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1. Introduction

Fault diagnosis of analog circuits has been one of the most challenging topics for researchers
and test engineers since the 1970s. Given the circuit topology and nominal circuit parameter
values, fault diagnosis is to obtain the exact information about the faulty circuit based on the
analysis of the limited measured circuit responses. Fault diagnosis of analog circuits is es‐
sential for analog and mixed-signal systems testing and maintenance both during the design
process and the manufacturing process of VLSI ASICs.

There are three dominant and distinct stages in the process of fault diagnosis: fault detection
to find out if the circuit under test (CUT) is faulty comparing with the fault-free circuit, or
golden circuit (This stage is usually called test in industry), fault identification to locate
where the faulty parameters are inside the faulty circuit, and parameter evaluation to obtain
how much the faulty parameters deviated from their nominal values and to obtain values of
other circuit parameters such as branch and nodal voltages. The bottlenecks of analog fault
diagnosis primarily lie in the inherited features of analog circuits: nonlinearity, parameter
tolerances, limited accessible nodes, and lack of efficient models. Multiple fault diagnosis
techniques are even less developed than single fault diagnosis because it is more difficult to
model and detect multiple faults, particularly in the presence of tolerance or measurement
noise. In addition, in multiple fault situation, one fault’s effect on the circuit could be
masked by the effects of the other faults. Generally speaking, there is no widely accepted
paradigm for analog test or fault diagnosis even with the introduction of IEEE 1149.4 stand‐
ard for mixed-signal test bus.

With recent sharp development of electronic design automation tools and widespread appli‐
cation of analog VLSI chips and mixed-signal systems in the area of wireless communica‐
tion, networking, neural network and real-time control, the interests in analog test and fault
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diagnosis revives. System-on-chip solutions favored by modern electronics pose new chal‐
lenges in this topic such as increased complexity and reduced die size and accessibility.

Several methods have been proposed for single fault diagnosis in linear analog circuit in
the past. Multiple excitations are required and Woodbury formula in matrix theory is ap‐
plied to locate the faulty parameters. This method is also applied to multiple fault diagno‐
sis by decomposition technique assuming that each sub-circuit  contains at  most a single
faulty parameter.

Among the different methods of fault diagnosis, the parametric fault diagnosis techniques
hold an important  part  in the field of  analog fault  diagnosis.  These techniques,  starting
from a series of measurements carried out on a previously selected test point set,  given
the circuit topology and the nominal values of the components, are aimed at determining
the effective values of the circuit parameters by solving a set of equations generally non‐
linear with respect to the component values. In this chapter the role of symbolic techni‐
ques  in  the  automation  of  parametric  fault  diagnosis  of  analog  circuits  is  investigated
followed by a practical numerical procedure to evaluate the faults. Being in fact the actual
component  values  that  represent  the  unknown  quantities,  fault  diagnosis  aims  also  at
finding the faults locations. Symbolic approach results are particularly suitable for the au‐
tomation of parametric fault  diagnosis techniques [1].  Obviously all  this  is  applicable to
linear  analog  circuits  or  to  nonlinear  circuits  suitably  linearized.  On  the  other  hand,
present trend is moving as much as possible to design techniques that lead to linear ana‐
log circuits, so linearity is not a so serious restriction any more [2]. It is important to note
that in the analog fault diagnosis two phases can be considered: the first one is the phase
of  testability  analysis  and  ambiguity  group  determination,  while  the  second  one  is  the
phase of fault location and fault value determination. Testability gives theoretical and rig‐
orous upper  limits  to  the  degree  of  solvability  of  fault  diagnosis  problem once the  test
point set has been chosen, independently of the method effectively used in fault location
phase. This becomes very important in the design stage of the linear circuit in which the
designer can determine the list of accessible nodes for the operator and the fault detection
ability  that  they  can  provide.  Concerning  ambiguity  groups,  they  can  be  considered as
sets of circuit components that, if considered as potentially faulty, yield an undetermined
system of equations. For the testability evaluation problem symbolic approach is a natural
choice, because a circuit description made by means of equations in which the component
values are the unknowns is properly represented by symbolic relations. Also for ambigui‐
ty group determination the symbolic approach gives excellent results [3].

For the fault location phase several different approaches can be used and all of them can be
considered as an optimization problem, because, starting from measurements carried out on
the CUT, the component values better fitting them have to be determined. Generally sym‐
bolic techniques are suitable for optimization problems, because the relations required by
specific optimization strategies are easily generated using symbolic methods.

The aim of this chapter is to present a unified treatment of the subject with emphasis on a
generalized method for multiple fault diagnosis of linear analog circuits in frequency do‐
main. In this approach, multiple excitations and Woodbury formula are also required for
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fault identification. However, a recently developed ambiguity group locating technique is
applied for fault identification which reduces computational cost of the test method. Multi‐
ple faults can be located directly and efficiently, thus eliminating the requirement for de‐
composition and the corresponding restrictions. Moreover, the methodology developed in
the proposed method, (i.e., constructing fault diagnosis equation on the basis of the analysis
of the fault-free circuit and the measured responses of faulty circuit, then applying the ambi‐
guity group locating technique to identify the faulty parameters, finally evaluating all pa‐
rameter values of faulty circuit exactly), can be applied to other methods developed for
multiple analog fault diagnosis.

The dominant differences among these methods are the distinct fault diagnosis equations re‐
sulting from distinct circuit analysis methods and distinct excitation and measurement
methods. The methods proposed in this chapter can be classified as fault verification meth‐
ods under the category of Simulation-after-Test (SAT), which can provide the exact solution
to the circuit parameters and can be applied to detect large parameter changes when the
number of independent measurements are greater than the number of faults in the CUT.

A major improvement of these techniques is achieved through the use of symbolic techni‐
ques in formulating the fault equations and in addressing the testability problem. Further‐
more a developed method for minimum size ambiguity group locating technique is used
based on QR factorization and is  applied to detect  and identify the multiple faults.  De‐
tailed procedures for a proposed fault diagnosis program are given to help practitioners
and researchers as well to grasp the basic concepts of the topic and be able to contribute
to this field.

2. Basic circuit formulations

Generally, the circuit topology as well as its parameters nominal values are known in ad‐
vance. Consider for example a continuous-time, time-invariant, strongly connected, linear
circuit with n+1 nodes and p parameters. The (n+1)st node, denoted by zero, is assigned to be
the grounded reference node while the remaining n nodes are ungrounded. All p parame‐
ters are divided into two categories: one is parameters which have admittance description
such as conductance, capacitor and voltage- controlled-current source, another is parameters
which have no admittance description such as impedance, inductor, current-controlled-
source, operational amplifier, etc.

Of course the conventional method of analysis would be to apply the KCL to each circuit
node to obtain n equations with variables being nodal voltages and parameter currents.
Then constitutive equations in terms of nodal voltages and parameter currents, which define
the characteristics of all parameters without admittance description, are appended to the
above n KCL-based equations. The resulting system matrix from this approach would be

T g X g =W g (1)
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where Tg  is a g×g  coefficient matrix consisting of circuit parameters, Xg  is a g×1 solution
vector  of  node  voltage  and parameter  currents,  and Wg  is  a  g×1  excitation  vector  com‐
posed of independent current and voltage sources, and initial conditions of capacitors and
inductors. The first n rows in Tg, Xg and Wg correspond to n nodes. The resulting system
equation (1) is called the modified nodal analysis equation MNA  [4].  Note that g=n  for nor‐
mal nodal analysis of a circuit in which all parameters have admittance description, and
g>n for modified nodal analysis of a circuit in which some parameters have a non-admit‐
tance description.

Traditionally,  the system matrix generated from the MNA method may still  have many
redundant variables for analysis purposes; for example: voltages of inaccessible nodes in‐
side sub-circuits like op-amps or currents through nonphysical  branches generated from
sophisticated element models. A major development step to the MNA method is to elimi‐
nate all  redundant variables to generate a compacted or reduced system matrix.  The re‐
duced system matrix is formulated by programming a lookup table for every element in
the network. This table has conditioned link-lists that will test which variables of the ele‐
ment are actually needed in the final  compacted matrix and introduce the element in a
way so as to eliminate the redundant variables during the formulation process. This meth‐
od  is  termed  the  compacted  modified  nodal  analysis  CMNA  [5].  Provided  that  the  circuit
functions in a stable state, the parametric values of nodal voltages and parameter currents
will  be finite  and unique.  The coefficient  matrix Tg  is  non-singular since the circuit  is  a
strongly connected network.

Generally the system matrix described above cannot be formulated smoothly in a computer‐
ized solution without taking the circuit topology into consideration. One important fact
about circuit topology is that each parameter, say hv ( v = 1, 2,..., p ), can be located by at most
4 circuit nodes [6]: 2 input nodes kv and lv, and 2 output nodes iv and jv. For 2-terminal pa‐
rameters such as resistors and capacitors, the input nodes will be the same as the output no‐
des: kv = iν and lv = jν. Based on this fact, the circuit topology can be completely described by
two g×p structural matrices P and Q which are defined as follows:

P = p1 p2 ⋯  pp = δi1
- δ j1

 δi2
- δ j2

 ⋯  δi p
- δ j p

Q = q1 q2 ⋯  qp = δk1
- δl1

 δk2
- δl2

 ⋯  δk p
- δl p

(2)

where δν represents a g×1 vector of zeros except for the v entry, which is equal to one, and pν

and qν represent g×1 vectors describing the locations of output nodes and input nodes, re‐
spectively. Matrices P and Q are only determined by the locations, not the values of the cir‐
cuit parameters. The columns of matrix P correspond to the locations of the output nodes of
circuit parameters while the columns of matrix Q correspond to the locations of the input
nodes of circuit parameters.

Another important fact is that most parameters in linear circuits will enter the coefficient
matrix Tg in the symbolic form
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       k v      lv

iv
jv

h v -h v

-h v h v

(3)

with the equivalent algebraic representation being

(δiv
- δ jv)h v(δkv

- δlv)t = pvh vqv
t (4)

where superscript t denotes transpose of matrix or vector. For any grounded node, the cor‐
responding row or column in the symbolic form will be removed together with the δν in the
algebraic form. Resistor, inductor, capacitor, dependent sources, and operational amplifier
with its negative inverse gain being a parameter are examples of circuit devices described in
this way. Thus the system matrix can be easily formulated using the equation

T g = Pdiag(h )Q t  (5)

This topological formulation allows for the automatic direct translation of the Netlist (which
is the list describing the values of the circuit elements and their connections to the corre‐
sponding nodes) into circuit equations. As an example consider the circuit shown in Figure
1 following [7]. This circuit will be used later in the analysis of fault equations.
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Figure 1. Example circuit

This circuit can be represented by the Netlist shown in Table 1. The first column of Table 1 is the
element name and type (e.g. R for resistor, G for conductance, C for capacitor and so on). The
second and third (possibly fourth and fifth depending on the element type) represent the con‐
nection nodes. Note that the ground is identified with node 0. The last column is the element
value. It is possible for some elements (like a two port network or an active element model) to
have more columns for its values. For the circuit in Figure 1 with unity current source J=1A ap‐
plied to nodes {0,1}, it is assumed that the nominal values of the resistors are as follows (all re‐
sistors  in  Ω):  R1=2.125,  R2=3.6,  R3=4.7,  R4=11.5,  R5=12.6,  R6=21.2,  R7=3.7,  R8=0.54,  R9=3.54,
R10=3.125,  R11=6.6,  R12=5.7,  R13=19.5,  R14=12.8,  R15=12.2,  R16=3.2,  R17=1.54,  R18=8.7,  R19=2.27,
R20=3.16, R21=41.7, R22=31.5, R23=22.6, R24=51.2, R25=13.7, R26=3.44, R27=13.4, R28=31.9, R29=16.1,
R30=11.7, R31=11.5, R32=17.8, R33=22.2, R34=23.2, R35=11.4, R36=18.7, R37=3.12, R38=33.2, R39=8.67.
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Element From Node To Node Value

J 0 1 1

R1 1 2 2.1250

R2 2 4 3.6000

R3 2 3 4.7000

R4 3 4 11.5000

R5 1 4 12.6000

R6 3 5 21.2000

R7 5 6 3.7000

R8 0 5 0.5400

R9 0 1 3.5400

R10 0 6 3.1250

R11 6 8 6.6000

R12 6 8 5.7000

R13 8 9 19.5000

R14 0 9 12.8000

R15 15 16 12.2000

R16 15 17 3.2000

R18 3 10 8.7000

R19 8 10 2.2700

R20 7 9 3.1600

R21 0 13 41.7000

R22 7 11 31.5000

R23 7 12 22.6000

R24 11 12 51.2000

R25 11 19 13.7000

R26 12 19 3.4400

R27 12 20 13.4000

R28 7 13 31.9000

R29 13 20 16.1000

R30 19 20 11.7000

R31 18 19 11.5000

R32 18 20 17.8000

R33 17 18 22.2000

R34 13 16 23.2000

R35 16 17 11.4000

R36 14 17 18.7000

R37 14 16 3.1200

R38 14 15 33.2000

R39 0 14 8.6700

Table 1. Netlist for the circuit shown in Figure 1
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It can be shown easily [4] that the node numbers in the second column of Table 1 represent
the values of i in equation (2) as long as they are not zero. Similarly column 3 gives the val‐
ues of j in equation (2). Thus it is very straight forward to find the P and Q matrices by trac‐
ing through the Netlist. Additionally, the system matrix can be either formulated
numerically or symbolically depending on the values used for h in the diagonal matrix of
equation (5). This automatic formulation procedure can be easily extended to MNA and
CMNA methods with proper rubber stamps for circuit elements.

3. Conventional fault analysis methods

As discussed earlier, the conventional method for multiple fault diagnosis can be divided into
three steps: fault detection, fault location determination, and finding the faulty elements val‐
ues. This conventional method is readily deemed to be a numerical method by its very own na‐
ture but it is presented here as it provides basic insight to the problem and the limitations facing
all numerical methods. The problem is even more complicated for multiple faults due to ambi‐
guity presented by element tolerances not to mention that different sets of certain faults may
produce very similar measured values. Further complication is present owing to the fact that
only a limited number of nodes are actually accessible for measurements and testing. The con‐
ventional method will be presented without derivation which can be found in [6-8]. Despite its
effectiveness in dealing with ambiguity groups, the method has several limitations:

1. The method requires multiple independent excitations among the accessible nodes.
That is applying an independent source of excitation to a subset of the accessible nodes
and measuring the circuit response for each source. By this, the method not only as‐
sumes that the circuit will remain linear and well-behaved under multiple excitations, it
also destroyes the natural input-output relation of the circuit components and over‐
looks any form of signal isolation.

2. The method needs a dictionary for the behavior of the fault-free circuit under multiple
excitations. The dictionary must be extensive enough to enable detecting and locating a
number of simultaneous faults. Yet even when the dictionary is extensive enoguh the
method may still fail in differentiating certain ambiguity groups subject to rounding er‐
rors, inaccuracies and noise that may occur in the measurements.

3. Depending on the set of accessible nodes the problem of testability and detectability of
multiple faults immediately arises.

Symbolic analysis techniques aim at resolving or at least reducing some or all of these limita‐
tions thus proving to be very vital to this subject. Having that said let us begin by showing the
applications of symbolic analysis techniques for multiple fault diagnosis in linear circuits.

3.1. Symbolic analysis in fault diagnosis problem

As mentioned earlier, the symbolic circuit matrix T  can be easily described by the multi‐
plication of a row operator P  and a column operator Q  with a diagonal matrix of sym‐
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bols,  where  P  and  Q  are  the  matrix  operators  (or  topological  matrices)  that  indicate
location of the matrix element value in the symbolic matrix T  as was given in equation
(5). One can immediately notice that the diagonal matrix can be represented by a simple
array while both P  and Q  are sparse numerical matrices.  One benefit  of this representa‐
tion is that linear operations on rows such as addition or subtraction can be simply imple‐
mented  on  P  while  linear  operations  on  columns  can  be  implemented  on  Q  without
altering the diagonal symbolic matrix. For most circuit analysis applications, system equa‐
tions are rarely fully dense or fully symbolic. In that respect, some matrix elements may
contain not only a single symbolic element value but constant values as well. These con‐
stants do not affect the structures of matrices P and Q. In fact even if the element values
are complete polynomials the representation is still not altered. Hence in solving a matrix
equation like equation (1) only arrays of symbolic polynomial data structures need to be
stored to represent the diagonal matrix while numerical matrices P, Q can be manipulated
to solve this system using topological methods like determinant decision diagrams DDD
[9] or matrix reduction methods [10].

Traditionally symbolic techniques have been used along two separate paths in fault analy‐
sis: To introduce comprehensive fault models in small and moderate sized circuits and to
find the optimum set of testable components in a faulty circuit. We will describe here both
techniques and show ways of utilizing them later.

3.1.1. Symbolic techniques in comprehensive fault modeling

The  method  described  before  for  tracing  through  the  Netlist  to  generate  the  P  and  Q
topological  matrices is  not the only way to generate the system matrix.  In fact,  most of
the  modified  and  compacted  methods  like  the  tableau,  MNA  and  CMNA  methods  fo‐
cus on tracing through the Netlist  in an element-by-element fashion,  increasing the size
of  the  generated system matrix  iteratively.  This  approach has  the  advantage  of  provid‐
ing  a  way  to  reduce  the  system  matrix  during  the  formulation  step  as  will  be  shown
shortly [5].

Consider a general admittance y connected between nodes i and j as shown in Figure 2. As‐
suming that the system matrix T is already generated for the other branches, the impact of
this admittance (following the tableau formulation) on the system matrix is to add an addi‐
tional row and column corresponding to the new system variable iy

yii yij 1
y ji y jj -1
y - y -1

×

V i

V j

iy

=

wi

w j

0
. (6)

Now, if iy is not a solution variable then it can be eliminated from the system matrix to gen‐
erate a compacted matrix with respect to the axis iy. Applying Kron’s reduction to eliminate
axis-3 of this matrix we get [5]
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yii + y    yij - y
y ji - y    y jj + y ×

V i

V j
=

wi

w j
. (7)

Equations (6) and (7) are the conditioned stamps for the admittance y and they can be pro‐
grammed into a lookup table easily.

The occurrence of faults in circuit elements generally leads to a deviation in node voltages
and branch currents from nominal values. The purpose of fault diagnosis is to use voltage
measurements on a limited number of nodes to verify the presence of a fault in the circuit
then identify the fault location and value through simulation. However additional care must
be taken since the deviations in the measured values may very well result from normal pa‐
rameter tolerances.

In general a fault is generated if the nominal element value is changed from y to y+dy be‐
yond its tolerance. However instead of changing the value of y in the system matrix, owing
to the symbolic approach we can simply introduce an extra faulty element dy and an extra
faulty variable f as shown in Figure 3 for the passive admittance case. This deviation from
nominal value will result in deviation in node voltages from V to V+dV and branch currents
from I to I+If where If is the set of fault currents. As an example consider a linear admittance
y connected between nodes i and j as shown in Figure 3.

Figure 2. A general admittance example
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Figure 3. Fault element model for a linear admittance

Due to a fault the value of the admittance is changed to y+dy. Now following [5] the fault
rubber stamp of (7) is changed to

yii + y yij - y 1
y ji - y y jj + y -1

1 -1 ζ
×

V i

V j

if

=

wi

w j

0
(8)

where we have appended the faulty element equation

vi - v j + ζi f =0, (9)

in which ζ = (dy)-1. We must emphasize here that this equation is appended to the original
system matrix after the last nodal equation so that the faulty if variable will appear after the
last solution variable in the fault-free system equation. The impact of this on the solution
will be apparent shortly. Assuming that if is a solution variable, we can proceed by eliminat‐
ing any non-solution variables in the stamp just like we did before to generate the faulty
compacted system matrix stamp while leaving all the faulty currents as solution variables.

Clearly other fault models for the different circuit elements can also be developed by inspec‐
tion. The stamping procedure for the faulty circuit elements generates the fault analysis
equations. However, additional circuit elements and thus additional symbolic variables
were introduced in the circuit to simulate the fault thus deeming this method suitable only
for small and moderate sized networks. Assuming the original fault-free system equations
were given by equation identical to (1) where T is the compacted modified system matrix, X
is the chosen solution vector and W is the vector of excitation sources which might be a com‐
bination of currents and voltages. With the introduction of the faulty elements the size of the
system matrix has increased. Careful consideration of element stamps like (8) show that the
new faulty system equations can be written as
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T P
Q R ×

X
X f

=
W
0

(10)

where X is the original solution vector while Xf is the solution vector of the fault currents
and voltages. This formulation resulted from the fact that the fault variable was added after
the last solution variable of the fault-free circuit. Expanding this equation, it can be shown
that [5]

(T - PR -1Q)X =W (11)

where X is now the solution vector of the faulty system. Applying Woodbury formula [5] on
(11) we get

X = T -1 + T -1P(R + QT -1P)-1QT -1 W (12)

Expanding (12) using (10) we get

X = X o + ∆X (13)

where

∆X =T -1P(R + QT -1P)-1Q X o (14)

This gives the variation in the solution vector in terms of the nominal fault-free solution vec‐
tor, the topological matrices and the original system matrix. The benefit of having this varia‐
tion solved symbolically is that it gives direct relationship between shifts in element values
and the corresponding variation in circuit response. Once those variables are obtained sym‐
bolically it is very easy to carry out an analysis like Monte-Carlo analysis [5] to help solve
the fault/tolerance ambiguity and verify the presence of a fault. Not only fault verification is
possible with this equation but also locating the faulty element(s) can be done even with
measurements taken from a limited set of accessible nodes using the k-fault method [11] or a
linear combination matrix which will be explained later on where only a small set of the sol‐
ution variables are measured to estimate the fault location.

Despite the usefulness of this approach in finding the fault model, it is highly restricted to
small and moderate scale circuits. In addition, due to ambiguities, it is customary to find
that the inner matrix R+QT-1P has become singular therefore limiting the practical use of
equation (14). Nevertheless the approach is still needed to model the faults symbolically and
to tackle the testability problem.
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3.1.2. Symbolic solution of the testability problem

Fault  diagnosis  and fault  location  in  analog  circuits  are  of  fundamental  importance  for
design validation and prototype characterization in  order  to  improve yield through de‐
sign modification. In the analog fault diagnosis field, an essential point is constituted by
the  concept  of  testability  which,  independently  of  the  method  that  will  be  effectively
used in fault location, gives theoretical and rigorous upper limits to the degree of solva‐
bility of the problem, once the test  point set  has been chosen by the circuit  designer.  A
well-defined quantitative measure of  testability can be deduced by referring to fault  di‐
agnosis  techniques  of  the  parametric  kind [12].  These  techniques,  starting from a  series
of  measurements  carried out  on previously  selected test  points,  are  aimed at  determin‐
ing the upper limit of solvable circuit parameters by solving a set of equations (the fault
diagnosis equations as will be shown later) which are nonlinear with respect to the com‐
ponent values.

The solvability degree of these nonlinear equations constitutes the most used definition of
testability measure [12]. This measure can be also interpreted as an indication of the am‐
biguity resulting from any attempt to solve the fault equations in a neighborhood of al‐
most any failure. In addition to being valuable for the circuit designer in determining the
number  of  accessible  nodes,  it  is  also  very  important  for  the  circuit  operator  since  at‐
tempting to address the fault-diagnosis equation without having an estimate on the maxi‐
mum  number  of  faults  that  can  be  detected  from  the  available  test  set  is  highly
prohibited. In other words, the testability measure provides information about the num‐
ber of testable components with the selected test point set.  When the testability value is
not at its maximum, that is when it is less than the total number of potentially faulty cir‐
cuit components, the problem is not uniquely solvable and it is necessary to consider fur‐
ther measurements, i.e.,  other test points. Alternatively we can accept a reduced number
of potentially faulty components in order to locate the elements which have caused the
incorrect behavior of the CUT.

Generally, the second alternative is used for two reasons. First, not all the possible test
points can actually be considered because of practical and economic measurement problems
strictly tied with the used technology and with the application field of the circuit under con‐
sideration. Second, the number of faulty components is generally smaller than the total
number of circuit components. The single fault case is the most frequent while double or tri‐
ple cases are less frequent, and the case of all faulty components is almost impossible. There‐
fore, as the testability is normally not at its maximum, the fault diagnosis problem is dealt
with by assuming the quite realistic hypothesis that the number of faulty components is
bounded; that is, the k-fault hypothesis is made. Under this hypothesis, in order to locate the
faulty elements with as low ambiguity as possible, it is of fundamental importance to deter‐
mine a set of components that is representative of all the circuit elements. This helps reduc‐
ing the solution time by providing a stopping criterion instead of wasting computer
resources seeking unattainable solutions. In this section a procedure for the determination of
the optimum set of testable components in the k-fault diagnosis of analog linear circuits is
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presented, where by the optimum set we mean a set of components representing all the cir‐
cuit elements and giving a unique solution.

The procedure is based on the testability evaluation of the circuit and on the determina‐
tion of the canonical ambiguity groups. Referring again, for the sake of simplicity, to para‐
metric fault  diagnosis techniques we need to make some definitions first.  An ambiguity
group can be defined as a set of components that, if used as unknowns (i.e., if considered
as potentially faulty), gives infinite solutions during the phase of fault location determina‐
tion.  A canonical  ambiguity  group is  simply an ambiguity  group that  does  not  contain
other ambiguity groups. It is worth pointing out that the proposed procedure gives infor‐
mation  independently  of  the  method  that  will  be  effectively  used  in  the  fault  location
phase (both simulation after test and simulation before test methods), even if it has been
developed by referring to parametric fault diagnosis techniques. Furthermore, in the auto‐
mation of the procedure the use of symbolic techniques is of fundamental importance be‐
cause  symbolic  analysis,  due  to  the  fact  that  it  gives  symbolic  rather  than  numerical
results, is particularly suitable for applications such as testability and canonical ambiguity
group determination, as will be shown later.

It is necessary in this procedure to determine a set of equations describing the circuit un‐
der test  and solve it  with respect  to the component values.  In the case of  analog linear
time-invariant  circuits,  the  fault  diagnosis  equations  can  be  constituted  by  the  network
functions relevant to the selected test points [12] which are nonlinear with respect to the
potentially faulty circuit parameters. By assuming that the faults can be expressed as pa‐
rameter variations without influencing the circuit topology (as was done in the previous
section where faults like short and open are not considered), the testability measure τ  is
given by the maximum number of  linearly independent columns of the Jacobian matrix
associated with the fault diagnosis equations, and it represents a measure of the solvabili‐
ty degree of the nonlinear fault diagnosis equations. The entries of the Jacobian matrix are
rational functions depending on the complex frequency and the potentially faulty param‐
eters. Thus, in order to evaluate the testability it is necessary to select fixed values for the
potentially faulty parameter and the complex frequency.  It  can be shown that,  once the
frequency values are fixed, the rank of the obtained Jacobian matrix is constant almost ev‐
erywhere, i.e., for all the potentially faulty parameter values except those lying in an alge‐
braic  variety  [13].  Using  this  approach,  the  testability  value,  although  independent  of
component values, is very difficult to handle and subject to round off errors if a numeri‐
cal approach is used in its automation.

Generally the Jacobian matrix is very costly to find in fully symbolic form. It has been shown in
[14] that starting from the network symbolic transfer functions expressed in the following way:

tl(h , s)=
N l (h , s)
D(h , s) =

∑
i=0

nl ai
(l )(h )

bm
(h ) .s i

s m + ∑
j=0

m-1 b j
(h )

bm
(h ) .s j

,       l =1, ⋯ ,  K (15)
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where h = [h1, h2, …, hp]t is the vector of the potentially faulty parameters and K is the total
number of equations, the testability is equal to the rank of a matrix E given by

E =

∂
a0

(1)

bm

∂ h 1

⋮

∂
an1

(1)

bm

∂ h 1

⋮

∂
a0

(K )

bm

∂ h 1

⋮

∂
anK

(K )

bm

∂ h 1

∂
b0
bm

∂ h 1

⋮

∂
bm-1
bm

∂ h 1

∂
a0

(1)

bm

∂ h 2

⋮

∂
an1

(1)

bm

∂ h 2

⋮

∂
a0

(K )

bm

∂ h 2

⋮

∂
anK

(K )

bm

∂ h 2

∂
b0
bm

∂ h 2

⋮

∂
bm-1
bm

∂ h 2

⋯

⋯

⋯

∂
a0

(1)

bm

∂ h p

⋮

∂
an1

(1)

bm

∂ h p

⋮

∂
a0

(K )

bm

∂ h p

⋮

∂
anK

(K )

bm

∂ h p

∂
b0
bm

∂ h p

⋮

∂
bm-1
bm

∂ h p

(16)

This matrix is independent of the complex frequency whose entries are constituted by the
derivatives of the coefficients of the fault diagnosis equations with respect to the potentially
faulty circuit parameters. If the fault diagnosis equations are generated in a completely sym‐
bolic form, the testability evaluation becomes easy to perform. In this case, the entries of the
matrix E can be simply led back to derivatives of sums of products and the computational
errors are drastically reduced in the automation phase. Once the matrix E has been deter‐
mined, testability evaluation can be performed by triangularizing E and assigning arbitrary
values to the components (since as was previously mentioned, testability does not depend
on component values). Yet selecting the matrix E instead of the Jacobian matrix as the testa‐
bility matrix results in a different testability measure not directly related to the desired
measure. However, this limitation can be overcome by splitting the fault diagnosis equation
solution into two phases. In the first phase, starting from the measurements carried out on
the selected test points at different frequencies, the coefficients of the fault diagnosis equa‐
tions are evaluated, eventually exploiting a least-squares procedure in order to minimize the
error due to measurement inaccuracy. In the second phase, the component values are ob‐
tained by solving the nonlinear system constituted by the equations expressing the previ‐
ously determined coefficients as functions of the circuit parameters. In this way the
following nonlinear system has to be solved:
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a0
(1)(h )

bm(h ) = A0
(1) ⋯

an1

(1)(h )

bm(h ) = An1

(1)

⋮
a0

(K )(h )
bm(h ) = A0

(K ) ⋯
anK

(K )(h )

bm(h ) = AnK

(K )

b0(h )
bm(h ) = B0 ⋯ bm-1(h )

bm(h ) = Bm-1

(17)

where Ai
(l) and Bj(i=0,…, nl, j=0, …, m-1) are the coefficients of the fault diagnosis equations

in (15) which have been calculated in the previous phase. The Jacobian matrix of this system
coincides with the matrix E in (16), hence, all the information provided by a Jacobian matrix
with respect to its corresponding nonlinear system can be obtained from the matrix E. In
particular, if rank(E) is equal to the number of unknown parameters, the component values
can be uniquely determined by solving the equations in (17) through the consideration of a
set of measurements carried out on the test points. If the testability τ= rank(E) is less than
the number of unknown parameters R, a locally unique solution can be determined only if
R-τ components are considered not faulty.

The matrix E does not give only information about the global solvability degree of the fault
diagnosis problem. In fact, by noting that each column is relevant to a specific element or
parameter of the circuit and by considering the linearly dependent columns of E, other in‐
formation can also be obtained. For example, if a column is linearly dependent with respect
to another one, this means that a variation of the corresponding component provides a var‐
iation on the fault-equation coefficients, indistinguishable with respect to that produced by
the variation of the component corresponding to the other column. This means that the two
components are not testable and they constitute an ambiguity group of the second order. As
an example two parallel connected resistors in a circuit where we cannot distinguish which
one caused the fault. By extending this reasoning to groups of linearly dependent columns
of E, ambiguity groups of a higher order can be found. Then, in summary, the following def‐
inition can be formulated.

Definition 1: A set of components constitutes an ambiguity group of order j if the corre‐
sponding columns of the testability matrix E are linearly dependent. In other words, the am‐
biguity groups of a circuit in which a certain test point set has been chosen can be
determined by locating the linearly dependent columns of the testability matrix E. Further‐
more, as was mentioned, an ambiguity group that does not contain other ambiguity groups
is called canonical. Therefore, a canonical ambiguity group can be defined as follows.

Definition 2: A set of k components constitutes a canonical ambiguity group of order k if the
corresponding k columns of the testability matrix E are linearly dependent and every subset
of this group of columns is constituted by linearly independent columns. It is important to
notice that with this definition, the order of the canonical ambiguity groups cannot be great‐
er than the testability value plus one τ +1.

In most cases the canonical ambiguity groups have some components in common. By unify‐
ing these types of groups, another ambiguity group, corresponding again to linearly de‐
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pendent columns of the matrix E is obtained. We define as global an ambiguity group of the
following type.

Definition 3: A set of m components constitutes a global ambiguity group of order m if it is
obtained by unifying canonical ambiguity groups having at least one element in common.

Obviously, a canonical ambiguity group which does not have components in common with
any other canonical ambiguity group can be considered as a global ambiguity group. Final‐
ly, the columns of the matrix E that do not belong to any ambiguity group are linearly inde‐
pendent. We define these as surely testable a group of components of the following kind.

Definition 4: A set of n components whose corresponding columns of the testability matrix E
do not belong to any ambiguity group constitutes a surely testable group of order n.

Obviously, the number of surely testable components cannot be greater than the testability
value τ, that is, the rank of the matrix E.

With these definitions in mind, the optimum set of testable components can be determined
as in [12].

3.2. Formulation of fault equations

Applying equation (1) to fault-free and faulty circuits, respectively, with the same excitation
sources we get

To X o =W o (18)

TX = (To + ∆T )(X o + ∆X )=W o (19)

where

T =To + ∆T (20)

X = X o + ∆X (21)

It can be easily shown that

∆TX = - To∆X (22)

where the parameter variation can be found from the measured values of the faulty circuit, the
original system matrix and an estimate of the change of the system matrix due to fault presence

∆X = - T0
-1∆TX (23)

It is customary to solve equation (23) as a constrained linear optimization problem. Howev‐
er such an approach is limited by the solution time and ambiguity leading to local minimum
convergence. Suppose that the first f of p parameters are faulty and are changed from their
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nominal values h10, h20, …., hf0 to new values h1=h10+d1, h2=h20+d2, …., hf =hf0+df, where d1, d2, ….,
df are the parameter deviations and the deviation vector d is an f×1 vector:

d = d1 d2 ⋯d f
t (24)

Define F as the faulty parameter set, and assume that each faulty parameter Fv ( v = 1, 2,..., f )
is located on intersection of the corresponding rows iv and jv and columns kv and lv of the
coefficient matrix T. The deviation of the coefficient matrices now has the following form:

∆T = ∑
v=1

f
pvdvqv

t = P f diag(d )Q f
t (25)

where diag (d) is an f×f diagonal matrix and Pf and Qf are g×f matrices which contain 0 and ±1
entries:

P f = p1 p2 ⋯  p f = δi1
- δ j1

 δi2
- δ j2

 ⋯  δi f
- δ j f

Q f = q1 q2 ⋯  q f = δk1
- δl1

 δk2
- δl2

 ⋯  δk f
- δl f

(26)

Note that Pf and Qf are sub-matrices of P and Q respectively. They can be constructed from P
and Q by selecting all columns in P and Q corresponding to faulty parameters. As an example
assume that there are two faulty parameters: R9 is changed from 3.54Ω to 7.9Ω and R37 is
changed from 3.12Ω to 2.8 Ω. The corresponding admittance deviations are ΔG9= 1/7.9 - 1/3.54 =
-0.1559 / Ω and ΔG37=1/2.8 � 2/3.12 = 0.03663 /Ω. The corresponding faulty parameter set F=[9,37]
and the faulty nodes will be [1,14,16]. It can be easily verified that Pf and Qf are 20×2-matrices
which can be obtained from the 9th and 37th columns of the matrices P and Q respectively. It can
also be verified that ΔT will have entries only at locations {1,1}, {14,14}, {14,16}, {16,14}, {16,16}.

Substituting (25) in (20) we get

T =To + P f diag(d )Q f
t (27)

and to obtain the solution vector for the faulty circuit we use

X =T -1W o (28)

It can be shown using Woodbury formula that the value of dv (v=1,2,..., f ) cannot be zero or
infinity to meet with the requirement of inverting [6]. Since dv being zero means fault-free
parameter and only faulty parameters will be identified by following fault diagnosis algo‐
rithm, we will have only one restriction: dv cannot be infinite, which corresponds to the case
of open admittance or short impedance. But open or short faults can be dealt with by ideal
switches introduced in modified nodal analysis [4]. Therefore, the proposed method can
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handle open and short faults as well but only if combined with a procedure that repeats the
analysis of the circuit after introduction of ideal switches.

The solution vector for fault-free circuit is

X0 = x1,0 x2,0 ⋯ xg ,0
t (29)

where subscript 0 indicates that the denoted parameters are for fault-free circuit. Hence the
product of Qf

t and Xo can be written as

Q f
t X0 = δk1

- δl1
 δk2

- δl2
 ⋯  δk f

- δl f
t X0

= xk1,0
- xl1,0

 xk2,0
- xl2,0

 ⋯  xk f ,0 - xl f ,0
t

= xk1l1,0
 xk2l2,0

 ⋯  xk f l f ,0
t

(30)

and it has the physical interpretation of controlling nominal signal values (e.g. voltages) on
faulty parameter input terminals.

Let us define

β = β1 β2 ⋯  βn
t =T0

-1P f

γ =Q f
t T0

-1P f =Q f
t β

(31)

It can be shown that the deviation vector ΔX can be obtained by [6]

∆X = - β diag(d -1) + γ -1Q f
t X0

=

α11 α12

α21 α22

⋯ α1 f

⋯ α2 f

⋮ ⋮
αg1 αg2

⋯ ⋮
⋯ αgf

xk1l1,0

xk2l2,0

⋮
xk f l f ,0

(32)

where

α = - β diag(d -1) + γ -1

=

α11 α12

α21 α22

⋯ α1 f

⋯ α2 f

⋮ ⋮
αg1 αg2

⋯ ⋮
⋯ αgf

=

α1

α2

⋮
αg

  (33)

Usually voltage measurement is easier to carry out and is less invasive to analog circuit
properties than current measurement. Therefore, we only consider the use of nodal voltage
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measurement in this formulation. As an example γ for our example circuit of Figure 1 as‐
suming the aforementioned faults will be given by

γ =
2.4475 0.0145
0.0145 2.5120

(34)

Once we have the fault equations formulated and the faults simulated we can proceed to
fault diagnosis.

3.3. Fault diagnosis

During the fault diagnosis we have the CUT with only a limited set of accessible nodes for
measurement and excitation. Suppose the ith node is accessible for measurement, then by
equation (32)

∆X i = αi1 αi2 ⋯ αif xk1l1,0
 xk2l2,0

 ⋯  xk f l f ,0
t (35)

According to definition of g×f matrix α in equations (33) and (31), matrix α does not depend
on the location of excitation sources. Thus matrix α is invariant when applying the multiple
excitation method, i.e., the same coefficients αij links deviation of measurements ΔXi and
nominal signal values on faulty parameter xk j l j

 independent of the excitation vector applied.

After measuring the corresponding nodal voltages on the ith node with m independent exci‐
tation vectors We (e = 1, 2,..., m ), we then obtain

∆X i
(1) = αi1 αi2 ⋯ αif xk1l1,0

(1)  xk2l2,0
(1)  ⋯  xk f l f ,0

(1) t

∆X i
(2) = αi1 αi2 ⋯ αif xk1l1,0

(2)  xk2l2,0
(2)  ⋯  xk f l f ,0

(2) t

⋮
∆X i

(m) = αi1 αi2 ⋯ αif xk1l1,0
(m)  xk2l2,0

(m)  ⋯  xk f l f ,0
(m) t

(36)

or in matrix form

∆X i
M =

∆X i
(1)

∆X i
(2)

⋮
∆X i

(m)

=

xk1l1,0
(1) xk2l2,0

(1)  ⋯  xk f l f ,0
(1)

xk1l1,0
(2) xk2l2,0

(2)  ⋯  xk f l f ,0
(2)

⋮
xk1l1,0

(m) xk2l2,0
(m)  ⋯  xk f l f ,0

(m)

αi1

αi2

⋮
αif

= X b
MF αi

(37)
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where superscript M denotes the set of multiple excitations and m is the number of these
excitations. The single measurement node can be one of the nodes used for multiple excita‐
tion method, and then the total number of accessible excitation nodes should be m. Assume
that f ≤ m-1 ≤ p, then the coefficient matrix XbMF has more rows than columns thus guaran‐
teeing the uniqueness of the solution to equation (37) with verification. Equation (37) estab‐
lishes the linear relationship between the measured responses of the faulty circuit ΔXi

M and
the faulty parameter deviations d since vector αi is a linear functions of d according to equa‐
tion (33). Therefore equation (37) is called the fault diagnosis equation, and the coefficient ma‐
trix XbMF is called the fault diagnosis matrix [6].

As said earlier, with only a limited number of accessible nodes the issue of testability and
consistency of the selected set of accessible nodes to detect f number of simultaneous faults
immediately arises. However, testability is not the focus of this chapter. We assume that the
given measurement set can give at least one finite solution to circuit parameters.

As the first stage of fault diagnosis, fault detection is easily implemented. If the measure‐
ment deviation vector ΔXi

M in the fault diagnosis equation is a zero vector, obviously the
CUT is judged as fault-free for the given excitation and measurement sets. Otherwise, at
least one fault is judged detected by the given measurement set. To identify the faulty pa‐
rameters, first let us analyze the fault diagnosis equation. The left-side of equation (37) is a
known vector from measurements; the right side is the product of an unknown coefficient
matrix XbMF and an unknown solution vector αi. According to equation (30), matrix XbMF is
determined by faulty parameter locations and X0, solution vector for the fault-free circuit.
Hence the columns in XbMF represent the differences between the nominal values of nodal
voltages or parameter currents across the 2 input nodes of the faulty parameters. Although
we do not know matrix XbMF initially for the CUT since we do not know initially the location
or number of faults, but we really know all of the nodal voltages and parameter currents in
the fault-free circuit!

Similarly as in equation (30), we can construct a new m×p matrix XbMP as follows

Q t X 0 = δk1
- δl1

 δk2
- δl2

 ⋯  δk p
- δl p

t X0

= xk1,0
- xl1,0

 xk2,0
- xl2,0

 ⋯  xk p,0 - xl p,0
t

= xk1l1,0
 xk2l2,0

 ⋯  xk pl p,0
t

(38)

X b
MP =

xk1l1,0
(1) xk2l2,0

(1)  ⋯  xk pl p,0
(1)

xk1l1,0
(2) xk2l2,0

(2)  ⋯  xk pl p,0
(2)

⋮
xk1l1,0

(m) xk2l2,0
(m)  ⋯  xk pl p,0

(m)

(39)
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where superscript P denotes the set of all p circuit parameters. Each column of XbMP corre‐
sponds to one circuit parameter. Evidently, the fault diagnosis matrix XbMF is a sub-matrix of
XbMP and can be constructed by collecting all columns in XbMP corresponding to the faulty
parameters. Apparently matrix XbMF has more rows than columns whereas XbMP has less
rows than columns due to the restriction f ≤ m-1 ≤ p.

For the purpose of fault identification, we need to find out which set or sets of columns in
XbMP can satisfy the fault diagnosis equation, i.e. the dependency between ΔXi

M and the de‐
sired coefficient matrix in fault diagnosis matrix.

Basically ΔXi
M vector for all p parameters has to be generated from the fault-free circuit and

stored as a dictionary of fault-free response to m multiple excitations over the designated m
accessible nodes. This dictionary will be used later to determine whether the CUT is faulty
and will be used in locating the faults. It must be emphasized that only one node for voltage
measurement is sufficient for this method although multiple linearly-independent excita‐
tions are required across all m accessible nodes for successful fault location. It is thus possi‐
ble to use only one of the accessible m nodes to carry out the measurements while using the
rest to carry out the excitations. As an example node {2} in Figure1 is selected as the only
measurement node, while nodes {2, 4, 15, 16, 17} are selected as accessible nodes for the mul‐
tiple excitations. That is the unit current source is applied to these nodes respectively and
the corresponding nodal voltage at node {2} is measured. Thus the measured changes of no‐
dal voltage will be

∆X M =

0.89005
0.91400
0.03651
0.032306
0.038445

(40)

One obvious way is to have a combinatorial search through all columns in XbMP, which is
the traditional way in the fault verification method [15] and requires a number of operations

of the order O(∑
i=1

f (p
i )) for f limited faults among p parameters. This is equivalent to assuming

that any number of faults up to f simultaneous faults have occurred randomly in any subset
of the p parameters then evaluate the response to such faults and compare it to the meas‐
ured response. However, the method being described here is more efficient than that and
involves locating the minimum size ambiguity group which satisfies the fault diagnosis
equation. An ambiguity group is defined as a set of parameters corresponding to linearly
dependent columns of XbMP which in general does not give a unique solution in fault identi‐
fication. Minimum size ambiguity groups (called canonical ambiguity groups) can be found
using a linear combination matrix with minimum number of non-zero entries as will be
shown shortly. But to generate this we need to perform a Gaussian elimination step.
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3.3.1. Gaussian eliminaion step

Let us first denote an augmented m×(p+1) matrix BS as the concatenation of the stored dic‐
tionary vector ΔXi

M and the matrix XbMP:

BS = ∆X i
M X b

MP (41)

Then we will normalize the first column of matrix BS to have a unity in its first row,

B̂S (i, 1)=
BS (i , 1)
BS (1,1) ,    i =1,  2,  ⋯ ,  m. (42)

If the first entry of matrix BS, BS(1,1) happens to be zero, just permute or swap the rows of BS

so that the first entry BS(1,1) is non-zero. Such a nonzero entry must exist since ΔXi
M is a

non-zero vector for faulty circuit. Eliminate the remaining entries in the first row of matrix
BS by performing a similar operation to Gaussian elimination as follows:

B̂S (i, j)= BS (i, j) -
BS (i , 1)
BS (1,1) BS (1, j),    i =1,  2,  ⋯ ,  m; j =2,3, ⋯ ,  p + 1. (43)

Finally we obtain m×(p+1) matrix B̂S  in the following form:

B̂S =
11×1 01× p

(∆ X̂ i)(m-1)×1 B (m-1)× p
(44)

where the superscript represents the size of a vector or a matrix. Matrix B is obtained from
XbMP after elimination of dependence on ΔXi

M and is called the verification matrix [6]. The
dependency of the desired columns of matrix B surely indicates the dependency between
ΔXi

M and the desired columns of matrix XbMP. Thus we can only concentrate on the depend‐
ency among the columns of the verification matrix B.

3.3.2. QR factorization

The rank r of the matrix B determines a maximum number of faults that can be uniquely
identified by solving the fault diagnosis equation. Because m-1<p, B can be permuted col‐
umn wise and decomposed into two linearly dependent sub-matrices as follows

perm(B)= B1 B2 = B1 I C (45)

B2 = B1C (46)

where perm refers to column-wise permutation, (m-1)×r matrix B1 has the full column rank
equal to the rank r of the matrix B, and r ×( p − r) matrix C is called linear combination matrix
whose columns expand a set of basis columns from B1 into the corresponding columns of B2.
It can be easily shown that B1 is a sub-matrix of B with all the rows and only a subset of the col‐
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umns (called the basis set) while B2 is a sub-matrix of B with all the rows and the remaining set of the
columns (called the co-basis set). Note that the selection of independent columns of B1 is not
unique and is an important issue in solving the fault diagnosis equation in the presence of
ambiguities. Different partitions define different linear combination matrices C.

Since an ambiguity group is a set of circuit parameters corresponding to linearly dependent
columns of B, we define a canonical ambiguity group as a minimal set of parameters corre‐
sponding to linearly dependent columns of B. This means that if any single parameter is re‐
moved from the canonical ambiguity group, then the remaining set corresponds to
independent columns of B and can be uniquely solvable. A combination of canonical ambi‐
guity groups with at least one common element was defined as ambiguity cluster.

To efficiently deal with fault verification problem, we will look for a partition (45) with the
matrix C in a minimum form, which is defined as such a matrix that one or several of its
columns have the maximum number of entries equal to zero. Thus, we can get the minimum
number of columns in XbMP satisfying the fault diagnosis equation (37). The corresponding
partition (45) is called a canonical form of the fault diagnosis equation. Notice that according
to fault verification principles [15] it is enough to find a single entry in one column of C
equal to zero to solve the fault diagnosis equation. Yet since many such solutions exist we
will select the column with the maximum number of zeros assuming that the faulty re‐
sponse was caused by the smallest number of faults. This column and all rows with non-
zero entries will correspond to the faulty parameters as indicated by the element of co-basis
B2 and elements of basis B1, respectively.

One way to find these matrices from the matrix B with high numerical stability is based on
QR factorization [8], which can find a solution of over determined system of linear equations
that minimizes the least square error. As a result of the QR factorization of (m-1)×p verifica‐
tion matrix B, we obtain:

BE =QR (47)

where  E  is  p×p  column  selection  matrix,  Q  is  (m-1)×(m-1)  orthogonal  matrix,  and  R  is
(m-1)×p  upper  triangular  matrix.  Each column of  matrix  E  has  only  one  nonzero  entry,
which is equal to one. Matrix product BE  represents the permutation of the original col‐
umns  of  the  verification  matrix  B  requested  in  equation  (45).  Matrix  R  has  its  rank
equal  to  the  rank of  matrix  B.  Since  R  is  an upper  triangular  matrix  and m-1<p,  R  can
be written as

R = R1 R2 (48)

where R1 is r×r upper triangular and has its rank equal to the rank of the verification matrix
B. Having this factorization computed, it can be shown that [8]

perm(B)= BE (49)
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C = R1
-1R2 (50)

B1 =QR1 (51)

Furthermore the basis set will be the row values of the non-zero elements in the first r col‐
umns of E while the co-basis will be the row values of the remaining p-r columns of E. As an
example, the values of R1 for our example circuit of Figure 1 is

R1 =

10.5475 -2.9444
0 3.5435

0.0028 2.3965
-0.0014 -2.8011

0               0
0               0

2.4161 -0.0005
0    1.7202

(52)

The column permutation is {39, 15, 2, 35, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 4, 36, 37, 38, 1}. Thus the basis is {39, 15, 2, 35}
and co-basis is {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 4, 36, 37, 38, 1}.

3.3.3. Swapping performance

A single QR  run cannot guarantee that the matrix C  will be obtained with one or sever‐
al of its columns having the maximum number of zero entries if  the proper basis is not
selected.  To  find  the  minimum  form  partition,  we  have  to  swap  one  parameter  of  the
basis  with  one  parameter  of  the  co-basis  in  the  ambiguity  cluster  in  order  to  increase
number  of  nonzero  entries  in  C.  Note  that  swapping  parameters  of  the  basis  and  the
co-basis  can be  performed independently  in  different  ambiguity  clusters,  since  different
clusters  have  mutually  disjoint  sets  of  parameters.  There  are  simply  two  conditions  to
consider in swapping performance:

a. The necessary condition for swapping to increase the number of zero entries in C is that
the columns of basis and co-basis to be swapped have a singular 2×2 sub-matrix of non‐
zero entries.

Let us consider a linear combination matrix C with a 2×2 singular sub-matrix

R1 =

10.5475 -2.9444
0 3.5435

0.0028 2.3965
-0.0014 -2.8011

0               0
0               0

2.4161 -0.0005
0    1.7202

(53)

with all nonzero entries. If we swap the jth element of the basis with kth element of the co-
basis, then after swapping, the kth column of C changes to
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Ck = - 1
c jk

c1k c2k ⋯ 1 ⋯ crk
t (54)

In addition, all other columns of matrix C will be equal to

Cn = c1n -
c jnc1k

cik
c2n -

c jnc2k

cik
⋯ c jn

cik
⋯ crn -

c jncrk

cik

t (55)

Such that all zero locations in the kth column of C will be zero as they were in the original C.
However, as can be deducted from (53), a nonzero location cim in row i and column m will
become zero. It is understood that if one element in the current basis has been swapped into
the basis by the previous swapping performance, then this element will not be considered
during the later swapping.

Any columns of C with zero entries form an ambiguity group F and has to be considered for
further processing. Since ambiguities may exist in the original matrix XbMP then F contains
all faults in the CUT only if the corresponding columns in XbMP are independent. Hence we
must consider the following condition

b. The necessary condition for an ambiguity group F of the linear combination matrix C to
contain the set of all faults in the tested circuit is that the rank of the corresponding col‐
umns in matrix Xb

MP is equal to the cardinality of F

rank (columns in X b
MPcorresponding to F )= card (F ) (56)

Thus according to this condition any ambiguity group of the verification matrix which do
satisfy (55) needs to be further analyzed. The stopping criterion for the above procedure can
simply be τ the testability measure found from the symbolic analysis.

As an example for our circuit of Figure 1, careful study of the generated C matrix reveals
multiple zero entry at columns 5,12, 32, 33, and 34 (corresponding to nodes {9}, {16}, {36},
{37}, and {38} from the co-basis). The non-zero row entries will either be on rows 1, 2, 4 (cor‐
responding to nodes {39}, {15} and {35} from the basis) or on rows 2, 3, and 4 (corresponding
to nodes {15}, {2} and {35}). Thus the corresponding ambiguity clusters include {39, 15, 9, 35},
{16, 15, 2, 35}, {39, 15, 36, 35}, {39, 15, 37, 35}, and {39, 15, 38, 35}. Yet none of these ambiguity
clusters satisfies condition (b) except for the first one. Accordingly only one suspicious faul‐
ty group F={39, 15, 35, 9} is qualified with parameter {9} from the co-basis and parameters
{39, 15, 35} from the basis. The current minimum size of qualified F is 4.

Searching for the 2×2 singular matrix with non-zero entries in C reveals that parameter {9}
from the co-basis should be swapped with the parameter {39} from the basis according to
the swapping procedure in condition (a), and a new matrix C results. Re-applying condition
(b) to the new matrix C, 5 qualified suspicious faulty groups are obtained: F={9, 2, 35, 5},
F={9, 15, 35, 39}, F={9, 15, 35, 36}, F={9, 15, 38} and F={9, 37}. Obviously, F={9, 37} is the unique
solution with the minimum size equal to 2. Since no smaller size of faulty set F can be found
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by swapping, thus F={9, 37} is the only solution located by the procedure of fault diagnosis
which is the exact solution for the given CUT.

Once  the  fault  locations  are  determined  the  fault  values  must  be  evaluated  and  com‐
pared with the element tolerances before giving a final judgment on the circuit whether
being faulty or not.

3.3.4. Parameter evaluation

After locating the faulty parameters, the matrix XbMF can be found from the matrix XbMP by
taking only the columns corresponding to the fault locations. Then the invariant vector αi

can be uniquely solved from equation (37)

αi = ((X b
MF )t X b

MF )-1(X b
MF )t ∆X i

M (57)

where this form is used since the system is over-determined with XbMF being non-square.
Finally the deviation vector d can be exactly computed by

d =αi . /  (β - αiγ) (58)

where. / is an element-by-element division of two vectors. What remains after evaluating the
deviations is to compare them to the element allowable tolerances to decide finally whether
the measured CUT performance is still considered acceptable or deemed faulty. Basically,
when the fault locations and parameter deviations are found, all the circuit can be re-solved
to get all the node voltages and element currents of the CUT.

3.4. Mixed symbolic numerical algorithm for fault diagnosis

A computer program which implements the fault diagnosis discussed above can be easily
advised. In Phase 1, a topological description of the circuit is obtained and the circuit is
solved numerically. Since nominal values of circuit parameters are known, all nodal voltag‐
es in fault-free circuit can be solved by (18). In phase 2, an upper limit for the testability τ
needs to be determined for the provided set of accessible nodes. It is not generally required
to obtain a fully symbolic solution of the circuit and only a partial symbolic solution would
be sufficient. In phase 3 we need to measure the nodal voltages of the ith node in the CUT
under multiple excitation method to obtain measurement deviation vector ΔXi

M. In phase 4
we need to generate the fault locator matrix XbMP from equations (38) and (39) then use it to
find the linear combination matrix C after the Gaussian elimination step and the QR factori‐
zation. In Phase 5, analysis of the combination matrix is done where F denotes one suspi‐
cious fault set and min(size(F)) represents a scalar which is equal to the minimum size of all
suspicious fault sets. In Phase 6, if several suspicious fault sets have the same minimum size,
min(size(F)), select one of them arbitrarily for analysis. Only one parameter in the selected F
is from the co-basis and the remaining parameters are from the basis. Swap that co-basis pa‐
rameter which corresponds to column k in matrix C with one of basis parameters which cor‐
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responds to row j in the matrix C. By (53) and (54), all zero entries in the column k of matrix
C will be held after swapping while new zero-entry will appear in another column of new
matrix C, thus the new value of min(size(F)) will be equal to, or less than the old value be‐
fore swapping.

There are two rules for swapping.  One is  that  row j  is  selected with nonzero cjk  on the
intersection of row j  and column k  of matrix C.  Another rule is that if one parameter in
the current  basis  has been swapped into the basis  by the previous swapping operation,
then  this  element  will  not  be  considered  during  the  later  swapping  operation.  Usually
m-1  is  far  less  than p,  and the  rank of  r×(p-r)  matrix  C,  r  is  not  greater  than m-1,  thus
there  are  far  less  basis  parameters  than  co-basis  parameters.  The  comprehensive  swap‐
ping  between the  co-basis  parameter  k  and the  basis  parameters  are  very  limited,  as  a
result of the two swapping principles.

In Phase 7 equivalent adjoint suspicious fault sets are recorded. In Phase 8 the correspond‐
ing fault diagnosis matrices XbMF are found from the fault locator matrix. In Phase 9 the in‐
variant vector αi is evaluated. Phase 10 is used for verification. One or several suspicious
fault sets with minimum size are used to compute the deviation vector ΔX. If a computed
vector matches the real measured vector ΔXi

M, the corresponding fault set F is our final solu‐
tion to faulty parameters. Otherwise, we discard this set, and turn to the adjoint suspicious
fault sets recorded in Phase 7. Verification in this phase continues until at least one qualified
solution to faulty parameters is found. Otherwise, the CUT is concluded as un-solvable be‐
cause the restriction f ≤ m - 1 is not satisfied. In the final Phase the parameter variations are
compared to the element tolerances to decide if the circuit response is indeed faulty or just
shifted within the accepted tolerance.

4. Conclusion

In this chapter, a generalized fault diagnosis and verification approach for linear analog cir‐
cuits was discussed. Fault verification methods intend to obtain the information about the
faulty circuit based on the limited measured responses of the faulty circuit. There are two
easily implemented prerequisites: one is that the circuit topology and nominal values of cir‐
cuit parameters should be known, another is that the number of measurements minus one is
not less than the number of faulty parameters. A symbolic method is proposed to solve the
testability problem during the detection, and location of the multiple faults in a linear ana‐
log circuit in frequency domain, then to exactly evaluate the faulty parameter deviations.

Applying  the  Woodbury  formula  in  the  matrix  theory  to  the  modified  nodal  analysis,
fault  diagnosis  equation  is  constructed  to  establish  the  relationship  between  the  meas‐
ured responses  and the  faulty  parameter  deviations  in  a  linear  way.  A numerically  ro‐
bust  approach has  been modified to  fit  the  condition stated in  this  chapter  in  order  to
implement  fault  location,  i.e.,  location  of  the  minimum  size  ambiguity  group  in  the
fault  diagnosis  equation  based  on  QR  factorization.  Parameter  evaluation  is  then  per‐
formed from results of the analysis of fault diagnosis equation.
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One node for voltage measurement is sufficient for the proposed method although mul‐
tiple excitations are required for fault  location.  Although the faulty parameter deviation
cannot be infinity,  open or short condition can be dealt  with well  by switches in modi‐
fied nodal analysis.

Therefore, the faults can be parametric or catastrophic. The proposed method is extremely
effective for large parameter deviations and a very limited number of accessible nodes used
for excitations and measurements. The computation cost for the fault location is on the order
of O(p3), and compares favorably with the combinatorial search traditionally used in fault

verification methods which requires the number of operations O(∑
i=1

f (p
i )).
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