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1. Introduction

Vertebral compression fractures are very common low-bone-density related conditions among
the elderly and have a significant adverse health effect [1]. According to a survey by the
National Osteoporosis Foundation, osteoporosis related fractures cost an estimated $19 billion
in 2005 and the cost is predicted to go up to $25.3 billion by the year of 2025 [2]. The fractures
affects up to 25% of postmenopausal women [3]. Men are equally affected by this, but because
of greater peak bone mass, it occurs about 10 years later than women [4]. The thoraco-lumbar
region in the vertebra is the most common region where fractures occur, with T8, T12, L1
and L4 being the most commonly fractured segments [5]. The vertebral compression fracture
can be avoided by preventative medication and physical therapy if the trend of the bone
structure change is known. However, directly monitoring the density and structural change
of patient’s bones is practically impossible based on current technology. Examination of the
patients’ bones at regular intervals is costly, and not very helpful: the patients have to wait for
months or years to know the effect of their lifestyles on their vertebra, while at this point
any bone changes might already have occurred and damages made. Instead, simulation,
as an cost-effective and non-intrusive method, is a better way to “know” the bone change
in advance based on realistic input of loads and patients conditions, and thus prevent bone
fractures occurring.

Changes in the cancellous bone structure have been studied since Julius Wolff first discovered
the adaptive nature of the bone [6]. Different simulation techniques and models have been
proposed [7, 8]. However, in the previous studies standard load which is within the nominal
range experienced by the human vertebra were used. In reality this load varies for different
human subjects for various activities performed. This was a limitation in terms of the
ability to measure accurate loads. With technologies like the state-of-the-art motion capture
systems combined with musculoskeletal modeling and simulation softwares, accurate loads
on different segments of the body can be calculated. This helps in more accurate simulation
results.

This study aims at developing a simulation tool to predict the long term effects on the

micro-architecture of the vetebral cancellous bone, given the person’s present daily lifestyle,

©2012 Sonar and Carroll, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Figure 1. Schematic of proposed remodeling cycle

within a reasonable time frame (hours or days). Modules are created based on different

purposes of simulation, and these modules are integrated into one efficient simulation method

(Figure 1) that covers from the acquisition of individual motion data to the prediction of

the changes under various physical loads. The process starts with scanning of the vertebral

bodies to obtain µCT images. The µCT images are micro-computed tomography (µCT) images

generated using x-rays. The result is a 2D cross section of a 3D object which shows the internal

structure of the 3D object. In this particular case, pre-scanned µCT images were obtained.

These images are processed to separate the bone and the marrow. A 3D model of the bone

is constructed from the processed images. Quantifying parameters are calculated on the 3D

model of the bone. After calculating the loads on the vertebrae caused by different activities,

finite element methods are used to calculate the stresses within the structure caused by those

loads. This triggers the remodeling process which continues until a steady state is reached

and there are no more significant changes in the structure. If the method can differentiate

and quantify the vertebra bone structure changes under different types of physical loads, then

the method can be used to produce desirable physical therapy against the bone fractures and

density loss. The details of the method are discussed in the following sections.

2. Material and methods

Bone by its nature is dynamic. It undergoes constant structural changes as a result of

adaptation and remodeling. The purpose of remodeling is to prevent the accumulation

of damage, adapt the internal architecture to external loads [9]. To effectively study the
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(a) (b)

Figure 2. (a)Original µCT scan (b)Binary image after thresholding the ROI

remodeling phenomenon, it is important to know the components of the bone and the

remodeling process [10, 11].

2.1. Image processing

Tomography is widely used in medical radiology to produce noninvasive, diagnostic,

cross-sectional images of bone and tissue structure in human patients. As the input to our

modeling, we use a series of 2D µCT images, i.e., tomographic images whose resolution is

in the micrometer range [12]. Figure 2(a) shows a sample image which is 16 bit gray-scale

image, equivalent to histological sections used for microscopic slides. In order to effectively

reconstruct a 3D geometry of the bone, it is important to identify the various regions in the

gray scale image. The image shows bone, marrow and any artifact that might have been

introduced due to the instrument and the imaging technique or post-processing technique

used by the image reconstruction software. The goal of this section is to segment the bone

region in the µCT images and generate a 3D geometry from these images.

An important step in the analysis of µCT images is segmentation. This process separates

the bone from the surrounding marrow substance. Because of the difference in the density

between the bone and the marrow, the region occupied by the calcified bone is lighter

compared to the region occupied by the the marrow. An automated global thresholding

method proposed by Otsu [13], which chooses the threshold to minimize the interclass

variance of the black and white pixels in a grayscale image, was used to separate the bone from

marrow. Since the focus of this project is on the remodeling and adaptation of the cancellous

bone, a region of interest was chosen from the center of the vertebra. This removes the cortical

shell and any artifacts present at the edge during scanning. The diameter of the ROI was

arbitrarily chosen to be 480 pixels. To maintain the aspect ratio (diameter/height) of that

of a single vertebral body (1.33), a total of 360 images (480/360=1.33) were chosen from the

entire set. These cored images were then thresholded to separate the bone matrix form the
surrounding marrow (Figure 2(b)).

Once all the images were thresholded and segmented, the next step is to construct the 3D

geometry from them. 3D geometry can be represented in many ways. One way is to store a list

of vertices on the surface and a list of indices that form connected triangular facets from those
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vertices. This is an efficient and the most commonly used file format to store 3D geometries.

An isosurface algorithm is used to extract connected triangular facet information. The result of

this is a 3D surface geometry representing the cored section of the cancellous bone (Figure 3).

Figure 3. Surface model of the segmented core

Another useful way to represent the 3D geometry is using voxels. A voxel is a 3D pixel

element, i.e., a cube of user specified dimensions. The resolution of the voxel depends on

the resolution and the slice thickness of the µCT image. If the µCT images are stacked on top

of each other in a sequence, the slice number in the stack defines the Z coordinate. A right

hand coordinate system is used throughout the document unless otherwise mentioned. The X

and Y value of each pixel representing the bone in an image slice along with the slice number

of that particular image in the stack, defines the X, Y and Z coordinate of each voxel. An

example of the voxel model is illustrated in Figure 4. Although the surface model is a concise

and efficient way of representing the 3D geometries, the voxel model is useful in calculating

the various parameters that quantify the structure as explained in the following section.

2.2. 3D thinning algorithm

Thinning can be considered as a type of data compression where the important geometric

features of a structure are retained without having to store a large amount of data to represent

the actual geometry. Because of this, thinning is used in 3D object and feature recognition

methods. Recognizing the features of a 3D geometry helps in accurately measuring the

change in those features. Thus thinning serves as an intermediate step in calculating the

direct 3D quantifying parameters of the bone. Thinning generates a mid-axis for a rod-like

structure and a mid-plane for a plate-like structure. The process involves systematically

shaving off the surface voxels without changing the topology of the structure until the

skeleton of the structure is reached, at which point no more surface voxel can be removed.

The skeletons computed by various thinning methods produce spurious curves and surface

branches [15, 16]. These short branches do not add any useful information. Pruning the

unwanted short branches from both the curves and the surfaces with user controllable
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Figure 4. Voxel model of the segmented core

parameters is an useful feature, especially for complex structures like cancellous bone. Ju et

al. [17] proposed an efficient pruning algorithm, which handles both the curve and the surface

branches so that the final skeleton is both topology preserving and shape depicting. A slight

variation of the method proposed by Ju et al. has been successfully implemented in MATLAB.

The overview of the process in given below,

1. Find the bounday voxel

2. Find the critical points in the set of boundary voxels

• A point is a critical point if its removal changes the topology of the structure or if it is a

curve or a surface end point

3. Remove the non-critical points from the set of bondary points

4. Repeate steps 1-3 untill there are no more boundary points to remove

The next step in thinning is pruning. Noisy and redundant surface and curve edges are

removed in this step. This works on the same principal as morphological 2D image operators,

erosion and dilation. These two operations are performed on the set of object points or voxels.

Similar to the morphological operation on 2D images, opening has the effect of removing small

irregular protrusions and produces a smooth edge. In the complete algorithm to calculate the

skeleton of an 3D object, the thinning and pruning processes are run alternatively on the object

points [11, 17].

2.2.1. Validation of thinning algorithm

The performance of thinning algorithm was tested on shapes with varying structural

complexity in structure. It was first tested on a simple CAD geometry of regular grid of rods

of known dimension and thickness. As expected the algorithm generated a clean one voxel

thick mid-axis. This is shown in Figure 5, where the gray region represents the CAD structure

and the blue line is the calculated mid-axis. This structure was rotated by 5 and 30 around the
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X-axis, and the skeleton was calculated on both the geometries. The result on these structures

is discussed in [11].

Figure 5. CAD model and its mid-axis overlapped on it.

Next, the algorithm was tested on a CAD model with plates in it and µCT scans of Duocel

open cell aluminum foam with 20 pores per inch. In terms of the structure metal foam falls

between the regular CAD file and the cancellous bone. The results and explanation in given

in [11]. Finally a cancellous bone sample was used to calculate mid-axes; the results of which

are shown in Figure 6. This information will be used in the next section (2.3) to calculate

parameters quantifying the structure.

Figure 6. (a) Bone sample and (b) its skeleton overlapped on it.

2.2.2. Parallelization of thinning algorithm

The thinning algorithms are iterative in nature, i.e., voxels are traversed and removed either

layer by layer or sequentially. As the size or the resolution of the geometry increases, the

time taken to calculate the skeleton increases. For a complex structure like the cancellous

bone within a vertebra, it becomes practically impossible to calculate the skeleton on a single
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machine within a reasonable time frame (minutes or even hours). To get an approximation

of the computational time required to do such a calculation, Figure 7 shows a plot of time

required to do such a calculation for different size geometries. If the calculations were being

done on an entire vertebra, the time taken would be too long to be of any practical use.
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Figure 7. Time taken to calculate the skeleton.

One solution to this problem is to share the data across multiple processors and do the

calculations in a distributed way. The concept of parallel computation is not new [18, 19].

Various techniques exists to perform parallel computations on a given data set. However,

these algorithms are specific to an application and the literature on parallel computation

of medial axes for the purpose of quantification is scarce. A simple and efficient method

was developed and implemented using MATLAB’s Parallel Computing Toolbox (PCT) and

Distributed Computing Server toolboxes [14]. The concept is to split the data into smaller

fragments which is customizable in terms of size and dimensions, send it to different processor
cores, perform 3D thinning on the individual segments with the knowledge of how the

segments are shared, collect the resulting data and combine the fragments to generate the

final skeleton of the original structure. The details of the implementation are discussed in

[11].

2.3. Quantification

Cancellous bone undergoes constant change in its micro-architecture. This change is more

prominent in bone disorders like osteoporosis. As a result, the bone mass changes. Bone

mass alone is not sufficient to quantify these changes. Clinical studies have shown that the

cancellous structure experiences significant changes which affect the mechanical properties

of the bone changes [20, 21]. This change in the micro-architecture of cancellous bone leads

to decrease in bone strength and eventually lead to vertebral compression fractures [22]. A

prominent change of plate-like structures to rod-like structures was shown by Ding et al. [21]

after the age of 60 years. Loss of entire struts or conversion of plates to struts due to perforation

was shown by Parfitt et al. [23]. These previous data show that apart from the overall bone

mass, cancellous bone goes through important structural changes.

Apart from the visual assessment of the structural changes, different structural parameters

are used to characterize these changes [24, 25]. In the past, these parameters were studied by

147Simulation of Subject Specifi c Bone Remodeling



8 Will-be-set-by-IN-TECH

the examination of the 2D cross-sections of cancellous bone biopsies. The 3D morphometric

parameters are then derived from 2D images using stereological methods assuming a fixed

structual model [24]. Recent advances in µCT have made it possible to acquire these

parameters directly from 3D µCT image [26, 27] without any underlying model assumptions.
The calculated midaxes can also be used to decompose the bone into rods and plates [17].

Further, the orientation of the rods can also be calculated. By decomposing the cancellous

bone into rods and plates, the parameters can be calculated for the rods and plates seperately.

A comparison between the indirect calculated values assuming fixed model structure and the

model independent direct calculation is made in [27]. These comparisons show that making

assumptions on the type of cancellous bone structure leads to errors in the calculated values.

Hence, a model-independent calculation of the parameters was used.

2.3.1. Parameter calculations

Based on the literature search the following set of parameters were chosen to characterize

the bone sample [24, 27]. They are: bone volume fraction, which is a ratio of bone volume

to the total volume (BV/TV); surface density, which is the ratio of bone surface area to the

bone volume (BS/BV); trabecular thickness (Tb.Th); trabecular separation (Tb.Sp); and the

trabecular number (Tb.N). The cancellous thickness, separation and number are measured

directly from the 3D geometry with the method proposed by Hildebrand et al. [26] as

described later in the section.

The bone volume (BV) is the volume enclosed by the bone surface. This does not include

the marrow space. Total volume (TV) is the volume of the bone including the marrow space.

Since the bone geometry is irregular, it is difficult to calculate the volume. To overcome this

problem, the bone geometry is split into smaller known geometries (a tetrahedron in this case)

and add the volume of each element [11]. Tetrahedral mesh generation algorithm [28] was

used to divide the bone in to smaller elements. The bone surface area is calculated by adding

the area of all the triangular facets generated by the isosurface function [10, 11].

Before calculating the other three parameters, the skeleton of the structure is calculated as

described in section 2.2. The thickness calculation uses a volume-based approach rather than

the conventional surface based approach [26]. According to the volume-based approach, the

local thickness (τ) is defined as below. If V is the set of object points, then the local thickness

measured at point p ∈ V is the diameter of the largest sphere centered at point q containing the

point p and completely inside the structure at the same time (Figure 8). The mean thickness of
the structure is defined as the arithmetic mean of all the the local thicknesses. To implement

this on a discrete 3D volume, the Euclidean distance from a point (q) to the nearest background

point is assigned to that point. This is calculated using a fast distance map algorithm proposed

by Maurer et al. [29]. This distance is equivalent to the radius r of the sphere centered at that

point q. The local thickness measured at point q is given by Equation 1 where, sph(q, r) is the

set of points within the sphere centered at q with a radius r.

τ(q) = 2 ∗ max(r|sph(q, r) ⊆ V) (1)

Figure 8 illustrates this concept. The blue line is the object boundary, red line is the mid-axis of

the object. If p is a point within the structure and p ∈ sph(q, r) then the local thickness of point
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p is given by 2 ∗ r, the diameter of the largest sphere which encloses point p. Since the points

on the mid-axes are the center of largest diameter sphere that can be fit within the structure,

the local thickness of all the points on the mix-axes are calculated. The mean thickness of the

structure is the average of all the local thicknesses calculated for that structure.

where,
r = Distance map at point q
p = A point within the object

Figure 8. Thickness calculation of a structure.

Calculating the trabecular separation (Tb.Sp) is similar except the maximum diameter sphere

is fit within the marrow space. For trabecular number (Tb.N), the sphere fit within the marrow

space is extended all the way to the mid-axes of the adjacent trabeculae.

2.3.2. Algorithm verification

The quantifying algorithm explained and implemented in the previous sections was verified

on three different types of structures, a 3D CAD model of regular grid and known dimension

with only rods, a similar CAD model with both rods and plates, and finally on µCT images

of open cell metal foam structure with 20 pores per inch. The 3D CAD models have an aspect

ratio of 1.3 which is the same as vertebral bone [30]. Since the parameters are measured on

digitized images, the resolution of the µCT images have a significant effect on the calculated

values. The 3D CAD models were imported into MATLAB with varying resolutions, and

the set of parameters were calculated for each resolution. The error vs. resolution graph is

plotted for each of the parameters for the 3D CAD model (Figure 9). As can be seen from

these graphs, as the resolution increases (in other words, the size of voxels decreases) the

error becomes small. The other cause of error due to digitization is how well the voxels are

aligned with the surface boundary of the 3D geometry.

The quantifying parameters were measured on this CAD after rotating it around the x-axis by
5°and then by 30°. The same procedure was repeated on a CAD model with both rods and
plates. The results of this is discussed in [11].

The third structure used for verification was a metal foam sample scanned at a resolution of
28.7µm/pixel. The average calculated values of the parameters for this structure are shown in
Table 1.

To find the accurateness of the results, struts were randomly picked from the metal foam
sample. The thickness of these struts were measured by hand by fitting spheres within the
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Figure 9. Parameters of CAD model in its original orientation (a) Trabecular thickness (b) Trabecular
separation (c) Trabecular number (d) Bone volume fraction (e) Bone surface density.

Parameters Calculated values Measured values % Error

rTb.Th (mm) 0.3276 0.3198 -2.4405%
pTb.Th (mm) 0.4618 0.4558 -1.3163%

Tb.Sp (mm) 0.7118 0.7312 2.6532%

Tb.N (mm−1) 1.0999 0.9991 -10.08%

BV/TV (%) 0.1301 0.1319 1.3646%

BS/BV (mm−1) 8.3297 8.4213 1.0877%

Table 1. Calculated parameters of the metal foam sample.
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struts. To measure the angle, cylinders were fit to the strut and the angle of the axis of the
cylinder was taken as the true angle of the strut. These values were then compared to the
calculated values from the quantifying algorithm. The metal foam sample has 300 struts in
it. To assess the results with a 95% confidence level and within a 5% confidence interval, the
sample size was determined to be 169 [42]. Lillefors test for normality was performed on
the data sets using the MATLAB’s Statistical toolbox which proved that the both of the data
sets come from data which is normally distributed. Thus the verification process shows that
the calculated values are within an acceptable range of ±5% of error. It was also concluded
that the resolution and the orientation of the scans of the object have significant effect on the
calculated values. As the resolution increases the error in the calculated values are generally
reduced.

2.4. Lumbar load calculation

The skeleton is a load bearing structure. Skeletal segments are connected to each other by
joints of various degrees of freedom. Each joint in the body experiences different amounts
of load depending on the type of activity done by the human subject. This subject specific
loading data can be used to predict the state of the bone structure with techniques that have
been studied, tested and verified to comply to the rules of bone remodeling (2.5). The realistic
loading data can be collected by surgically placing the load sensors into the subject’s body at
a desired location [31, 32]. But this is not a practical solution to be used as a clinical tool. An
alternative solution is to use motion data of the subject to drive a human body model in a
musculoskeletal modeling and simulation software like lifemod [43].

2.4.1. Motion capture (MOCAP)

The first step is to capture the motion of a subject. The Vicon motion capture system was
used for this purpose. The setup consists of 10 ViconMX cameras. A full body Plug-in-Gait
marker set with 39 markers were used. 9mm retro-reflective markers were fixed on to the
black jumpsuit, worn by the user, with velcro. The details of the marker set are given in [11].
For the preliminary study, to show the proof of concept, two different types of motion were
chosen: walking, and rope jumping exercise. Basic subject specific data was recorded for
each subject. Two subjects were used in this test. Once the subject were markered up, s/he
was asked to perform the two tasks and the data was collected using Vicon Nexus software.
Figure 10 shows a screen shot of the Vicon Nexus software illustrating the camera setup and
the subject within the capture volume. A custom MATLAB script was written to convert the
motion capture data from Vicon system into LifeMOD compatible format.

2.4.2. Detailed lumbar model in LifeMOD

LifeMOD is a virtual human modeling and simulation software. It is built on MD ADAMS
software which is a standard for mechanical system simulation. Given the basic information
such as age, height, weight and gender, LifeMOD can generate a full body model with the
basic bones, muscles and joints based on its anthropometric database. This basic model can
be refined according to the users needs by adding more muscles and/or bone segments. It
gives the user the ability to develop a full-body or a body segment with all the bones, joints
and simulate muscles with varying levels of detail. With the ability to import the motion
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Figure 10. Camera setup for motion capture.

capture data and to perform forward and inverse dynamic simulations, it can calculate the
force, displacement and torques on each of the body segments. This provides an important
tool to calculate the forces acting on the L4 vertebrae without having to insert a pressure sensor
into the subject. Because of this ability, the remodeling techniques can eventually be put to
practical use.

The full body model generated by LifeMOD, along with the anthropometric data, treats the

central torso containing the lumbar vertebrae as one segment (Figure 11). In order to calculate

the loads on L4 vertebrae this model needed to be refined by adding individual vertebral

bodies and intervertebral discs in the lumbar section. The components involved in creating

a detailed lumbar section is shown in Figure 12. The adjacent segments, vertebral bodies,

are connected to each other via spinal or the intervertebral discs. The intervertebral discs

are kinematic constraint connecting adjacent vertebral bodies. These are implemented as a 6

degree of freedom force between any two given segments which include all the connective

tissue between them. The disc is formed as a spring force. The values for stiffness and

damping coefficient are used from the anthrompmetric data base in LifeMOD.

The spinal discs are connected to the vertebral segments at user specified landmark locations.

A landmark is any significant location on a segments or bones in the model. It is an

anatomical marker which represents position and orientation and moves with the segment

to which it is attached to. The landmarks on the vertebral bodies were placed according to

the locations specified in the literature [33]. The spinal discs connect to the inferior landmark

on the vertebral body above them and superior landmark on the vertebral body below them

(Figure 12). A detailed lumbar model was created in LifeMOD and incorporated in the full

body model replacing the existing central torso section (Figure 13).

2.4.3. Load calculation with MOCAP data

With the full body model refined to include the detailed lumbar section, Motion capture

(MOCAP) data is imported in to LifeMOD. Along with the x,y and z coordinates of the

marker for each time-step the MOCAP data file contains the subject specific data (age, height,

weight and lengths of body segments). This information is used by LifeMOD to scale the
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Figure 11. Fullbody model with the central torso enlarged.

L1 vertebra

L2 vertebra

Disc

Landmark

Landmark

Figure 12. Exploded view of the lumbar vertebrae with spinal disc

musculoskeletal model and all its segments to match the subject data. Apart from the

automatic scaling and positioning, manual tweaking to position the segments in the correct

position by visual inspection of the landmark locations was necessary. The final body model

along with the motion capture data is shown in Figure 14. The yellow spheres represent the

marker agents imported through the motion capture data and the red spheres represent the

locations on the body segments to which the marker agents are attached. Within LifeMOD

the motion data (yellow spheres) and the marker locations on the body segment (red spheres)

are linked via spring elements. The use of spring elements becomes clear in the next step.
This helps to make adjustments for small differences in the human body model and the actual

human subject.
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Figure 13. Closeup of the detailed lumbar model created in LifeMOD.

Figure 14. Body model along with the motion capture data.

With the motion capture data imported into LifeMOD, the next step is to perform an

equilibrium analysis (or Settling run). In this process the model is fit to the data positions.

The body segments are repositioned, while still maintaining the joint definitions, to match the

position represented by the motion capture data. It is a dynamic analysis in which the data

driven marker agents (yellow spheres) are fixed and the body segments are moved to find

minimum energy configuration in the springs connecting the marker agents (red spheres).

While recording the motion data, the markers placed on the body segment might not be

exactly on the specified location. This means that, during equilibrium analysis the markers on

the body segments will never overlap with the motion capture data points. The equilibrium

analysis helps to reposition the model to align with the initial position of motion agent data.
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Having the motion agents and the body segment markers agents connect via spring elements

allows for minor differences between the locations of these two marker sets. The final body

position after equilibrium analysis is shown in Figure 15.

Figure 15. Body model after equilibrium analysis.

The next step is to perform the inverse dynamic simulation. During the inverse dynamic

simulation, the joints and muscles are set as recording elements and the human body model

is manipulated by the motion agents. The recording elements collect the angular motion and

muscle lengthening and shortening data. After the inverse dynamic simulation, the motion

agents are disabled and the recorded angular movements and the lengthening and shortening

patterns are used in torque and force functions in joints and muscles. The joints and muscles

are set to active from recording state. These active elements then drive the model along the

curves recorded by the inverse-dynamics simulation as the PD-servo drivers replicate the joint

and muscle data as closely as possible. At the end of the forward dynamic simulation the

forces of the discs in all three directions (x, y and z axis) are calculated by LifeMOD.

The computed loads acting vertically down on L4 vertebra for two different activities (walking

and rope jumping exercise) are shown in Figures 16 and 19. These values were comparable

with load values for different activities in the literature [31, 32, 34]. The load values calculated

from LifeMOD are used in the remodeling algorithm explained in the next section (2.5).

2.5. Adaptive bone remodeling

Many theoretical and computational models have been proposed to investigate and simulate

the dynamic behavior of the bone [9, 35]. With high resolution imaging methodologies such as

µCT becoming more accessible, the study of cancellous remodeling began to take in to account

the influence of cellular activity in 2 and 3 dimensions [9, 25]. Simulation involving effect of

metabolic bone formation deficit and the micro structural bone formation deficit were also

developed [9, 36]. Effect of age-related changes on cancellous plate thickness and the number
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of plates in the cancellous bone showed that the number of plates per unit volume is a more

significant predictor of bone loss than a decrease in the plate thickness [46].

2.5.1. Remodeling algorithm overview

Different mathematical control models of mechanical bone mass regulation have been

proposed [37, 38]. These models assumed a continuous feedback loop between the
maintenance of bone mass and local strain values in the tissue. The idea of functional

adaptation of the cancellous structure regulated by the local activity of cells was proposed by

Roux [39]. The local activity of the cells is governed by the mechanical stimuli. Mullender et

al. [37] proposed that the osteocytes act as sensors of mechanical signals or mechanoreceptors

because of their favorable architecture and distribution. The mathematical model uses the

amplitude of strain energy density as the mechanical signal that the osteocyte senses. The

osteocytes in turn send this signal to the bone surface. The signal intensity decreases

exponentially with distance (Equation 2).

fi(x) = e−(di(x)/D)

where,

di = distance between osteocyte i and sur f ace location x

D = Distance f orm osteocyte i where its e f f ect

has reduced to e−1 or 36.8%

(2)

The effective stimulus P(x, t) at any given surface location x is the sum of all the osteocyte

signals within the regions of influence of nearby osteocytes (Equation 3) ([7, 37]).

P(x, t) =
N

∑
i=1

fi(x)µiRi(t)

where,

µi = Mechanosensitivity o f the osteocyte i

Ri(t) = Strain energy density rate

at osteocyte location i

(3)

The local change in the relative density m on the surface of cancellous bone tissue is expressed

as [7],

dm

dt
=

⎧

⎨

⎩

τ{P(x, t)− kth} − roc i f P(x, t) > kth

0 i f P(x, t) ≤ kth

(4)

where kth is the threshold of bone formation, roc is the relative amount of bone resorbed by

osteoblasts and τ is the time constant regulating the rate of the process. This was chosen to

be 1 making the simulation process measured in simulation time. The relative density at any

location within the bone varies between 0 (for no bone) to 1 (fully mineralized bone). When

the relative density value reaches zero, the osteocyte at that location disappears.
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The resorption is regulated by the presence of micro cracks or by disuse [7, 8]. Resorption due

to the presence of micro cracks is assumed to be constant,

p(x, t) = d (spatially random) (5)

Resorption due to disuse is dependent on the strain and is given by the following equation,

where a = 1.6 and c = 12.5 are constants.

p(x, t) =

{

c[a − P(x, t)] ifP < a,

0 ifP ≥ a
(6)

Osteocytes respond to dynamic loads [40, 41]. The response of the osteocytes is measured

in strain energy density (SED) rate. This SED rate can be determined by static finite element

analysis using an equivalent static load of the dynamic loading signal. Consider a periodic

loading signal σe(t), oscillating between 0 and a maximum amplitude of σ, given by Equation

7, which has a frequency of f Hz (ω = 2π f ).

σe(t) =
1

2
σ(1 + cosωt) (7)

Then the final form of equivalent static load (ESL) is given by Equation 8,

σ
′ = 2σ

√

f ⇒ ESL (8)

The previous studies have provided proof of the regulatory mechanism of the Wolff’s law.

The idea proposed in this research is the use of the realistic mechanical loading data on the

L4 vertebra (Section 2.4) to run the remodeling algorithm. The load data is then used in

the remodeling algorithm to predict the modified cancellous structure. The schematic of the

proposed method is shown in the Figure 1. The advantage of this is that the effect of different

activities on the strength and structure of cancellous bone can be studied. Another advantage

is by using the motion data of different everyday activities, a daily effective load value can be

calculated and this in turn is used to drive the remodeling process to simulate the changes in

the cancellous bone structure.

2.5.2. Equivalent static load calculation (ESL)

The effective static load calculation of two different activities, walking and rope jumping

exercise, are compared here. The load calculated from LifeMOD for walking motion of

the subject is shown in Figure 16. The amplitude of the dynamic load oscillates between a

minimum of 242.79N and a maximum of 866.04N, with a peak to peak amplitude of 623.25N.

The first few data points were discarded as the model goes through a settling run in which

the motion agent markers are repositioned to align with the motion agents. The last few data

points were discarded to make sure none of the reflective markers on the subject were missing

as a result of being close to or going out of the capture volume. The data retained is between
the two vertical red lines at time 0.8 seconds and time 3.98 seconds.

The frequency of the load cycle is equal to the frequency of the subject walking at a self selected

pace. Within the Vicon Nexus software two events of gait cycle, toe off and heel strike, are
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Figure 16. Load acting in superior-inferior direction (vertically down) on L4 vertebra during walking.

detected. A heel strike is defined as the instance the heel of the foot touches the ground and

the toe off is defined as the instance when only the big toe of the reference foot is in contact

with the ground. These two events, for both the feet, are shown in Figure 17. The toe offs are

indicated by the red upward pointing arrows and the heel strikes are indicated by the black

diamonds. Knowing the total duration of the capture data and the number of toe offs, the

frequency of walking is determined. In this case, the first left foot toe off occurs at frame 331

and the last toe off occurs at frame 651 with the total number of frames in between being 338.

With a total toe offs of 3 and at a capture rate of 100 frames/second, the time between toe-offs

is 1.1267 seconds and the frequency equals to 0.8875Hz. With this information the effective

static load can be calculated to be 1174.29N. This calculated load is used on the segment of

cancellous bone in the finite element algorithm.

Figure 17. Walking gait cycle showing heel strike and toe off.

The second activity was rope jumping exercise. The calculated load signal on L4 is shown in

Figure 19. Once again the first and last few data points are discarded and signal from 1.732
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seconds to 7.721 seconds is retained. The signal oscillates between a maximum amplitude of

1247N and a minimum amplitude of 145.9N. This has a peak to peak amplitude of 1101.1N

for the dynamic signal. The frequency is determined similar to the method in walking gait.

Between frames 110 and 804 for the first and last toe-off, there are 14 toe-offs (Figure 17). This
gives 49.57 frames or 0.4957 seconds between toe-offs with a 100 frames per second capture

rate. Thus the frequency of the load signal is 2.0173Hz. With this, the ESL is calculated to be

3127.82N. Once again, this calculated load is used on the segment of cancellous bone in finite

element algorithm to calculate the stresses and strains within the bone segment.

Figure 18. Rope jumping exercise showing heel strike and toe off.
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Figure 19. Load acting superior-inferior direction (vertically down) on L4 vertebra during rope jumping
exercise.

2.5.3. Remodeling results

To calculate the stress and strain values within the bone material, a finite element solver

specifically designed for biomechanical applications is used [44]. This is a three step process,
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sample preparation, finite element analysis and post processing of the data. These three steps

are explained below.

A small volume of cancellous bone is extracted from the stack of µCT images. A 3D geometry

of the sample is constructed. At this stage a tetrahedral mesh is created using a 3D tetrahedral

finite element mesh generation algorithm [45]. A custom MATLAB code was written to assign

material properties to the tetrahedral mesh and add a top and bottom rigid body plates with

compressive loads on them [11]. Vertebral cancellous bone has an elastic modulus of 5,000

MPa and Poison’s ratio of 0.3 [8, 37]. The top and bottom of the bone segment are attached to

rigid bodies whose translations are constrained along X and Y axes and rotation is constrained

about X, Y and Z axes. A positive force (compressive) is applied on the rigid bodies equivalent

to the calculated ESL from the previous section. The solver is set to perform a quasi-static

analysis ignoring the inertial effects. After the solver completes the analysis, the stress and

strain values at each element location are known. The strain energy density value is calculated

first at the element location and then interpolated to find the value at each osteocyte locations.

The calculated strain energy density values mapped on the bone sample are shown in

Figure 20. With the SED values calculated, along with the other parameters required for

the remodeling algorithm explained in section 2.5.1, the bone goes through the process of

increasing/decreasing the bone density values until the density value either goes above 1

or below 0.01. At that point, the voxel whose density goes below 0.01 is removed and new

6-neighbor voxels are added around the voxel whose density value goes above 1. Each time

there is a change in the structure, new stress, strain and SED values are calculated.

Figure 20. Calculated SED values mapped on the initial geometry of the bone sample.

This process is repeated until there is no further significant change in the structure between

iterations. This is decided by comparing the quantifying parameters calculated at every 5th

iteration (Figure 22, 24). The final structure of a bone sample for the corresponding action of

walking is shown in Figure 21 overlapped with the SED values. Figure 23 shows the final

geometry of the same bone sample for rope jumping exercise. The results show that the bone

microarchitecture responds differently to different loads. In this initial test, only the vertical

component (Z-axis) of the load is applied. Hence, the structure seems to evolve into vertical
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struts. This can be further refined by adding the horizontal components (X and Y-axes) of the

load. In which case, the horizontal struts might be retained and/or modified to adapt to the

loads in the horizontal directions.

Figure 21. Final geometry of the bone structure (Applied load corresponds to walking).
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Figure 22. Variation in the quantifying parameters during remodeling as a result of walking exercise.
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Figure 23. Final geometry of the bone structure (Applied load corresponds to rope jumping exercise).
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Figure 24. Variation in the quantifying parameters during remodeling as a result of rope jumping
exercise.

3. Conclusion and future work

Successful integration of the proposed method is demonstrated in this study. Effects

of different physical activities on the adaptation of the cancellous bone structure and
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their quantifying parameters are shown. The results suggest that the different loadings

corresponding to different activities have varying effect on the microarchitecture of the

bone. Thus, the loading conditions on the bone can be changed to produce desired results,

i.e., stronger or at least not a weak structure. In general, this method has applications in
physiotherapy, assessing/avoiding injuries in various sports, and studying the effects of

different types of bone implants over a period of time.

Although the proposed remodeling cycle is successfully integrated and implemented in this

study, there are still rooms for improvement. Some of the limitations of this study which

would be the focus of the future work are, 1) the µCT scans of the vertebra are not in vivo,

2) effect of only one motion is included in the simulation which can be refined by including

the daily loading activity, 3) Loading on the only the vertical direction is considered which

may be extended to include all the three forces. Some of the other possibilities for improving

the performance would be to look into the use of Graphical Processing Units (GPU) for

computation. Use of GPU may be more cost efficient in a clinical environment. Based on

the results, this study suggests the above mentioned to be addressed in the future work.
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