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1. Introduction

Artificial Neural Networks (ANNSs) are based on an abstract and simplified view of the
neuron. Artificial neurons are connected and arranged in layers to form large networks,
where learning and connections determine the network function. Connections can be formed
through learning and do not need to be "programmed.” Recent ANN models lack many
physiological properties of the neuron, because they are more oriented to computational
performance than to biological credibility [41].

According to the fifth edition of Gordon Shepherd book, The Synaptic Organization of the Brain,
“information processing depends not only on anatomical substrates of synaptic circuits, but
also on the electrophysiological properties of neurons” [51]. In the literature of dynamical
systems, it is widely believed that knowing the electrical currents of nerve cells is sufficient
to determine what the cell is doing and why. Indeed, this somewhat contradicts the
observation that cells that have similar currents may exhibit different behaviors. But in
the neuroscience community, this fact was ignored until recently when the difference in
behavior was showed to be due to different mechanisms of excitability bifurcation [35].
A bifurcation of a dynamical system is a qualitative change in its dynamics produced by
varying parameters [19].

The type of bifurcation determines the most fundamental computational properties of
neurons, such as the class of excitability, the existence or nonexistence of the activation
threshold, all-or-none action potentials (spikes), sub-threshold oscillations, bi-stability of rest
and spiking states, whether the neuron is an integrator or resonator etc. [25].

A biologically inspired connectionist approach should present a neurophysiologically
motivated training algorithm, a bi-directional connectionist architecture, and several other
features, e. g., distributed representations.
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1.1. McCulloch-Pitts neuron

McCulloch-Pitts neuron (1943) was the first mathematical model [32]. Its properties:

* neuron activity is an "all-or-none" process;

* a certain fixed number of synapses are excited within a latent addition period in order to
excite a neuron: independent of previous activity and of neuron position;

* synaptic delay is the only significant delay in nervous system;
* activity of any inhibitory synapse prevents neuron from firing;

* network structure does not change along time.

The McCulloch-Pitts neuron represents a simplified mathematical model for the neuron,
where x; is the i-th binary input and w; is the synaptic (connection) weight associated with
the input x;. The computation occurs in soma (cell body). For a neuron with p inputs:

P
a=) xw; 1)
i=1

with xg =1 and wy = B = —6. B is the bias and 6 is the activation threshold. See figures 1
and 2. The are p binary inputs in the schema of figure 2. X; is the i-th input, W; is the
connection (synaptic) weight associated with input i. The synaptic weights are real numbers,
because the synapses can inhibit (negative signal) or excite (positive signal) and have different
intensities. The weighted inputs (X; x W;) are summed in the cell body, providing a signal a.
After that, the signal a is input to an activation function (f), giving the neuron output.
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Figure 1. The typical neuron. Figure 2. The neuron model.

The activation function can be: (1) hard limiter, (2) threshold logic, and (3) sigmoid, which is
considered the biologically more plausible activation function.
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1.2. The perceptron

Rosenblatt’s perceptron [47] takes a weighted sum of neuron inputs, and sends output 1
(spike) if this sum is greater than the activation threshold. It is a linear discriminator: given
2 points, a straight line is able to discriminate them. For some configurations of m points, a
straight line is able to separate them in two classes (figures 3 and 4).
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Figure 3. Set of linearly separable points. Figure 4. Set of non-linearly separable points.

The limitations of the perceptron is that it is an one-layer feed-forward network
(non-recurrent); it is only capable of learning solution of linearly separable problems; and its
learning algorithm (delta rule) does not work with networks of more than one layer.

1.3. Neural network topology

In cerebral cortex, neurons are disposed in columns, and most synapses occur between
different columns. See the famous drawing by Ramén y Cajal (figure 5). In the extremely
simplified mathematical model, neurons are disposed in layers (representing columns), and
there is communication between neurons in different layers (see figure 6).

Figure 5. Drawing by Santiago Ramdn y Cajal of neurons in the pigeon cerebellum. (A) denotes Purkinje cells, an example of a
multipolar neuron, while (B) denotes granule cells, which are also multipolar [57].
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units

input
units

Figure 6. A 3-layer neural network. Notice that there are A 4 1 input units, B 4 1 hidden units, and C output units. w; and
w, are the synaptic weight matrices between input and hidden layers and between hidden and output layers, respectively. The
“extra” neurons in input and hidden layers, labeled 1, represent the presence of bias: the ability of the network to fire even in
the absence of input signal.

1.4. Classical ANN models

Classical artificial neural networks models are based upon a simple description of the
neuron, taking into account the presence of presynaptic cells and their synaptic potentials,
the activation threshold, and the propagation of an action potential. So, they represent
impoverished explanation of human brain characteristics.

As advantages, we may say that ANNs are naturally parallel solution, robust, fault tolerant,
they allow integration of information from different sources or kinds, are adaptive systems,
that is, capable of learning, they show a certain autonomy degree in learning, and display a
very fast recognizing performance.

And there are many limitations of ANNs. Among them, it is still very hard to explain its
behavior, because of lacking of transparency, their solutions do not scale well, and they are
computationally expensive for big problems, and yet very far from biological reality.

ANN’s do not focus on real neuron details. The conductivity delays are neglected. The output
signal is either discrete (e.g., 0 or 1) or a real number (e.g., between 0 and 1). The network
input is calculated as the weighted sum of input signals, and it is transformed in an output
signal via a simple function (e.g., a threshold function). See the main differences between the
biological neural system and the conventional computer on table 1.

Andy Clark proposes three types of connectionism [2]: (1) the first-generation consisting
of perceptron and cybernetics of the 1950s. They are simple neural structures of limited
applications [30]; (2) the second generation deals with complex dynamics with recurrent
networks in order to deal with spatio-temporal events; (3) the third generation takes into
account more complex dynamic and time properties. For the first time, these systems use
biological inspired modular architectures and algorithms. We may add a fourth type: a
network which considers populations of neurons instead of individual ones and the existence
of chaotic oscillations, perceived by electroencephalogram (EEG) analysis. The K-models are
examples of this category [30].



Biologically Plausible Artificial Neural Networks
http://dx.doi.org/10.5772/54177

Von Neumann computer Biological neural system
Processor Complex High speed

One or few Simple

Low speed A large number
Memory Separated from processor Localized

Non-content addressable Integrated with processor

Distributed Content addressable
Computing Centralized Sequential

Stored programs Distributed

Parallel Self-learning
Reliability Very vulnerable Robust
Expertise Numeric and symbolic manipulations = Perceptual problems
Operational environment ~ Well-defined, well-constrained Poorly defined, unconstrained

Table 1. Von Neumann's computer versus biological neural system [26].

1.5. Learning

The Canadian psychologist Donald Hebb established the bases for current connectionist
learning algorithms: “When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A’s efficiency, as one of the cells firing B, is increased” [21]. Also,
the word “connectionism” appeared for the first time: “The theory is evidently a form of
connectionism, one of the switchboard variety, though it does not deal in direct connections
between afferent and efferent pathways: not an 'S-R” psychology, if R means a muscular
response. The connections server rather to establish autonomous central activities, which
then are the basis of further learning” [21].

According to Hebb, knowledge is revealed by associations, that is, the plasticity in Central
Nervous System (CNS) allows synapses to be created and destroyed. Synaptic weights
change values, therefore allow learning, which can be through internal self-organizing:
encoding of new knowledge and reinforcement of existent knowledge. How to supply a
neural substrate to association learning among world facts? Hebb proposed a hypothesis:
connections between two nodes highly activated at the same time are reinforced. This kind of
rule is a formalization of the associationist psychology, in which associations are accumulated
among things that happen together. This hypothesis permits to model the CNS plasticity,
adapting it to environmental changes, through excitatory and inhibitory strength of existing
synapses, and its topology. This way, it allows that a connectionist network learns correlation
among facts.

Connectionist networks learn through synaptic weight change, in most cases: it reveals
statistical correlations from the environment. Learning may happen also through network
topology change (in a few models). This is a case of probabilistic reasoning without a
statistical model of the problem. Basically, two learning methods are possible with Hebbian
learning: unsupervised learning and supervised learning. In unsupervised learning there is
no teacher, so the network tries to find out regularities in the input patterns. In supervised
learning, the input is associated with the output. If they are equal, learning is called
auto-associative; if they are different, hetero-associative.

29
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1.6. Back-propagation

Back-propagation (BP) is a supervised algorithm for multilayer networks. It applies the
generalized delta rule, requiring two passes of computation: (1) activation propagation
(forward pass), and (2) error back propagation (backward pass). Back-propagation works
in the following way: it propagates the activation from input to hidden layer, and from
hidden to output layer; calculates the error for output units, then back propagates the error
to hidden units and then to input units.

BP has a universal approximation power, that is, given a continuous function, there is a
two-layer network (one hidden layer) that can be trained by Back-propagation in order to
approximate as much as desired this function. Besides, it is the most used algorithm.

Although Back-propagation is a very known and most used connectionist training algorithm,
it is computationally expensive (slow), it does not solve satisfactorily big size problems, and
sometimes, the solution found is a local minimum - a locally minimum value for the error
function.

BP is based on the error back propagation: while stimulus propagates forwardly, the error
(difference between the actual and the desired outputs) propagates backwardly. In the
cerebral cortex, the stimulus generated when a neuron fires crosses the axon towards its end
in order to make a synapse onto another neuron input. Suppose that BP occurs in the brain;
in this case, the error must have to propagate back from the dendrite of the postsynaptic
neuron to the axon and then to the dendrite of the presynaptic neuron. It sounds unrealistic
and improbable. Synaptic “weights” have to be modified in order to make learning possible,
but certainly not in the way BP does. Weight change must use only local information in the
synapse where it occurs. That’s why BP seems to be so biologically implausible.

2. Dynamical systems

Neurons may be treated as dynamical systems, as the main result of Hodgkin-Huxley
model [23]. A dynamical system consists of a set of variables that describe its state and
a law that describes the evolution of state variables with time [25]. The Hodgkin-Huxley
model is a dynamical system of four dimensions, because their status is determined solely
by the membrane potential V and the variable opening (activation) and closing (deactivation)
of ion channels n, m and h for persistent KT and transient Na™ currents [1, 27, 28]. The law
of evolution is given by a four-dimensional system of ordinary differential equations (ODE).
Principles of neurodynamics describe the basis for the development of biologically plausible
models of cognition [30].

All variables that describe the neuronal dynamics can be classified into four classes according
to their function and time scale [25]:

1. Membrane potential.

2. Excitation variables, such as activation of a Na™ current. They are responsible for lifting
the action potential.

3. Recovery variables, such as the inactivation of a current Na® and activation of a rapid
current K*. They are responsible for re-polarization (lowering) of the action potential.
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4. Adaptation variables, such as the activation of low voltage or current dependent on Ca?*.
They build prolonged action potentials and can affect the excitability over time.

2.1. The neurons are different

The currents define the type of neuronal dynamical system [20]. There are millions of
different electrophysiological spike generation mechanisms. Axons are filaments (there are
72 km of fiber in the brain) that can reach from 100 microns (typical granule cell), up to
4.5 meters (giraffe primary afferent). And communication via spikes may be stereotypical
(common pyramidal cells), or no communication at all (horizontal cells of the retina). The
speed of the action potential (spike) ranges from 2 to 400 km/h. The input connections ranges
from 500 (retinal ganglion cells) to 200,000 (purkinje cells). In about 100 billion neurons in
the human brain, there are hundreds of thousands of different types of neurons and at least
one hundred neurotransmitters. Each neuron makes on average 1,000 synapses on other
neurons [8].

2.2. Phase portraits

The power of dynamical systems approach to neuroscience is that we can say many things
about a system without knowing all the details that govern its evolution.

Consider a quiescent neuron whose membrane potential is at rest. Since there are no
changes in their state variables, it is an equilibrium point. All incoming currents to
depolarize the neuron are balanced or equilibrated by hyper-polarization output currents:
stable equilibrium (figure 7(a) - top). Depending on the starting point, the system may have
many trajectories, as those shown at the bottom of the figure 7. One can imagine the time
along each trajectory. All of them are attracted to the equilibrium state denoted by the black
dot, called attractor [25]. It is possible to predict the itinerant behavior of neurons through
observation [10].

Regarding Freeman’s neurodynamics (see section 2.5) the most useful state variables are
derived from electrical potentials generated by a neuron. Their recordings allow the
definition of one state variable for axons and another one for dendrites, which are very
different. The axon expresses its state in frequency of action potentials (pulse rate), and
dendrite expresses in intensity of its synaptic current (wave amplitude) [10].

The description of the dynamics can be obtained from a study of system phase portraits,
which shows certain special trajectories (equilibria, separatrices, limit cycles) that determine
the behavior of all other topological trajectory through the phase space.

The excitability is illustrated in figure 7(b). When the neuron is at rest (phase portrait = stable
equilibrium), small perturbations, such as A, result in small excursions from equilibrium,
denoted by PSP (post-synaptic potential). Major disturbances, such as B, are amplified by
the intrinsic dynamics of neuron and result in the response of the action potential.

If a current strong enough is injected into the neuron, it will be brought to a pacemaker mode,
which displays periodic spiking activity (figure 7(c)): this state is called the cycle stable limit,
or stable periodic orbit. The details of the electrophysiological neuron only determine the
position, shape and period of limit cycle.
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Figure 7. The neuron states: rest (a), excitable (b), and activity of periodic spiking (c). At the bottom, we see the trajectories
of the system, depending on the starting point. Figure taken from [25], available at http://www.izhikevich.org/publications/dsn.
pdf.

2.3. Bifurcations

Apparently, there is an injected current that corresponds to the transition from rest to
continuous spiking, i.e. from the portrait phase of figure 7(b) to 7(c). From the point of view
of dynamical systems, the transition corresponds to a bifurcation of the dynamical neuron, or
a qualitative representation of the phase of the system.

In general, neurons are excitable because they are close to bifurcations from rest to spiking
activity. The type of bifurcation depends on the electrophysiology of the neuron and
determines its excitable properties. Interestingly, although there are millions of different
electrophysiological mechanisms of excitability and spiking, there are only four different
types of bifurcation of equilibrium that a system can provide. One can understand the
properties of excitable neurons, whose currents were not measured and whose models are
not known, since one can identify experimentally in which of the four bifurcations undergoes
the rest state of the neuron [25].

The four bifurcations are shown in figure 8: saddle-node bifurcation, saddle-node on
invariant circle, sub-critical Andronov-Hopf and supercritical Andronov-Hopf. In saddle-node
bifurcation, when the magnitude of the injected current or other parameter of the bifurcation
changes, a stable equilibrium correspondent to the rest state (black circle) is approximated by
an unstable equilibrium (white circle). In saddle-node bifurcation on invariant circle, there is an
invariant circle at the time of bifurcation, which becomes a limit cycle attractor. In sub-critical
Andronov-Hopf bifurcation, a small unstable limit cycle shrinks to a equilibrium state and
loses stability. Thus the trajectory deviates from equilibrium and approaches a limit cycle of
high amplitude spiking or some other attractor. In the supercritical Andronov-Hopf bifurcation,
the equilibrium state loses stability and gives rise to a small amplitude limit cycle attractor.
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When the magnitude of the injected current increases, the limit cycle amplitude increases
and becomes a complete spiking limit cycle [25].

saddle-node bifurcation saddle-node on invariant circle bifurcation

recovery

potential

supercritical Andronov-Hopf bifurcation

Figure 8. Geometry of phase portraits of excitable systems near the four bifurcations can exemplify many neurocomputational
properties. Figure taken from [25], available at http://www.izhikevich.org/publications/dsn.pdf.

Systems with Andronov-Hopf bifurcations, either sub-critical or supercritical, exhibit low
amplitude membrane potential oscillations, while systems with saddle bifurcations, both
without and with invariant circle, do not. The existence of small amplitude oscillations
creates the possibility of resonance to the frequency of the incoming pulses [25].

2.4. Integrators and resonators

Resonators are neurons with reduced amplitude sub-threshold oscillations, and those which
do not have this property are integrators. Neurons that exhibit co-existence of rest and spiking
states, are called bistable and those which do not exhibit this feature are monostable. See
table 2.

2.4.1. Neurocomputational properties

Inhibition prevents spiking in integrators, but promotes it in resonators. The excitatory
inputs push the state of the system towards the shaded region of figure 8, while the inhibitory
inputs push it out. In resonators, both excitation and inhibition push the state toward the
shaded region [25].
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sub-threshold oscillations co-existence of rest and spiking states
yes no
(bistable) (monostable)
no (integrator) saddle-node saddle-node
on invariant circle
yes (resonator) sub-critical supercritical
Andronov-Hopf Andronov-Hopf

Table 2. Neuron classification in integrators-resonators/monostable-bistable, according to the rest state bifurcation. Adapted
from [25].

2.5. Freeman neurodynamics

Nowadays, two very different concepts co-exist in neuroscience, regarding the way how the
brain operates as a whole [55]: (1) classical model, where the brain is described as consisting
of a series of causal chains composed of nerve nets that operate in parallel (the conventional
artificial neural networks [20]); (2) neurodynamical model, where the brain operates by
non-linear dynamical chaos, which looks like noise but presents a kind of hidden order [10].

According to Freeman [10], in order to understand brain functioning, a foundation must be
laid including brain imaging and non-linear brain dynamics, fields that digital computers
make possible. Brain imaging is performed during normal behavior activity, and non-linear
dynamics models these data.

In a dynamicist view, actions and choices made are responsible for creation of meanings in
brains, and they are different from representations. Representations exist only in the world
and have no meanings. The relation of neurons to meaning is not still well understood. In
Freeman’s opinion, although representations can be transferred between machines, meaning
cannot be transferred between brains [10]. Brain activity is directed toward external objects,
leading to creation of meaning through learning. Neuron populations are the key to
understand the biology of intentionality.

Freeman argues that there are two basic units in brain organization: the neuron and
the neuron population. Although neuron has been the base for neurobiology, masses of
interacting neurons forming neuron populations are considered for a macroscopic view of
the brain. Like neurons, neuron populations also have states and activity patterns, but they
do (different) macroscopic things. Between the microscopic neuron and these macroscopic
things, there are mesoscopic populations [10].

Neurobiologists usually claim that brains process information in a cause-and-effect manner:
stimuli carry information that is conveyed in transformed information. What if stimuli are
selected before appearance? This view fails in this case. This traditional view allowed the
development of information processing machines. This simplified, or even mistaken, view
of neuronal workings, led to the development of digital computers. Artificial Intelligence
artifacts pose a challenge: how to attach meaning to the symbolic representations in
machines?

Pragmatists conceive minds as dynamical systems, resulted from actions into the world. How
are these actions generated? According to a cognitivist view, an action is determined by the
form of a stimulus. Intentional action is composed by space-time processes, called short-term
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memory or cognitive maps, for materialists and cognitivists. In the pragmatism view there
is no temporary storage of images and no representational map.

The neurons in the brain form dense networks. The balance of excitation and inhibition allow
them to have intrinsic oscillatory activity and overall amplitude modulation (AM) [10, 55].

These AM patterns are expressions of non-linear chaos, not merely a summation of linear
dendritic and action potentials. AM patterns create attractor basins and landscapes. In the
neurodynamical model every neuron participates, to some extent, in every experience and
every behavior, via non-linear chaotic mechanisms [10].

The concepts of non-linear chaotic neurodynamics are of fundamental importance to nervous
system research. They are relevant to our understanding of the workings of the normal
brain [55].

2.5.1. Neuron populations

Typical neuron have many dendrites (input) and one axon (output). The axon transmits
information using microscopic pulse trains. Dendrites integrate information using continuous
waves of ionic current. Neurons are connected by synapses. Each synapse drives electric
current. The microscopic current from each neuron sums with currents from other neurons,
which causes a macroscopic potential difference, measured with a pair of extracellular
electrodes (E) as the electroencephalogram (EEG) [10, 18]. EEG records the activity patterns
of mesoscopic neuron populations. The sum of currents that a neuron generates in response
to electrical stimulus produces the post-synaptic potential. The strength of the post-synaptic
potential decreases with distance between the synapse and the cell body. The attenuation is
compensated by greater surface area and more synapses on the distal dendrites. Dendrites
make waves and axons make pulses. Synapses convert pulses to waves. Trigger zones convert
waves to pulses. See figure 9. Researchers who base their studies on single neurons think that
population events such as EEG are irrelevant noise, because they do not have understanding
of a mesoscopic state [10].
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Figure 9. Typical neuron showing the dendrites (input), the soma (cell body), the axon (output), the trigger zone, and the
direction of the action potential. Notice that letters “E” represent the pair of extracellular electrodes. Adapted from [45]
and [10].

In single neurons, microscopic pulse frequencies and wave amplitudes are measured,
while in populations, macroscopic pulse and wave densities are measured. The neuron
is microscopic and ensemble is mesoscopic. The flow of the current inside the neuron is
revealed by a change in the membrane potential, measured with an electrode inside the
cell body, evaluating the dendritic wave state variable of the single neuron. Recall that
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extracellular electrodes are placed outside the neuron (see the Es in figure 9), so cortical
potential provided by sum of dendritic currents in the neighborhood is measured. The same
currents produce the membrane (intracellular) and cortical (extracellular) potentials, given
two views of neural activity: the former, microscopic and the latter, mesoscopic [10].

Cortical neurons, because of their synaptic interactions, form neuron populations.
Microscopic pulse and wave state variables are used to describe the activity of the single
neurons that contribute to the population, and mesoscopic state variables (also pulse and
wave) are used to describe the collective activities neurons give rise. Mass activity in the
brain is described by a pulse density, instead of pulse frequency. This is done by recording
from outside the cell the firing of pulses of many neurons simultaneously. The same current
that controls the firings of neurons is measured by EEG, which does not allow to distinguish
individual contributions. Fortunately, this is not necessary.

A population is a collection of neurons in a neighborhood, corresponding to a cortical
column, which represents dynamical patterns of activity. The average pulse density in a
population can never approach the peak pulse frequencies of single neurons. The activity of
neighborhoods in the center of the dendritic sigmoid curve is very near linear. This simplifies
the description of populations. Neuron populations are similar to mesoscopic ensembles in
many complex systems [10]. The behavior of the microscopic elements is constrained by the
embedding ensemble, and it cannot be understood outside a mesoscopic and macroscopic
view.

The collective action of neurons forms activity patterns that go beyond the cellular level and
approach the organism level. The formation of mesoscopic states is the first step for that. This
way, the activity level is decided by the population, not by individuals [10]. The population
is semi-autonomous. It has a point attractor, returning to the same level after its releasing.
The state space of the neuron population is defined by the range of amplitudes that its pulse
and wave densities can take.

2.5.2. Freeman K-sets

Regarding neuroscience at the mesoscopic level [10, 11], theoretical connection between
the neuron activity at the microscopic level in small neural networks and the activity of
cell assemblies in the mesoscopic scale is not well understood [16]. Katzir-Katchalsky
suggests treating cell assemblies using thermodynamics forming a hierarchy of models of
the dynamics of neuron populations [29] (Freeman K-sets): KO, KI, KII, KIII, KIV and KV.
Katzir-Katchalsky is the reason for the K in Freeman K-sets.

The KO set represents a noninteracting collection of neurons. KI sets represent a collection
of KO sets, which can be excitatory (KI,) or inhibitory (KI;). A KII set represents a collection
of KI, and KI;. The KIII model consists of many interconnected KII sets, describing a given
sensory system in brains. A KIV set is formed by the interaction of three KIII sets [30]. KV
sets are proposed to model the scale-free dynamics of neocortex operating on KIV sets [16].
See the representation of KI and KII sets by networks of KO sets in figure 10 [9].

The K-sets mediate between the microscopic activity of small neural networks and the
macroscopic activity of the brain. The topology includes excitatory and inhibitory
populations of neurons and the dynamics is represented by ordinary differential equations
(ODE) [16].
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Figure 10. Representation of (b) KI and (c) Kl sets by networks of (a) KO sets. Available at [9].

The advantages of KIII pattern classifiers on artificial neural networks are the small number
of training examples needed, convergence to an attractor in a single step and geometric
increase (rather than linear) in the number of classes with the number of nodes. The
disadvantage is the increasing of the computational time needed to solve ordinary differential
equations numerically.

The Katchalsky K-models use a set of ordinary differential equations with distributed
parameters to describe the hierarchy of neuron populations beginning from micro-columns
to hemispheres [31]. In relation to the standard KV, K-sets provide a platform for conducting
analyzes of unified actions of the neocortex in the creation and control of intentional and
cognitive behaviors [13].

2.5.3. Freeman’s mass action

Freeman’s mass action (FMA) [9] refers to collective synaptic actions neurons in the cortex
exert on other neurons, synchronizing their firing of action potentials [17]. FMA expresses
and conveys the meaning of sensory information in spatial patterns of cortical activity that
resembles the frames in a movie [12, 13].

The prevailing concepts in neurodynamics are based on neural networks, which are
Newtonian models, since they treated neural microscopic pulses as point processes in trigger
zones and synapses. The FMA theory is Maxwellian because it treats the mesoscopic neural
activity as a continuous distribution. The neurodynamics of the FMA includes microscopic
neural operations that bring sensory information to sensory cortices and load the first
percepts of the sensory cortex to other parts of the brain. The Newtonian dynamics can
model cortical input and output functions but not the formation of percepts. The FMA needs
a paradigm shift, because the theory is based on new experiments and techniques and new
rules of evidence [17].

2.6. Neuropercolation

Neuropercolation is a family of stochastic models based on the mathematical theory of
probabilistic cellular automata on lattices and random graphs, motivated by the structural
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and dynamical properties of neuron populations. The existence of phase transitions has been
demonstrated both in discrete and continuous state space models, i.e., in specific probabilistic
cellular automata and percolation models. Neuropercolation extends the concept of phase
transitions for large interactive populations of nerve cells [31].

Basic bootstrap percolation [50] has the following properties: (1) it is a deterministic
process, based on random initialization, (2) the model always progresses in one direction:
from inactive to active states and never otherwise. Under these conditions, these
mathematical models exhibit phase transitions with respect to the initialization probability p.
Neuropercolation models develop neurobiologically motivated generalizations of bootstrap
percolations [31].

2.6.1. Neuropercolation and neurodynamics

Dynamical memory neural networks is an alternative approach to pattern-based
computing [18]. Information is stored in the form of spatial patterns of modified connections
in very large scale networks. Memories are recovered by phase transitions, which enable
cerebral cortices to build spatial patterns of amplitude modulation of a narrow band
oscillatory wave. That is, information is encoded by spatial patterns of synaptic weights
of connections that couple non-linear processing elements. Each category of sensory input
has a Hebbian nerve cell assembly. When accessed by a stimulus, the assembly guides the
cortex to the attractors, one for each category.

The oscillating memory devices are biologically motivated because they are based on
observations that the processing of sensory information in the central nervous system is
accomplished via collective oscillations of populations of globally interacting neurons. This
approach provides a new proposal to neural networks.

From the theoretical point of view, the proposed model helps to understand the role of
phase transitions in biological and artificial systems. A family of random cellular automata
exhibiting dynamical behavior necessary to simulate feeling, perception and intention is
introduced [18].

2.7. Complex networks and neocortical dynamics

Complex networks are at the intersection between graph theory and statistical mechanics [4].
They are usually located in an abstract space where the position of the vertexes has no specific
meaning. However, there are several network vertexes where the position is important and
influences the evolution of the network. This is the case of road networks or the Internet,
where the position of cities and routers can be located on a map and the edges between them
represent real physical entities, such as roads and optical fibers. This type of network is called
a “geographic network” or spatial network. Neural networks are spatial networks [56].

From a computational perspective, two major problems that the brain has to solve is the
extraction of information (statistical regularities) of the inputs and the generation of coherent
states that allow coordinated perception and action in real time [56].

In terms of the theory of complex networks [4], the anatomical connections of the cortex
show that the power law distribution of the connection distances between neurons is exactly
optimal to support rapid phase transitions of neural populations, regardless of how great
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they are [31]. It is said that connectivity and dynamics are scale-free [13, 14], which states that
the dynamics of the cortex is size independent, such that the brains of mice, men, elephants
and whales work the same way [17].

Scale-free dynamics of the neocortex are characterized by self-similarity of patterns of
synaptic connectivity and spatio-temporal neural activity, seen in power law distributions
of structural and functional parameters and in rapid state transitions between levels of the
hierarchy [15].

2.8. Brain-Computer Interfaces

A non-intrusive technique to allow direct brain-computer interface (BCI) can be a scalp EEG
- an array of electrodes put on the head like a hat, which allows monitoring the cognitive
behavior of animals and humans, by using brain waves to interact with the computer. It is a
kind of a keyboard-less computer that eliminates the need for hand or voice interaction.

The Neurodynamics of Brain & Behavior group in the Computational Neurodynamics
(CND) Lab at the University of Memphis’s FedEx Institute of Technology is dedicated to
research cognitive behavior of animals and humans including the use of molecular genetic or
behavioral genetic approaches, to studies that involve the use of brain imaging techniques,
to apply dynamical mathematical and computational models, to neuroethological studies.
The research has three prongs of use for BCI: video/computer gaming; to support people
with disabilities or physical constraints, such as the elderly; and to improve control of
complex machinery, such as an aircraft and other military and civilian uses [24]. The
direct brain-computer interface would give those with physical constraints or those operating
complex machinery “extra arms” [3].

Similar to how they found seizure prediction markers, the plan is to use the data to analyze
pre-motor movements, the changes in the brain that occur before there’s actually movement,
and apply that to someone who has a prosthetic device to allow them to better manipulate
it. Since the brain is usually multitasking, the researchers will have to pick up the signal for
the desired task from all the other things going on in the brain.

3. A biologically plausible connectionist system

Instead of the computationally successful, but considered to be biologically implausible
supervised Back-propagation [5, 48], the learning algorithm BioRec employed in
B1oPRED [44, 46] is inspired by the Recirculation [22] and GeneRec [33] (GR) algorithms,
and consists of two phases.

In the expectation phase! (figure 11), when input x, representing the first word of a sentence
through semantic microfeatures, is presented to input layer «, there is propagation of these
stimuli to the hidden layer B (bottom-up propagation) (step 1 in figure 11). There is also a
propagation of the previous actual output o”, which is initially empty, from output layer
back to the hidden layer B (top-down propagation) (steps 2 and 3).? Then, a hidden expectation
activation (h°) is generated (Eq. (2)) for each and every one of the B hidden units, based on

1 [33] employs the terms “minus” and “plus” phases to designate expectation and outcome phases respectively in his
GeneRec algorithm.
2 The superscript p is used to indicate that this signal refers to the previous cycle.

39



40 Artificial Neural Networks — Architectures and Applications
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Figure 11. The expectation phase. Figure 12. The outcome phase.

inputs and previous output stimuli o” (sum of the bottom-up and top-down propagations -
through the sigmoid logistic activation function ¢). Then, these hidden signals propagate to
the output layer 7y (step 4), and an actual output o is obtained (step 5) for each and every
one of the C output units, through the propagation of the hidden expectation activation to
the output layer (Eq. (3)) [37]. wf.;- are the connection (synaptic) weights between input (i)
and hidden (j) units, and w;?k are the connection (synaptic) weights between hidden (j) and

output (k) unitsS.

h]e. = U(Z?:wa;.xi + Z,Szlw;?k.c),’f) 1<j<B (2)
0k = o(ZF_gw) ) 1<k<c )

In the outcome phase (figure 12), input x is presented to input layer a again; there is
propagation to hidden layer B (bottom-up) (step 1 in figure 12). After this, expected output
y (step 2) is presented to the output layer and propagated back to the hidden layer p
(top-down) (step 3), and a hidden outcome activation (h°) is generated, based on inputs
and on expected outputs (Eq. (4)). For the other words, presented one at a time, the same
procedure (expectation phase first, then outcome phase) is repeated [37]. Recall that the
architecture is bi-directional, so it is possible for the stimuli to propagate either forwardly or
backwardly.

314, j, and k are the indexes for the input (a), hidden (B), and output (C) units respectively. Input (x) and hidden (B)
layers have an extra unit (index 0) used for simulating the presence of a bias [20]. This extra unit is absent from the
output (7y) layer. That’s the reason i and j range from 0 to the number of units in the layer, and k from 1. xo, hf, and
hg are set to +1. wg]- is the bias of the hidden neuron j and wy, is the bias of the output neuron k.
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hi = U(Z?:Owg.xi + Z,S’:lw}’k.yk) 1<j<B 4)

In order to make learning possible the synaptic weights are updated through the delta rule*
(Egs. (5) and (6)), considering only the local information made available by the synapse.
The learning rate 7 used in the algorithm is considered an important variable during the
experiments [20].

Awjy = 17.(yx — o) 1 0<j<B, 1<k<cC (5)
szhj = iy(hjo — h;).xi 0<i<np, 1<;j<B (6)

Figure 13 displays a simple application to digit learning which compares BP with GeneRec
(GR) algorithms.

mBP
BGR
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Figure 13. BP-GR comparison for digit learning.

Other applications were proposed using similar alleged biological inspired architecture and
algorithm [34, 3740, 42-44, 49].

% The learning equations are essentially the delta rule (Widrow-Hoff rule), which is basically error correction: “The
adjustment made to a synaptic weight of a neuron is proportional to the product of the error signal and the input
signal of the synapse in question.” ([20], p. 53).
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3.1. Intraneuron signaling

The Spanish Nobel laureate neuroscientist Santiago Ramoén y Cajal, established at the end
of the nineteenth century, two principles that revolutionized neuroscience: the Principle of
connectional specificity, which states that “nerve cells do not communicate indiscriminately
with one another or form random networks;” and the Principle of dynamic polarization,
which says “electric signals inside a nervous cell flow only in a direction: from neuron
reception (often the dendrites and cell body) to the axon trigger zone.” Intraneuron signalling
is based on the principle of dynamic polarization. The signaling inside the neuron is
performed by four basic elements: receptive, trigger, signaling, and secretor. The Receptive
element is responsible for input signals, and it is related to the dendritic region. The Trigger
element is responsible for neuron activation threshold, related to the soma. The Signaling
element is responsible for conducting and keeping the signal and its is related to the axon.
And the Secretor element is responsible for signal releasing to another neuron, so it is related
to the presynaptic terminals of the biological neuron.

3.2. Interneuron signaling

Electrical and chemical synapses have completely different morphologies. At electrical
synapses, transmission occurs through gap junction channels (special ion channels), located
in the pre and postsynaptic cell membranes. There is a cytoplasmatic connection between
cells. Part of electric current injected in presynaptic cell escapes through resting channels
and remaining current is driven to the inside of the postsynaptic cell through gap junction
channels. At chemical synapses, there is a synaptic cleft, a small cellular separation between
the cells. There are vesicles containing neurotransmitter molecules in the presynaptic
terminal and when action potential reaches these synaptic vesicles, neurotransmitters are
released to the synaptic cleft.

3.3. A biologically plausible ANN model proposal

We present here a proposal for a biologically plausible model [36] based on the microscopic
level. This model in intended to present a mechanism to generate a biologically plausible
ANN model and to redesign the classical framework to encompass the traditional features,
and labels that model the binding affinities between transmitters and receptors. This model
departs from a classical connectionist model and is defined by a restricted data set, which
explains the ANN behavior. Also, it introduces T, R, and C variables to account for the
binding affinities between neurons (unlike other models).

The following feature set defines the neurons:
N = {{w},0,5,T,R,C} (7)

where:

* w represents the connection weights,
¢ ( is the neuron activation threshold,

¢ ¢ stands for the activation function,
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¢ T symbolizes the transmitter,
¢ R the receptor, and

e ( the controller.

0, g, T, R, and C encode the genetic information, while T, R, and C are the labels, absent
in other models. This proposal follows Ramén y Cajal’s principle of connectional specificity,
that states that each neuron is connected to another neuron not only in relation to {w}, 6,
and g, but also in relation to T, R, and C; neuron i is only connected to neuron j if there is
binding affinity between the T of i and the R of j. Binding affinity means compatible types,
enough amount of substrate, and compatible genes. The combination of T and R results in
C: C can act over other neuron connections.

The ordinary biological neuron presents many dendrites usually branched, which receive
information from other neurons, an axon, which transmits the processed information, usually
by propagation of an action potential. The axon is divided into several branches, and makes
synapses onto the dendrites and cell bodies of other neurons (see figure 14). Chemical
synapse is predominant is the cerebral cortex, and the release of transmitter substance occurs
in active zones, inside presynaptic terminals. Certain chemical synapses lack active zones,
resulting in slower and more diffuse synaptic actions between cells. The combination of a
neurotransmitter and a receptor makes the postsynaptic cell releases a protein.

Pregynaptic cell
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Figure 14. The chemical synapse. Figure taken from [45].

Although type I synapses seem to be excitatory and type II synapses inhibitory (see
figure 15), the action of a transmitter in the postsynaptic cell does not depend on the chemical
nature of the neurotransmitter, instead it depends on the properties of the receptors with
which the transmitter binds. In some cases, it is the receptor that determines whether
a synapse is excitatory or inhibitory, and an ion channel will be activated directly by the
transmitter or indirectly through a second messenger.

Neurotransmitters are released by presynaptic neuron and they combine with specific
receptor in membrane of postsynaptic neuron. The combination of neurotransmitter with
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N

Figure 15. Morphological synapses type A and type B. In excitatory synapse (type A), neurons contribute to produce impulses
on other cells: asymmetrical membrane specializations, very large synaptic vesicles (50 nm) with packets of neurotransmitters.
In inhibitory synapse (type B), neurons prevent the releasing of impulses on other cells: symmetrical membrane specializations,
synaptic vesicles are smaller and often ellipsoidal or flattened, contact zone usually smaller. Figure taken from [45].

receptor leads to intracellular release or production of a second messenger, which interacts
(directly or indirectly) with ion channel, causing it to open or close. There are two types
of resulting signaling : (1) propagation of action potential, and (2) production of a graded
potential by the axon. Graded potential signaling does not occur over long distances because
of attenuation.

Graded potentials can occur in another level. See, for instance, figure 16. Axon 1 making
synapse in a given cell can receive a synapse from axon 2. Otherwise, the presynaptic synapse
can produce only a local potential change, which is then restricted to that axon terminal
(figure 17).

axon 2

Figure 16. An axon-axon synapse [6]. Figure 17. A local potential change [6].

In view of these biological facts, it was decided to model through labels T and R, the binding
affinities between T's and Rs. And label C represents the role of the “second messenger,”, the
effects of graded potential, and the protein released by the coupling of T and R.

Controller C can modify the binding affinities between neurons by modifying the degrees
of affinity of receptors, the amount of substrate (amount of transmitters and receptors), and
gene expression, in case of mutation. The degrees of affinity are related to the way receptors
gate ion channels at chemical synapses. Through ion channels transmitter material enters
the postsynaptic cell: (1) in direct gating: receptors produce relatively fast synaptic actions,
and (2) in indirect gating: receptors produce slow synaptic actions: these slower actions often
serve to modulate behavior because they modify the degrees of affinity of receptors.
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In addition, modulation can be related to the action of peptides®. There are many distinct
peptides, of several types and shapes, that can act as neurotransmitters. Peptides are different
from many conventional transmitters, because they “modulate” synaptic function instead of
activating it, they spread slowly and persist for some time, much more than conventional
transmitters, and they do not act where released, but at some distant site (in some cases).

As transmitters, peptides act at very restricted places, display a slow rate of conduction, and
do not sustain the high frequencies of impulses. As neuromodulators, the excitatory effects of
substance P (a peptide) are very slow in the beginning and longer in duration (more than one
minute), so they cannot cause enough depolarization to excite the cells; the effect is to make
neurons more readily excited by other excitatory inputs, the so-called “neuromodulation.”
In the proposed model, C explains this function by modifying the degrees of affinity of
receptors.

In biological systems, the amount of substrate modification is regulated by the acetylcholine
(a neurotransmitter). It spreads over a short distance, toward the postsynaptic membrane,
acting at receptor molecules in that membrane, which are enzymatically divided, and part of
it is taken up again for synthesis of a new transmitter. This will produce an increase in the
amount of substrate. In this model, C represents substrate increase by a variable acting over
initial substrate amount.

Peptides are a second, slower, means of communication between neurons, more economical
than using extra neurons. This second messenger, besides altering the affinities between
transmitters and receptors, can regulate gene expression, achieving synaptic transmission
with long-lasting consequences. In this model, this is achieved by modification of a variable
for gene expression, mutation can be accounted for.

3.3.1. The labels and their dynamic behaviors

In order to build the model, it is necessary to set the parameters for thew connectionist
architecture. For the network genesis, the parameters are:

* number of layers;
* number of neurons in each layer;
* initial amount of substrate (transmitters and receptors) in each layer; and

* genetics of each layer:
* type of transmitter and its degree of affinity,
* type of receptor and its degree of affinity, and
* genes (name and gene expression)).

For the evaluation of controllers and how they act, the parameters are:

¢ Controllers can modify:
* the degree of affinity of receptors;
* the initial substrate storage; and
* the gene expression value (mutation).

5 Peptides are a compound consisting of two or more amino acids, the building blocks of proteins.
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The specifications stated above lead to an ANN with some distinctive characteristics: (1)
each neuron has a genetic code, which is a set of genes plus a gene expression controller;
(2) the controller can cause mutation, because it can regulate gene expression; (3) the
substrate (amount of transmitter and receptor) is defined by layer, but it is limited, so some
postsynaptic neurons are not activated: this way, the network favors clustering.

Also, the substrate increase is related to the gene specified in the controller, because the
synthesis of a new transmitter occurs in the pre-synaptic terminal (origin gene) [36]. The
modification of the genetic code, that is, mutation, as well as the modification of the degree of
affinity of receptors, however, is related to the target gene. The reason is that the modulation
function of controller is better explained at some distance of the emission of neurotransmitter,
therefore at the target.

3.3.2. A network simulation

In table 3, a data set for a five-layer network simulation is presented [36]. For the
specifications displayed in table 3, the network architecture and its activated connections
are shown in figure 18. For the sake of simplicity, all degrees of affinity are set at 1 (the
degree of affinity is represented by a real number in the range [0..1]; so that the greater the
degree of affinity is the stronger the synaptic connection will be).

layer 1 2 3 4 5
number of neurons 10 10 5 5 1
amount of substrate 8 10 4 5 2
type of transmitter 1 2 1 2 1
degree of affinity of transmitter 1 1 1 1 1
type of receptor 2 1 2 1 2
degree of affinity of receptor 1 1 1 1 1
genes (name/gene expression) abc/1 | abc/1 | abc/1, def/2 | abc/1, def/2 | det/2

Controllers: 1/1-2: abc/s/abc/1; 1/1-4: abc/e/abc/2; 2/2-3: abc/a/def/0.5. (Controller syntax: number/origin
layer-target layer: 0g/t/tg/res, where og = origin gene (name); t = type of synaptic function modulation: a = degree of
affinity, s = substrate, e = gene expression; tg = target gene (name); res = control result: for t = a: res = new degree of
affinity of receptor (target), for ¢ = s: res = substrate increasing (origin), for t = e: res = new gene expression controller
(target). The controllers from layer 2 to 5, from layer 3 to 4, and from layer 4 to 5 are absent in this simulation.)

Table 3. The data set for a five-layer network. Adapted from [36].

In figure 18, one can notice that every unit in layer 1 (the input layer) is linked to the first nine
units in layer 2 (first hidden layer). The reason why not every unit in layer 2 is connected to
layer 1, although the receptor of layer 2 has the same type of the transmitter of layer 1, is that
the amount of substrate in layer 1 is eight units. This means that, in principle, each layer-1
unit is able to connect to at most eight units. But controller 1, from layer 1 to 2, incremented
by 1 the amount of substrate of the origin layer (layer 1). The result is that each layer 1 unit
can link to nine units in layer 2. Observe that from layer 2 to layer 3 (the second hidden layer)
only four layer-2 units are connected to layer 3, because also of the amount of substrate of
layer 3, which is 4.

As a result of the compatibility of layer-2 transmitter and layer-5 receptor, and the existence
of remaining unused substrate of layer 2, one could expect that the first two units in
layer 2 should connect to the only unit in layer 5 (the output unit). However, this does
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Figure 18. A five-layer neural network for the data set in table 3. In the bottom of the figure is the layer 1 (input layer) and in
the top is the layer 5 (output layer). Between them, there are three hidden layers (layers 2 to 4). Figure taken from [36].

not occur because their genes are not compatible. Although gene compatibility exists, in
principle, between layers 1 and 4, their units do not connect to each other because there is
no remaining substrate in layer 1 and because controller 1 between layers 1 and 4 modified
the gene expression of layer 4, making them incompatible. The remaining controller has
the effect of modifying the degrees of affinity of receptors in layer 3 (target). Consequently,
the connections between layers 2 and 3 became weakened (represented by dotted lines).
Notice that, in order to allow connections, in addition to the existence of enough amount
of substrate, the genes and the types of transmitters and receptors of each layer must be
compatible.

Although the architecture shown in figure 18 is feed-forward, recurrence, or re-entrance,
is permitted in this model. This kind of feedback goes along with Edelman and Tononi’s
“dynamic core” notion [7]. This up-to-date hypothesis suggests that there are neuronal
groups underlying conscious experience, the dynamic core, which is highly distributed and
integrated through a network of reentrant connections.

3.4. Other models

Other biological plausible ANN models are concerned with the connectionist architecture;
related directly to the cerebral cortex biological structure, or focused on the neural features
and the signaling between neurons. Always, the main purpose is to create a more faithful
model concerning the biological structure, properties, and functionalities, including learning
processes, of the cerebral cortex, not disregarding its computational efficiency. The choice
of the models upon which the proposed description is based takes into account two main
criteria: the fact they are considered biologically more realistic and the fact they deal with
intra and inter-neuron signaling in electrical and chemical synapses. Also, the duration
of action potentials is taken into account. In addition to the characteristics for encoding
information regarding biological plausibility present in current spiking neuron models, a
distinguishable feature is emphasized here: a combination of Hebbian learning and error
driven learning [52-54].
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4. Conclusions

Current models of ANN are in debt with human brain physiology. Because of their
mathematical simplicity, they lack several biological features of the cerebral cortex. Also,
instead of the individual behavior of the neurons, the mesoscopic information is privileged.
The mesoscopic level of the brain could be described adequately by dynamical system
theory (attractor states and cycles). The EEG waves reflect the existence of cycles in brain
electric field. The objective here is to present biologically plausible ANN models, closer to
human brain capacity. In the model proposed, still at the microscopic level of analysis,
the possibility of connections between neurons is related not only to synaptic weights,
activation threshold, and activation function, but also to labels that embody the binding
affinities between transmitters and receptors. This type of ANN would be closer to human
evolutionary capacity, that is, it would represent a genetically well-suited model of the brain.
The hypothesis of the “dynamic core” [7] is also contemplated, that is, the model allows
reentrancy in its architecture connections.
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