncertainty of climate prediction, given the multiple ensembles available. Apparently, there 

are several challenges here: 1) there is only one-member projection for each model, lacking 

sufficient ensembles; 2) the projection is not dependent on initial condition, thus any 

measures based on multiple initial conditions are invalid here; 3) the climatological 

distribution used in estimating the uncertainty may be uncertain under the background of 

global warming. For the first issue, we propose to solve it using multiple model strategy, i.e. 

pool all model projections to construct a 9-member ensemble. Under the framework of 

potential predictability, the model is assumed to be perfect. Thus the disparities among 
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these model projections can be viewed as the ensembles of a perfect model, perturbed by 

initial conditions or other parameters. For the second issue, we assume that the projection is 

a long-term prediction at a given initial condition. The distribution for the average of 

multiple model projections is used as climatological distribution here.  

Displayed in Fig. 3 are the variations of projection utility RE during the projection time from 

2051 to 2010.The climatological mean and variance are estimated from all ‘ensemble’ 

members and years (sample size is 50*9) as in [25]. The projection mean and variance are 

estimated each year from the 9-member ensemble. As can be seen, it is apparent that the 

utility R continues to decrease until around 2070 and then bounce after 2080. For the 

projection during 2070 - 2080, RE is small. When projection (prediction) and climatology 

distributions are identical, the relative entropy R is zero from (14). In theory, a nonzero 

value of R indicates predictability. However, in practice, a finite sample size introduces 

sampling errors that lead to a nonzero R even though there is no extra information supplied 

by the prediction. Therefore the statistical significance level should exceed the extent of 

uncertainty due to the finite sample size. We quantify the extent of uncertainty using a 

Monte Carlo method as in [26]. A sample with 9 members is randomly drawn from the 

climatology distribution and its relative entropy R is computed with respect to the 

climatology distribution. This process is repeated 10 000 times, and the value above 95% of 

10 000 RE is considered to be the significant level as shown in Fig. 3 (dashed line). As can be 

seen, the projections between around 2070 and 2080 have statistically ‘zero’ relative entropy, 

and the other projections beyond this period have significant relative entropy.  

A striking feature of RE in Fig. 3 is its U-shape variation with the projection time (i.e., the 

time step of integration), which is quite different from actual ensemble forecast at time 

scales from days to seasons. Typically, the RE monotonously decreases with the lead time of 

prediction at the time scales from days to seasons (e.g., [1-2, 11]), i.e., the predictability 

decreases with lead time. The monotonous variation of RE with lead time of predictions well 

characterizes the nature and attributes of realistic atmospheric and oceanic system, which is 

chaotic and stochastic, leading to the information at initial conditions gradually dissipated 

with lead time. Apparently it is not this case here, since the projection is not an initial value 

problem, and mainly is a response to external forcing (e.g., CO2).  

One possible explanation for this U-shape is related to the climatological distribution used 

here. We used the average of multiple model projections that have an apparent trend as the 

climatology distribution. If the RE is dominated by the ensemble mean (ensemble mean 

square) and the contribution of ensemble spread is relatively much smaller, the RE can show 

such a U-shape structure. Another plausible explanation is based on a hypothesis, namely, 

the climatology from multiple models is close to the true value. Under this assumption, the 

projection with small RE in figure 3 has high fidelity and vice versa. Here, we use the RE to 

measure the difference between the distribution of projection and the designed  distribution, 

which has been also used in previous studies [17]. However such a hypothesis may cause 

concerns. One may argue to use present climatological distribution as a reference 



 
Climate Change – Realities, Impacts Over Ice Cap, Sea Level and Risks 416 

distribution in the above discussions. However, it can be expected that the climatology of 

the scenario of R60 should be quite different from the present one. Thus, a further study on 

the reference distribution is highly demanded in estimating uncertainty of climate change 

projection.  

 

 

 

 

 

 

 
 
 

Figure 3. RE as a function of projection time   

6. Conclusion 

In this chapter, the SNR-based and information-based measures of potential predictability 

were introduced. They include the signal to noise ratio (SNR) and two measures of 

information-based predictability. One is relative entropy (RE) that measures individual 

potential predictability whereas the other is mutual information (MI), the average of RE 

over all initial conditions, which measures the average potential predictability. From 

statistical derivation and theoretical analysis, we have below conclusions:  

i. The SNR usually measures the average predictability with the assumption that signal 

inherent to slowly varying external forcing is predictable and the noise is 

unpredictable;  
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ii. A new measure of prediction utility that is derived from information theory is 

introduced. It measures the additional information provided by a prediction (p) over 

that already available from the climatological or reference distribution (q). One natural 

measure is their relative entropy RE defined as the relative difference of entropy 

between p and q. For the case of Gaussian distributed p and q, the RE can be expressed 

in terms of the prediction and reference means and covariance.  

iii. Averaged RE over all initial conditions, called the mutual information (MI), a measure 

of the statistical dependence of the forecast state and the initial (boundary) conditions, 

measure the averaged predictability. The MI-based metrics can measure more potential 

prediction utility than the SNR-based counterpart. The MI-based predictability 

measures the statistical dependence, linear or nonlinear, between ensemble mean 

(prediction) and an ensemble member (hypothetical observation), whereas the SNR-

based predictability only measures a linear relationship between prediction and 

hypothetical observation.  

iv. When the prediction and climatological distribution are Gaussian and the ensemble 

spread is constant with predictions, both measures are identical to each other. When the 

ensemble spread is not constant, the SNR-based predictability often underestimates the 

potential predictability. 

v. The predictable component analysis (PrCA), a method that assesses the most predictable 

patterns, is introduced. The PrCA decomposes the predictability into patterns accounting 

for different fractions of the total predictability. Distinguishing spatial structures that are 

unpredictable from those that are predictable is important for practical prediction 

problems, particularly when the predictable patterns are few in number. 

As an example, the uncertainty of the climate change projection from scenario R60 of AR5 

was evaluated, with the Pacific SST as the target. Nine models from different countries were 

participated in this evaluation. It was found that the most striking warming occurs at the 

tropical Pacific along the equator. In the extra-tropics beyond 30S to 30N, the increase in 

SST is relatively weaker. On average, the mean temperature of the Pacific ocean of 60S to 

60N increases around 0.5 to 1C from 2051-2010 in these models. The relative entropy RE, 

measuring the utility of climate projection, continues to decrease until around 2070 and 

then bounce after 2080. For the projection during 2070 - 2080, RE is small. Under the 

assumption that the climatology from multiple models is close to the true value, the 

projection during the period with small RE suggests high fidelity and vice versa.  
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