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1. Introduction 

Groundwater plays a pivotal role in Denmark. It is used for both agricultural and industrial 

purposes, but most importantly all Danish drinking water is produced from groundwater. 

To comprehend and discuss the processes and issues involved in the production of drinking 

water in Denmark, an understanding of the composition and the formation of groundwater 

is highly important. 

2. Groundwater formation 

Groundwater is formed by rain infiltrating the soil and subsurface, and as a result, the final 

composition of the water depends on both the specific geological formations and the 

residence time of the water in these. With respect to groundwater, the subsurface may be 

divided into two zones: the unsaturated zone and the saturated zone. In the unsaturated 

zone, the voids between particles are a mixture of water and air, while in the saturated zone 

all the voids have been filled with water. The transition from the unsaturated to the 

saturated zone marks the beginning of the water bearing layers; the groundwater. This is 

also called the water table. 

As water infiltrates the subsurface, it moves from the highest hydraulic head to the lowest. 

Since land is generally higher elevated than water bodies such as rivers, lakes and the sea, 

these will usually be the final destination for the water. For a given hydrological area, this is 

called the discharge area, while the area in which the water infiltrates is called the recharge 

area. If the recharge area is far from the discharge area, the water will move almost 

vertically downward until it reaches a confining layer, see Figure 1. From here the water 

moves horizontally towards the discharge area, until it meets an opposing force that forces it 

upwards. If the discharge area is a river or a lake, this opposing force may be water coming 

from other directions, and if the discharge area is the sea, it will be the seawater, which will 
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force the groundwater upwards due the difference in density. If the recharge area is closer 

to the discharge area, the path of the water will be more curved. It will not reach the same 

depth and will have a considerably shorter residence time. Also, as the water nears the 

discharge area, the flow of water will increase due to the incompressibility of water. 

 

Figure 1. Illustration of groundwater flow and retention times as a function of distance between 

recharge and discharge area and depth of aquifer. Modified from Viden om Grundvand (15). 

The movement of groundwater depends on the permeability of the water bearing layers. 

Layers such as clay have a low permeability and tend to inhibit water flow, whereas sand or 

chalk layers have a high permeability and promote water flow. In the subsurface, low 

permeable layers will act as confining beds, while high permeable layers will be water 

bearing layers. A geological unit from which groundwater may be extracted is called an 

aquifer, and there may be distinguished between two types: unconfined and confined 

aquifers. A confined aquifer is a water bearing layer completely enclosed by confining 

layers. These aquifers will only slowly recharge, but are also well protected against 

anthropogenic pollution from the surface. An unconfined aquifer is in direct contact with 

the surface, and will as such rapidly recharge depending on the amount of rainfall, but will 

also be more exposed to activities on the surface.  

In Denmark, the majority of cities are situated near the ocean, and the available aquifers will 

most often be unconfined and placed close to the surface. If water is extracted from greater 

depths, it will be salty because the dense seawater forces the fresh groundwater further 

inland. The groundwater directly underneath the cities will as such be heavily influenced by 

the activity on the surface, and in recent years it has been found to be polluted with 

compounds such as chlorinated organic solvents and pesticides originating from industries 
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and park maintenance (1). Furthermore, because water from the entire recharge area flows 

past the city on its way to the discharge area, pollution of the water in the recharge area may 

end up affecting the water quality in the city. Because Denmark is heavily populated and 

cultivated relative to its size, most recharge areas are farming land. This has led to 

increasing problems with pesticides and fertilizers used by the farmers, even though these 

farming chemicals are applied far from the city. 

3. Groundwater composition 

The most important factors affecting the composition of groundwater is the composition of 

the water after the immediate infiltration of the top layers of the surface, the geology of the 

subsurface, and the flow rate of the water through the subsurface. As the water moves 

through the subsurface, it is constantly approaching equilibrium with the surrounding 

geological layers. The type of equilibrium reactions are determined by the initial 

composition of the water and the specific geology of the subsurface, which therefore 

becomes very important for the final composition of the groundwater. The flow rate of the 

water controls the time available for the water to reach equilibrium with the surroundings, 

which is important since the equilibrium reactions vary in rate of reaction. In the upper part 

of the subsurface, the composition of the water is mainly determined by pH and redox 

conditions, and because of differences in rate of reaction, specific zones and fronts will be 

formed. These fronts and zones are general, and will be found in most places. At deeper 

levels, the retention time for the water is greatly increased, and slower reactions become 

influential. Here the specific geological conditions determine the composition of the 

groundwater, and this may result in very different types of groundwater. The type of 

groundwater is defined based on a division of its constituents into a number of groups as 

seen in Table 1. To understand the presence of these constituents, a more detailed 

description of the before mentioned processes is necessary. 

 

Group Constituents

Main components  Cations Ca2+, Na+, NH4+, K+, Mg2+, Fe2+, Mn2+ 

Anions HCO3-, NO3-, SO42-,, PO43- 

Uncharged species H4SiO4 

Trace components Al3+, Ni2+, Zn2+, F-, H3AsO3 and others 

Gases CO2, H2S, CH4, O2 

Organic compounds Humus 

Anthropogenic compounds Pesticides, chlorinated solvents, and others 

Table 1. Division of groundwater constituents into component groups. 

The first factor to influence the groundwater composition is the type of precipitation, which 

depends on its place of origin. Denmark has a coastal climate, and the rain will as such have 

a relatively high content of salts compared to rain formed from water evaporated inland. 

The atmospheric conditions also affect the composition of the rain. Combustion of fossil 

fuels may result in formation of SOx and NOx gases, which will dissolve in the rain drops 
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and form sulfuric and nitric acid. Ammonia evaporation from farming industry may also 

lead to the formation of nitric acid, see equation 5.  

On the surface and in the upper layers of the soil, substances like pesticides, fertilizers and 

organic solvents may be present due human activity (anthropogenic compounds) together 

with naturally occurring compounds, and these may dissolve in the water. Which 

compounds that are present, and how they dissolve in the water depends on the type of 

land. Different types of land such as forest, farming, or meadow, affects the degree 

evaporation and biological activity. A high evaporation will result in an increasing 

concentration of the dissolved compounds, and places with high biological activity may 

have a large uptake of these compounds and hereby change the composition of the water. 

The degree of biological activity will also influence the acidity of the water. Besides the 

anthropogenic acidifiers in the atmosphere, the natural content of CO2 in the air will 

equilibrate with the rain drops, but in places with high biological activity this CO2 

contribution only plays a minor role. The microbial degradation of organic matter produces 

concentrations of CO2 in the air trapped in the pores, which may be between 10-100 times 

higher than the concentration in atmospheric air (2). It will as such determine the acidity of 

the rain to a larger degree than the atmospheric CO2. The acidity of CO2 stems from its 

equilibrium with water, in which it dissolves and forms carbonic acid. 

ଶ(௚)ܱܥ  + ⇌ ଶܱ(௟)ܪ   ଷ(௔௤)  (1)ܱܥଶܪ

Carbonic acid is a diprotic acid and may convert to either bicarbonate or carbonate 

depending on pH (pKa1 = 6.351, pKa1 = 10.329; T = 25 °C, zero ionic strength (3)). 

ଷ(௔௤)ܱܥଶܪ  + ଶܱ(௟)ܪ ⇌ ିଷ(௔௤)ܱܥܪ + ଷܱ(௔௤)ାܪ  (2) 

ିଷ(௔௤)ܱܥܪ  + ଶܱ(௟)ܪ ⇌ ଷ(௔௤)ଶିܱܥ + ଷܱ(௔௤)ାܪ  (3) 

As the water infiltrates the soil, it will initially contain O2 from equilibrium with the 

atmospheric air, and this promotes redox processes, which may also affect the acidity. In 

places with pyrite minerals, bisulfate can be formed during the oxidation of the sulfide 

minerals. 

ଶ(௦)ܵ݁ܨ2  + 7ܱଶ(௔௤) + ଶܱ(௟)ܪ2 → ܵܪ4 ସܱ(௔௤)ି + ଶା(௔௤)݁ܨ2  (4) 

Also, when ammonium is present under oxidizing conditions, it may be oxidized to nitric 

acid. 

ସ(௔௤)ାܪܰ  + 2ܱଶ(௔௤) → ܱܰଷ(௔௤)ି + ଶܱ(௟)ܪ + ା(௔௤)ܪ2  (5) 

As mentioned previously, the content of the water will change progressively as the water 

infiltrates deeper into the subsurface. For the pH driven processes, the order of reaction is 

determined by the pKa values of the minerals in the subsurface. For the redox processes, the 

redox potential is the driving force. In reality pH and redox will often both affect the 

solubility of minerals, but for the sake of the overview, a distinction is made between 

important pH and redox driven processes.  
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pH driven processes 

Some of the most important pH driven processes are: 

 Dissolution of CaCO3 

 Dissolution and conversion of silicates 

 Ion exchange with H+ 

 Dissolution of hydroxide minerals 

The processes are listed in the order they become influential as the pH is lowered. 

Dissolution of CaCO3 and hardness 

Because of its basic nature, calcium carbonate is highly affected by pH, and its low solubility 

makes it one of the main issues in the use of groundwater for drinking water. Calcium 

carbonate will be in equilibrium with the Ca2+ and CO32- ions in the water, and as pH is 

lowered, carbonate ions will convert to bicarbonate and more calcium carbonate dissolves.  

ଷ(௦)ܱܥܽܥ  ଷܱ(௔௤)ାܪ + ⇌ ଶା(௔௤)ܽܥ + ିଷ(௔௤)ܱܥܪ +  ଶܱ(௟) (6)ܪ

Over time, the result is a removal of calcium carbonate, and the longer the surface has been 

exposed to rainfall the further down into the subsurface, calcium carbonate will have been 

dissolved. This creates a front, which is known as the acidic front. Below the front, calcium 

carbonate acts as a buffer, and the pH will be between 7 and 8. Above the acidic front there 

is no calcium carbonate to neutralize the CO2, and if the water table is above the acidic front, 

the groundwater here will have a higher content of CO2. Because this may lead to corrosion 

in drinking water equipment, this type of groundwater is said to contain aggressive CO2. 

High concentrations of dissolved calcium carbonate can also be an issue. When 

groundwater is exposed to the atmosphere or is heated, CO2 will diffuse out of the solution, 

which then becomes supersaturated with calcium carbonate. Groundwater’s content of 

calcium carbonate is commonly given in units of hardness, which is actually a measure of 

the content of Ca2+ and Mg2+ ions in the water. Magnesium is included since it is often found 

along with calcium minerals and has similar characteristics. Hardness is divided into three 

types: Total, transient and permanent. The total hardness is the total sum of Ca2+ and Mg2+ 

ions. The transient hardness is the amount of Ca2+ and Mg2+ ions dissolved as a result of CO2.  

 

Hardness classification 
Total hardness

°dH

Ca2+ + Mg2+

meq/L 

Ca2+ 

mg/L * 

Very soft 0-4 0 - 1.4 0 – 2.0 

Soft 4-8 1.4 - 2.8 28 – 56 

Medium hard 8-18 2.8 - 6.4 56 – 128 

Hard 18-30 6.4 - 11 128 – 220 

Very hard >30 >11 > 200 

*The conversion from meq/L depends on the molar mass, and the calcium concentration in the last column has been 

calculated by assuming that only calcium is present. 

Table 2. Hardness classification as a function of total hardness (2). 
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When CO2 is driven from the water, this is the amount of Ca2+ and Mg2+ ions that will 

precipitate out of solution. The permanent hardness is the difference between total and 

transient hardness, and is caused by Ca2+ and Mg2+ dissolved by other acids than carbonic 

acid or CO2. In cases where the concentration of HCO3- is greater than the content of Ca2+ 

and Mg2+ ions, the permanent hardness is zero. Hardness, in German units °dH, is 

calculated by converting the concentration of Ca2+ and Mg2+ ions from mg/L to meq/L and 

multiplying by 2.8. The typical classification of hardness is given in Table 2. 

Dissolution and conversion of silicates 

As  pH drops below 6.7, silicate minerals become unstable and start to convert to clay 

minerals or hydroxides under loss of cations such as K+, Ca2+ and Mg2+ and silicic acid. The 

reactions are complex and slower than the dissolution of calcium carbonate. Examples are 

given below (4). 

ଷ଼ܱ(௦)݈݅ܵܣ2ܰܽ  + ା(௔௤)ܪ2 + ଶܱ(௟)ܪ9  ⇌ 2ܰܽ(௔௤)ା + ସ(௦)(ܪܱ)ଶܵ݅ଶܱହ݈ܣ + ସܵ݅ܪ4 ସܱ(௦) (7) 

ଷ଼ܱ(௦)݈݅ܵܣܽܰ  + ା(௔௤)ܪ + ଶܱ(௟)ܪ7  ⇌ ܰܽ(௔௤)ା + ଷ(௦)(ܪܱ)݈ܣ + ସܵ݅ܪ3 ସܱ(௦) (8) 

Ion exchange of H+ 

As pH decreases, the adsorption equilibrium of the of H+ ions/cations will result in 

especially Na+, K+ and Ca2+ ions being released as H+ adsorbs to the minerals. The process 

becomes more pronounced as the concentration of oxonium increases.  

Dissolution of hydroxide minerals 

As the pH drops below 5, hydroxide minerals, most commonly iron and aluminum 

hydroxides, become partly unstable and start to dissolve. 

ଷ(௦)(ܪܱ)ଶ݁ܨ  + ା(௔௤)ܪ3 ⇌ ଷା(௔௤)݁ܨ2 +  ଶܱ(௟) (9)ܪ3

Because the solubility of iron and aluminum minerals is highly dependent on the oxidation 

state as well, these processes will also be affected by the redox conditions. 

Redox driven processes 

The most important processes that are influenced by the redox conditions are:  

 Nitrification  

 Denitrification/sulfide oxidation  

 Sulfate reduction 

 Methane formation.  

All of these are caused by microbes seeking to extract energy from the environment, and 

they will use the oxidizing agent that produces the largest gain in energy. The available 

oxidizing agents in groundwater are oxygen, nitrate and sulfate, listed in order of falling 

redox potential. As a result, the redox processes occurs in different zones. Near the surface, 

oxygen from the atmosphere is present in the water, and the redox conditions are oxidizing. 
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As the oxygen becomes depleted, the microorganisms start using nitrate if present, and 

redox conditions become weakly reducing. The transition from the oxidizing O2/NO3- 

environment to the reducing NO3- environment is often called the nitrate front and the 

anoxic zone.  

Nitrification 

In the nitrification process, ammonium is oxidized to nitrite, which is further oxidized to 

nitrate. 

ସ(௔௤)ାܪ2ܰ  + 3ܱଶ(௔௤) → 2ܱܰଶ(௔௤)ି + ଶܱ(௟)ܪ2 + ା(௔௤)ܪ4  (10) 

 2ܱܰଶ(௔௤)ି + ܱଶ(௔௤) → ܱܰଷ(௔௤)ି  (11) 

Denitrification and sulfide oxidation 

Under anaerobic conditions, nitrate may be used as the oxidizing agent in denitrification 

processes. The reducing agent in these reactions may be organic matter, or pyrite, which are 

oxidized to CO2 and sulfate. The ferrous ions (Fe2+), released during pyrite oxidation, may 

contribute further to the denitrification under oxidation to ferric ions (Fe3+), which may then 

precipitate as ferrihydrite compounds. The following three reaction schemes can be used to 

describe the denitrification processes. 

ଶܱ(௢௥௚௔௡௜௖ ௠௔௧௧௘௥)ܪܥ5  + 4ܱܰଷ(௔௤)ି → 2 ଶܰ(௚) + ିଷ(௔௤)ܱܥܪ4 + ଶ(௚)ܱܥ +  ଶܱ(௟) (12)ܪ3

ଶ(௦)ܵ݁ܨ5  + 14ܱܰଷ(௔௤)ି + ା(௔௤)ܪ4 → 7 ଶܰ(௚) + ଶା(௔௤)݁ܨ5 + 10ܵ ସܱ(௔௤)ଶି +  ଶܱ(௟) (13)ܪ2

ଶା(௔௤)݁ܨ10  + 2ܱܰଷ(௔௤)ି + ଶܱ(௟)ܪ14 → ଶܰ(௚) + ௢௖௛௘௥ܪܱܱ݁ܨ10 + ା(௔௤)ܪ18  (14) 

Sulfate reduction 

When nitrate is depleted sulfate may be used as the oxidizing agent. This occurs under its 

reduction to hydrogen sulfide gas. 

 ܱܵସ(௔௤)ଶି + ଶܪܥ2 (ܱ௢௥௚௔௡௜௖ ௠௔௧௧௘௥) → ଶܵ(௚)ܪ + ିଷ(௔௤)ܱܥܪ2  (15) 

In the presence of iron, hydrogen sulfide may precipitate as pyrite, but often some hydrogen 

sulfide will be left in the groundwater. Hydrogen sulfide has to be removed since it has a 

very pungent smell, which will ruin the quality of the water, and make it corrosive. 

Methane formation 

Below the sulfate zone the environment will be highly reducing, and organic matter may be 

reduced to methane.  

ଶܱ(௟)ܪ  + ଶܱ(௢௥௚௔௡௜௖ ௠௔௧௧௘௥)ܪܥ2 → ସ(௚)ܪܥ + ିଷ(௔௤)ܱܥܪ + ା(௔௤)ܪ  (16) 

Even though this zone is usually found deep underground, the groundwater from shallower 

aquifers may still contain methane since it will diffuse upward after formation. 
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4. Drinking water production - Simple water treatment 

In Table 3, the usual composition of Danish groundwater is compared to the drinking water 

standards. 

 

Parameter Unit Groundwater Threshold limit after WW 

Ca2+ mg/L 10-200 < 200 

Mg2+ mg/L 2-30 50 

Hardness °dH 5-30 

Na+ mg/L 10-100 175 

NH4+ mg/L 0.08-6 0.05 

Fe mg/L 0.02-40 0.05 

Mn mg/L 0.001-3 0.02 

HCO3- mg/L 10-400 >100 

Cl- mg/L 30-70 250 

NO3- mg/L 0.5-110 50 

NO2- mg/L - 0.01 

SO42- mg/L 20-100 250 

H2S mg/L - 0.05 

Agg. CO2 mg/L - 2 

CH4 mg/L - 0.01 

O2 mg/L 0 10/5 * 

* The concentration of oxygen at the tap must be 5 mg/L, and the waterworks therefore strive to saturate the water 

with oxygen, which will often result in a concentration around 10 mg/L after the waterworks. 

Table 3. Groundwater and drinking water composition as specified in Danish law by executive order 

no. 1024 (2,5). 

As seen, iron, manganese and ammonium often exceed the limits regarding concentration of 

the ionic species. Also, nitrate is sometimes found in concentrations above the threshold 

limit, which is commonly due to anthropogenic pollution.  For the non-ionic species, it is 

mainly hydrogen sulfide and methane that must be removed.  
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Because of the natural filtration taking place during the formation of groundwater, usually 

only a simple treatment consisting of aeration and sand filtration is necessary to produce 

drinking water. In standard Danish drinking water production, the water is pumped to the 

waterworks, where it is aerated to remove dissolved gasses, and then led through a sand 

filter where solids are retained, before it is finally stored in a holding tank. Earlier, the 

treated water was stored in water towers or elevated containers, but this practice has been 

abandoned due to hygienic considerations. Instead, buried storage tanks and pumping 

systems are used today to create the necessary pressure in the water system. In Figure 2, 

addition of Ca(OH)2 is also shown. The purpose of Ca(OH)2 is to remove aggressive CO2, 

and may be necessary in areas with soft water. It is however not a part of the standard 

simple treatment, but belongs to the category of extended treatment techniques, which is 

covered after the simple treatment. As a final general remark, it should be noted that one of 

the unique features in the Danish drinking water treatment process is the missing 

disinfection step. No chlorine or other disinfectants are added to the water at any time 

during the drinking water process, resulting in high quality water.  

 

Figure 2. General process diagram for a Danish waterworks. The addition of Ca(OH)2 is not part of the 

standard simple treatment. Reprinted with permission from Esbjerg Water Supply (Forsyningen 

Esbjerg). 

Aeration 

The aeration process serves two purposes:  

1. A physical venting of the gasses H2S and CH4 (and CO2) from the water 

2. An increase of the oxygen content in the water to facilitate chemical/biological 

oxidation. 

There exist several aerations methods. Earlier fountains or aeration stairs were widely used 

in the Danish drinking water sector due to their simplicity. In these methods, the water is 



 

Water Treatment 232 

forced to run down a number of steps where the water will be mixed with air during the 

drops and the turbulence created by the impact on the following step (6).  

Cascade systems and trickling filter trays have also been used for aeration. These are 

variations of the fountain/stair concept, and show a somewhat improved aeration level. In 

the tray method, the water is led out onto perforated stainless steel plates with ø3-5 mm 

holes. This creates a large number of falling water jets that increases the total surface area, 

and hereby making the aeration more efficient. A drawback of the method is that the small 

holes tend to get clogged. The cascade system is similar to the fountain/stair system. Here 

the water runs down through a series of closed boxes with a small drop from box to box. 

This creates a negative pressure that sucks air down through the system and increases its 

efficiency compared to the open fountain/stair systems (6).  

In cases where a large degree of venting is necessary, an INKA system can be applied. Here 

the water flows across a perforated plate, while air is blow up from below. This creates a 

large air to liquid ratio of up to 50-200, and ensures a very effective venting. Usually, this 

degree of venting is not necessary, and it might also affect the calcium carbonate balance 

negatively, since it will vent off a large degree of CO2, leading to precipitation of calcium 

carbonate as pH increases. Also, the process is energy demanding and as such expensive (6).  

Today, the most wide spread aeration method is bottom diffusers. The air inlet can be 

placed in a highly porous polyurethane sponge, which will ensure formation of small 

bubbles to give an efficient transfer of oxygen from air to water. The diffuser system has a 

better ability to saturate the water with oxygen, as well as to vent unwanted gasses 

compared to the previously used techniques. One of the main advantages of the diffusor 

system is that it can be modified to handle variations in the water flow and type of 

groundwater. An increase in the oxygen demand can be met by increasing the air flow; 

something, that cannot be done with the methods using the fall of the water for aeration. 

These must be designed to meet the specific oxygen demand for each waterworks. The 

oxygen demand is determined both by the flow and the groundwater’s content of oxygen 

consuming species. The oxygen consuming species and their oxygen demand are shown in 

Table 4 along with the respective oxidation reactions: 

 Oxidation of Fe2+ and Mn2+ to insoluble solids 

 Oxidation of NH4+ to NO3- 

 Oxidation of H2S and CH4 to SO42- and CO2 

The relatively high oxygen demand of the methane and hydrogen sulfide oxidation 

reactions makes it important to vent these gases. Otherwise, the residual oxygen 

concentration might not meet the limit of 5 mg/L. Low oxygen concentration in the drinking 

water may result in anaerobic conditions in the piping system, leading to unwanted 

microbial growth. In case of microbial growth, nitrate may be reduced to nitrite, which may 

then increase to a level above the threshold limit. After aeration, the water may be lead to a 

reaction tank to allow for sufficient reaction time for the chemical oxidation reactions, but 

often the water is led straight to the sand filter(s). 
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Substance Oxidation Oxygen demand 

per mg 

Fe2+ 4ܪ(௔௤)ା + ܱଶ(௔௤) + ଶା(௔௤)݁ܨ4 → ଷା(௔௤)݁ܨ4 + ଶܱ(௟)ܪ2 0.14 

Mn2+ 4ܪ(௔௤)ା + ܱଶ(௔௤) + ଶା(௔௤)݊ܯ2 → ସା(௔௤)݊ܯ2 + ଶܱ(௟)ܪ2 0.29 

NH4+ 2ܰܪସ(௔௤)ା + 3ܱଶ(௔௤)→ 2ܱܰଶ(௔௤)ି + ଶܱ(௟)ܪ2 + ା(௔௤)ܪ4  

3.6 

2ܱܰଶ(௔௤)ି + ܱଶ(௔௤) → 2ܱܰଷ(௔௤)ି
CH4 ܪܥସ(௔௤) + 2ܱଶ(௔௤) → ଶ(௔௤)ܱܥ + ଶܱ(௟)ܪ2 4.0 

H2S 2ܪଶܵ(௔௤) + ܱଶ(௔௤) → 2ܵ(௔௤) + ଶܱ(௟)ܪ2 0.51 2ܵ(௔௤) + 3ܱଶ(௔௤) + ଶܱ(௟)ܪ2 → ଶܵܪ ସܱ(௔௤) 0.79 

Table 4. Oxygen demand for main oxidizable components in groundwater (5). 

Sand filtration 

In the sand filtration, solid precipitates are filtrated from the water, and it is here that the 

largest part of the oxidation reactions takes place.   

The oxidation of ferrous to ferric ions results in iron precipitating from the water as 

ferrihydrite because of its low solubility (pKsp = 38.8, T = 25 °C zero ionic strength, (3)).  

ଷା(௔௤)݁ܨ  + ି(௔௤)ܪ3ܱ →  ଷ(௦) (17)(ܪܱ)݁ܨ

The ferrihydrite coats the sand grains, where it leads to autocatalysis of the oxidation 

reaction (7, 8). The autocatalytic reaction makes the iron oxidation very efficient, and 

removes the need for a reaction tank before the sand filter (6). Because of the redox potential 

for the oxidation of ferrous to ferric iron, the use of oxygen as the oxidizing agent is 

sufficient, see Figure 3. In some cases the chemical catalytic oxidation can be supported by 

iron oxidizing bacteria, which can increase the rate of oxidation/precipitation even further. 

An iron oxidizing bacteria often found in sand filters of Danish waterworks is Gallionella 

ferruginea that has been found to enhance the oxidation and precipitation velocity due to 

their production of exopolymers. The exopolymers give a denser structure of the iron 

precipitate, and allows for more iron to be removed by the sand filter before a backwash of 

the sand filter for its cleaning is necessary (9).   

The redox potential for the oxidation of manganese(II) to manganese(IV) is higher compared 

to the iron(II) to iron (III) oxidation, see Figure 6, and with oxygen as the oxidizing agent, 

the process is relatively slow. At neutral pH, the reaction between Mn(II) and O2 is around 

106 times slower than the reaction between Fe(II) and O2 (7). However, two processes in the 

sand filter aid the oxidation of manganese: Surface catalyzed oxidation and co-precipitation 

with ferrihydrate. Both processes can be illustrated by the two step reaction scheme in 

Figure 4. 
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Figure 3. Pourbaix diagram for iron, showing the most thermodynamical stable form as a function of 

pH and redox potential. 

 

Figure 4. Reaction scheme for the oxidation of manganese in sand filters, where Me symbolizes a 

transition metal ion. 

In the first step, Mn(II)-ions is oxidized to MnO2. As with iron, the oxidation of manganese is 

catalyzed by metal oxide surfaces on the sand grains. The hydroxyl groups on the metal oxide 

surface (Me-OH) attracts the Mn(II) ions and promote the oxidation, as illustrated in step two. 

If the metal surface is manganese oxides, the process is autocatalytic, but because of the ratio of 

iron and manganese in groundwater, the metal surface is most likely iron oxides in the first 

filtration step where manganese is then said to co-precipitate with iron (7). In the second 

filtration step precoating of the sand grains with manganese oxide can help oxidizing the 

adsorbed Mn(II) ions, see step three. The result is that it is not necessary to use stronger 

oxidizing agents than the oxygen found in atmospheric air to remove iron and manganese.  

Also present in the sand filter are nitrification bacteria. These will oxidize ammonium first 

to nitrite and afterwards to nitrate (6). 

To ensure an efficient oxidation, a double filtration system is commonly employed. The 

sand filters may be open or closed, with variations from waterworks to waterworks. The 

filters are back washed at regular time intervals, in a process where first air followed by 

water are sent backwards through the filter system. The air will remove and lift the colloids 

adsorbed to the sand grains producing a floating sludge on top of the filter. Later it will be 

washed away by help of the back wash water. At some drinking water treatment plants, the 

backwash water is returned to the plant where it is treated with UV-light, filtrated, oxidized 
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again, and brought to the drinking water container. When a sand filter is changed, some of 

the old sand is mixed with the new to preserve the microbiological environment and to 

increase the rate of re-population.  

To demonstrate the effect of the processes included in a simple treatment at Danish 

waterworks, data has been collected at a specific waterworks at different points along the 

treatment process. 

 

Figure 5. Pourbaix diagram for manganese, showing the most thermodynamical stable form as a 

function of pH and redox potential. 

Simple drinking water treatment – Case Spangsbjerg waterworks, Esbjerg 

Spangsbjerg waterworks is one of four waterworks in the city of Esbjerg. It is one of the old 

waterworks placed in the city, but today 75 % of the groundwater is produced from wells 40 

km away in central Jutland, from two deep aquifers: Boegeskov and Sekaer. The waterworks 

is equipped with a diffusor system for aeration and two open sand filters in series. After 

treatment the water is stored in a buried drinking water storage tank outside the 

waterworks. 

To evaluate the effect of the treatment, the concentration of Fe2+, Mn2+, Ca2+, Mg2+ and NO3- 

was measured with ICP-AES at five places during the treatment. 

1. Raw groundwater 

2. After aeration 

3. After 1st filter 

4. After 2nd filter 

5. Storage tank 

The results are plotted in Figure 6 with the x-axis representing the transport through the 

waterworks. 
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Figure 6. Concentration levels of major constituents of groundwater through Spangsbjerg Waterworks 

simple drinking water treatment. 

As seen, iron and manganese are effectively removed by the sand filters. Manganese are not 

affected significantly by the pure oxidation, but is almost completely removed already in the 

first filter. Some iron is removed by the homogenous oxidation, and needs to go through 

both filters to be reduced to below the accepted threshold limit. Ammonium is not directly 

measured, but the graph shows that the ammonium in the water is effectively converted to 

nitrate in the first filtration step. This is important since it shows that the conversion is 

complete in the first sand filter, meaning that no nitrite is left in the treated drinking water. 

Calcium and magnesium passed unaffected through the waterworks together with other 

macro ions as K+, Na+, Cl-, SO42- and the main part of HCO3- . The unchanged hardness is also 

to be expected since Spangsbjerg Waterworks only applies aeration and sand filtration, 

which do not affect the solubility of calcium and magnesium minerals significantly.    

5. Extended water treatment in the Danish drinking water sector 

It requires a special permit if a Danish waterworks is to apply more advanced water 

treatment techniques than those already described in simple water treatment1. To achieve a 

permit, the waterworks must submit a technical, economic and environmental report for the 

choice of treatment technology according to § 14, part 2 of executive order no. 1451. 

Furthermore, according to § 9 of executive order no. 1451 it is necessary to obtain a 

statement from the National Board of Health, which is represented by the medical health 

inspectors (10). The need for a special permit is based on the principle that if techniques 

capable of removing pollution are allowed, the incentive towards avoiding pollution of the 

groundwater in the first place will be smaller. Therefore, if a well is found to be polluted, 

common practice is to close the well or use it for purposes other than drinking water, 

instead of applying more sophisticated water treatment techniques. With the structural 

reform of the Danish municipalities in 2007, the power to give permissions for extended 

                                                                 
1 From here on techniques other than what constitutes the simple water treatment will be classified as extended water 

treatment techniques. 
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water treatment was moved from the counties to the municipalities, which are expected to 

be more willingly to allow for further treatment (11). However, the conservative approach to 

the use of extended water treatment techniques is still widespread throughout the Danish 

drinking water sector, and the use is very limited.  

Before the municipality reform was enforced, a compilation of the applications for use of 

extended water treatment techniques was made, and it was found that the sources for need 

of further treatment of the water was distributed into four categories (11). Treatment for: 

1. Main constituents of groundwater: Aggressive carbon dioxide, Ca2+ and hardness, SO42-, 

Cl-, NO3-, Fe/humus-complexes, humus and color. 

2. Inorganic trace compounds: As and Ni. 

3. Problems caused during simple treatment: Fe/Mn/NH4+ removal and increased bacterial 

count. 

4. Organic micropollutants: Pesticides and chlorinated organic solvents 

An overview of the application is given in Table 5. 

 

Problem 

causing compound 

Number of 

applications 

Geographical

placement 

Main constituents 28  

Agg. CO2 9 Bornholm, west- and eastern Jutland 

Ca and hardness 6 
Funen, west- and southern Jutland, 

Zealand 

SO42- 1 Copenhagen 

Cl- 1 Southern Zealand 

NO3- 4 Northern Jutland 

Humic-bound Fe 5 Jutland 

Humus 1 Western Jutland 

Colour 1 Southern Jutland 

Inorganic trace compounds 11  

As 10 
Funen, Eastern Jutland, Southern 

Zealand 

Ni 1 Copenhagen 

Operational problems 3  

Mn/NH4+ 1 Western Jutland 

CFU 2 Western Jutland 

Organic micropollutants 19  

Pesticides 13 
Funen, Copenhagen, north, east and 

central Jutland, Zealand 

Chlorinated solvents 6 Funen Copenhagen 

Total 61

Table 5. Overview of compounds causing need for extended water treatment in the Danish drinking 

water sector (11). 
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As a result of these applications, there were 29 plants operating with extended water 

treatment in 2006. 14 of these were treating for issues with main constituents, nine for 

problems with inorganic trace compounds and five treating for pesticides and chlorinated 

solvents. The total amount of produced water from these plants was 2.5 million m3 annually 

(11). The main problems may be divided into two groups: One correlated with the Danish 

geology, and a second with the anthropogenic activity. 

Problems with calcium carbonate scaling and arsenic contamination belong to the first 

category, and are most prominent from Eastern Jutland and eastwards. This part of the 

country was covered by ice during the last ice age, while the western part of Jutland was left 

uncovered. As a result, carbon dioxide in the rain has dissolved much of the calcium 

carbonate in the underground in this part of the country. The soil is also more sandy in the 

western part of Denmark, while the soil in East Denmark has a high content of clay; a fact 

which also influences the vulnerability of the groundwater aquifers (1, 12).  

The second category, pollution caused by anthropogenic activity, is distributed over the 

entire country, although it is also influenced by the geology, mainly the type of soil. The two 

main threats to groundwater quality are nitrate and pesticides. Chlorinated organic solvents 

are also a concern, but they are often found together with pesticide pollution (1). 

In Table 6 an overview of the techniques applied as extended treatment in the Danish drinking 

water sector is given. It is seen that for some of the problems only one type of technique has 

been investigated, as with the use of active carbon filtration for removal of pesticides, whereas 

for other problems, a wider range of techniques have been applied. The use of different 

techniques is also correlated to the number of times the problem has been encountered. 

 

Problem Treatment technique

Aggressive CO2 NaOH, Ca(OH)2 

Calcium and hardness CO2, fluid-bed softener, magnetic treatment 

Chloride Reverse osmosis 

Nitrate Nitrate-redox method 

Humic-Fe and humus Al2(SO4)3, KMnO4, AlCl3 

Arsenic FeSO4, FeCl2 

Chlorinated solvents Active carbon + UV, extended aeration (Microdrop) 

Pesticides Active carbon + UV 

Table 6. Overview of extended water treatment techniques applied for the different problems 

encountered in the Danish drinking water production (11). 

To investigate the use of some of these techniques in greater detail from here on, a case 

study approach will be used. 

6. Galten waterworks – removal of arsenic 

In 2003 the threshold limit for arsenic in drinking water was lowered from 50 to 5 µg/L. As a 

result, many waterworks situated in places with marine clay sediments got issues with 
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removal of arsenic (12). In Figure 7, it can be seen where in Denmark arsenic has been found 

in the drinking water, and it is clear that the clay rich eastern part of Denmark from east 

Jutland and eastward is the most affected. Arsenic is often bound to iron minerals and 

released when ferrihydrite (Fe(OH)3) is reduced or pyrit (FeS) is oxidized. However, it has 

been found that by applying reduced iron, arsenic can be made to co-precipitate (13). At 

Galten waterworks near Aarhus, the concentration of arsenic was found to be 21 µg/L, and 

experiments with addition of FeSO4 were made at the smaller waterworks Galten 

Vestermarks. The method has been found to be effective. Based on these results, in 2004 

Galten waterworks applied for permission to use FeSO4, in concentrations of 5 mg/L, for 

removal of arsenic, to be able to meet the threshold limit. The permission was given, but 

only for a two year period based on the recommendation of the health inspector (11). In 2008 

Galten waterworks got permission to use FeCl2 to remove arsenic (14).  

 

 

 

 
Figure 7. Map of drinking water wells in which arsenic has been found in the period from 1981 to 2006. 

Modified from Viden om Grundvand (15). 
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Areas with arsenic concentrations above the threshold limit in more than 100 water wells are 

shown by red colour (15). 

Frederiksberg waterworks – removal of chlorinated solvents 

In many places in Denmark, the groundwater is polluted with organic micropollutants such 

as chlorinated solvents. These originate from varying sources, including landfill leachate, 

colouring and varnish industry, pesticide production industry, gas stations and dry cleaning 

industry. Because the pollution is industrial related, it is often found close to population 

centers, where also many drinking water wells have been placed (1).  

Frederiksberg waterworks is found close to central Copenhagen and produces 2,500,000 m3 

drinking water annually, which is 45 % of the total consumption for Frederiksberg. The 

remaining water is purchased by Copenhagen Energy. In 1997 the waterworks filed for 

permission to establish an active carbon filtration system because the wells had been found 

to be polluted with a wide range of mainly chlorinated solvents. In the wells 1,1,2-trichloro-

ethene, cis/trans-1,2-dichloro-ethene, 1,1-dichloro-ethene, tetrachloro-ethene, vinylchloride, 

1,2-dichloro-ethane, MTBE, toluene and benzene have been found in concentrations of 0.02-5 

µg/L  (15). In the application the waterworks assessed that it was not possible to find new 

wells without pollution. Also, although it was possible to purchase water from Copenhagen 

Energy, it was stressed that this would result in increased pressure on the environment of 

Zealand from where the water would be drawn. Already, Zealand is relatively poor in 

received rainfalls, and it was viewed as important to use the water resources as efficiently as 

possible (11).  

In June 1997 permission was given to use active carbon for a five year period. Originally, 

Frederiksberg waterworks had applied for a permanent use of carbon filtration, but the 

health inspector would only agree to the five year permission. Later the permission has been 

extended on several occasions, latest in 2009, on the conditions that the filtration system is 

regularly checked for efficiency in removal of the chlorinated solvents.  

The long term goal for the waterworks is to supply water that has only gone through simple 

water treatment, and to lower the content of chlorinated solvents in the water. A new 

extraction strategy was constructed in 2003, in which two new wells were established. 

However, this has not been sufficient to reduce the concentrations, and carbon filtration 

continues to be necessary. 

At Frederiksberg waterworks, the water first undergoes a simple treatment with aeration 

and sand filtration before it is stored in the water tanks. The carbon filtration system is 

placed after the storage tanks, and consists of two closed filters in parallel, followed by UV 

disinfection. Parallel filters have larger treatment capacity and are cheap with regards to 

installation costs, but also have higher risk for a breakthrough compared to serial setups, 

where the breakthrough can be measured on the first filter. To compensate for the higher 

risk of breakthrough, sampling points have been installed on the carbon columns to 

measure the saturation front. The filtration system has a capacity of 500 m3/h, contains 16 

tons coal per filter and each filtration tank has a volume of 40 m3. 
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7. Hvidovre waterworks – removal of pesticides 

One of the biggest issues in the Danish drinking water sector is contamination of the 

groundwater with pesticides, and it is estimated that between 1993 and 2009 around 130 

wells all over the country have been closed due to pesticide pollution (16).  Since 1993 the 

degree of pesticide pollution of the Danish groundwater has been monitored by the Danish 

geological service (GEUS), and during the years, an ever increasing amount of the aquifers 

has been found to be contaminated, as seen in Figure 9. This is not so much a result of an 

increasing actual pollution, as it is a result of more and more pesticides being included into 

the monitoring program. In the latest report, it was found that between 1990 and 2010, 50.7 

% of the monitored aquifers had been polluted with pesticides, and that 24.5 % of the wells 

used by the water works contained pesticides (1). In Figure 8 it can be seen that all parts of 

Denmark, bot rural and cities, are affected by the pollution. However, the monitoring 

program does only cover parts of the aquifers in Denmark, and the pesticides currently in 

the monitoring program only constitute 29 % of the total sale of pesticides in Denmark from 

1988 to 2010. The degree of pesticide pollution may as such be expected to increase over the 

coming years, forcing more waterworks to initiate extended treatment.  

 

Figure 8. Map of groundwater wells (1993-2004) and drinking water wells (1993-2010) where pesticides 

have been found (1,15). Modified from Viden om Grundvand (15). 
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Of the pesticides currently in the program, 2,6-dichlororbenzamide (BAM), is the biggest 

problem, being found in 20 % of the analyses which have been found to contain pesticides 

(1). In all cases where extended treatment has been used to remove pesticides, it has been 

BAM that has been the polluting pesticide (11). BAM is a degradation product of the 

pesticide dichlobenil, which was earlier a widely used pesticide for removal of weed on 

uncultivated areas like farmers gravel covered courtyards, public parks and along railways. 

Hvidovre Waterworks is situated in South East Copenhagen and produces around 800,000 

m3 of drinking water annually. Besides this, 2,400,000 m3 is purchased annually from 

Copenhagen Energy to supply the waterworks own production.  In October 1995, when 

BAM was taken into the analysis program of the waterworks, it was found in all the wells of 

Hvidovre waterworks, and in several of these wells BAM was found in concentrations 

above the threshold limit of 0.1 µg/L. In 1996, Hvidovre waterworks applied for permission 

to use active carbon filters followed by UV disinfection. In the application, the waterworks 

listed two scenarios: 1) Increase the amount of purchased water from Copenhagen Energy to 

lower the concentration below the threshold limit through dilution, or 2) Apply active 

carbon filtration to remove the pesticides. The use of active carbon was the cheapest 

solution, and also the ability to produce its own water was important to Hvidovre 

Municipality. On the 27th of June 1996, a temporary permission was given on the grounds 

that it was important to maintain a local drinking water production (health inspector), and 

because the county assessed the technology to be relatively simple. As a condition for the 

permission, an analysis program was setup to measure the concentration of BAM in the inlet 

and outlet of the waterworks and in the carbon filter, as well as bacteriological analyses to 

monitor the effect of the UV system. The first permission was given for three years and later 

extended on several occasions, since the system has been found to be effective at removing 

BAM and because it would be more expensive to purchase increased amounts of water from 

Copenhagen Energy (11). 

The water treatment at Hvidovre Waterworks consists of a simple treatment with aeration 

on cascade trays and two step serial sand filtration. The carbon filtration unit is installed at 

the outlet of the sand filter before the water is pumped to the drinking water tank, and is 

similar to the one installed at Frederiksberg waterworks. The full capacity of the system is 

150 m3/h, but it operates at lower capacities around 90 m3/h. Each filter contains 6.3 tons coal 

and has a volume of 15 m3. 

8. Sjaelsoe waterworks – removal of mycotoxins from surface water 

Today all drinking water in Denmark originates from groundwater. However, because of 

the low rainfall on Zealand, it has been necessary on occasions to use surface water. One 

such waterworks, capable of treating surface water is Sjaelsoe Waterworks in Rudersdal 

Municipality, north of Copenhagen, where it supplies drinking water to Gentofte, Lyngby-

Taarbaek, Hoersholm and Karlebo municipalities. It produces around 5.5-6 million m3 

annually, but has a capacity of 11 million m3 (17). Because the water sources have a high 

variation in the composition of the water, the waterworks consists of three main facilities 

handling each type of water: 
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 Plant I: Is a traditional waterworks with aeration on a cascade tray and subsequent sand 

filtration. It handles water from one water source. 

 Plant II: Is equipped with a more efficient INKA aeration system, followed by sand 

filtration. The plant receives water from six water sources. 

 Plant II: Is equipped to handle surface water from Sjaelsoe, a local lake. The plant 

consists of a sand filtration unit followed by flocculation, sedimentation, ozone 

treatment and a final scrubbing with biological active carbon filtration. 

Due to the use of fertilizers, many of the inland waters in Denmark have suffered from 

eutrophication, which has also been the case in Sjaelsoe. Toxin analyses have shown the blue 

green alga from Sjaelsoe to contain microcystins in amounts from 1-59.1 µg per gram dry 

matter. To evaluate the plant’s efficiency in removing these compounds, experiments were 

made with microcystins extracted from dried algae on a pilot plant. The results showed that 

sand filtration and sedimentation did not affect the concentration of the microcystins, but 

that ozone was very effective for removing these compounds. By using an ozone 

concentration of 2 mg/L, the concentration of microcystins was reduced below the detection 

limit, see Figure 10 (18). 

 

 

Figure 9. Development in the percentage of the Danish groundwater reserve where pesticides have 

been found from 1990 to 2010 (1). 
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Figure 10. Removal of microcystin in a pilot plant at Sjaelsoe Waterworks. Modified from Blue green 

algae in bathing and drinking water (18). 

The plant at Sjaelsoe has as such been found to be effective in ensuring safe drinking water. 

Even so, due to the goal of using groundwater in the drinking water production, the plant 

has not been in operation since 1998. 
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