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1. Introduction 

This chapter aims to present a chemometrics as important area in chemistry to be able to 

help work with many among of data obtained in analysis. The term chemometrics was 

introduced in initial 70th years by Svant Wold (Swede) and Bruce Kowalski (USA). 

According International Chemometrics Society, founded in 1974, the accept definition to 

chemometrics is (i) the chemical discipline that uses mathematical and statistical methods to 

design or select optimal measurement procedures and experiments (ii) to provide maximum 

chemical information by analyzing chemical data [1]. When the study involving many 

variable became the study in a multivariate analysis, so it is necessary to building a typical 

matrix and is normal to do a pre-processing. Pre-processing is a procedure to adjust the 

different factors with different units in values than allow give for each factor the same 

change to contribute to the model. After, next step is usually the Pattern Recognition 

method, to find any similarity in your data. In This method is common using the 

unsupervised group where there are the HCA and PCA analysis and the supervised group 

where there is the KNN. The HCA analysis (Hierarchical Cluster Analysis) is used to 

examine the distance among the samples in two dimensional plot (dendogram) and cluster 

samples with similarity. (Figure 1). Now PCA analysis (Principal Component analysis) is 

used to try decrease the size data set, without lost information about samples (Figure 2) and 

KNN used to classify samples using cluster previously know [2]. 

 

Figure 1. Example of dendogram 
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Figure 2. Clustering by PCA 

Thus, the chemometrics show to be wide may be used in several area of knowledge.  

2. Pattern recognition 

In analytical chemistry when we have the data set, it is important find similarities and 

differences between samples based on measurements. For this is necessary to use methods 

according with information about the samples. And can be: Unsupervised (HCA and PCA) 

and Supervised methods (KNN)  

2.1. Unsupervised methods 

In this group there are two methods: Hierarchical Cluster Analysis (HCA) and Principal 

Components Analysis (PCA), and the goal is to evaluate if there is any clustering in data set 

without using the class about samples.  

2.1.1. Hierarchical Cluster Analysis (HCA)  

The Hierarchical Cluster Analysis is a technique to evaluate the distance between de 

samples and group in a plot calling dendogram. Theses distance can be calculated utilizing 

different methods as Euclidean or Mahalanobis or Manhattan distance, for example. For the 

Euclidean distance is using the equation 1, for Mahalanobis distance is using the equation 2 

and for Manhattan distance is using equation 3: 

 Distance = 	ඥ(Xଵ − Yଵ)ଶ + (Xଶ +	Yଶ)ଶ +⋯+ (X୬ +	Y୬)ଶ	 (1) 

Where:  

Xn and Yn are the coordinates of sample X and Y in the nth dimension of row space.  

 Distance = 	ට(X୧ − Y୨)୘ିܥଵ(X୧ +	Y୨)  (2) 

Where:  

Xi and Yj are column vectors for objects i and j, respective and C is the covariance matrix.  
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 Distance = ∑ |X୧ −	Y୧|୮୧ୀଵ  (3) 

Where:  

Xi and Yi are vectors. 

When performed the estimate for distance, so is possible plot the dendogram. A general 

dendogram is showing below (Figure 3). In this dendogram is possible to see the samples 

(letters) and the distances (numbers). Samples belonging to clusters A, has a distance of 0,2 

from one another. Same time the sample B has a distance 0,5 from cluster A. The value of 

distance can change according with the distance used to calculate.  

 

Figure 3. The general dendogram where above are the distances and right side are the samples  

2.1.2. Principal Components Analysis (PCA) 

The Principal Components Analysis (PCA) has the goal available the distances between the 

points using few axes in the row plot. In a matrix, each row is the point in the graphic below 

(Figure 2). So the aim is study the relationship between these samples to find the similarity 

and differences. In this general example are using two principal components (PC1 and PC2). 

The first PC (PC1) describes the major points in the graph and the maximum amount of 

variance, while the PC2 explain the remaining points. It is important to know that the sum 

of percentage described by PC´s must be close 100%. Another propriety of PC´s is about de 

position. The PC´s are always perpendiculars one with another. 

The PCA technical can be used to define which variables are more important in a process. 

For this analysis is necessary use the factors (column in the matrix) and objects (row in the 

matrix). When the aim is to determine which variable are more important for the process is 

used loading and when want studying the relationship between objects is used scores  

2.2. Supervised methods 

The Supervised methods are using when want to construct a model using the class 

membership for future samples. In this group, KNN is a technical widely used when the 

goal is this. 
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2.2.1. K- Nearrest Neighbor (K-NN)  

The KNN technical allows use the samples or clusters to identify another samples or 

clusters. For this is necessary to calculate the distances between them, using a Euclidean or 

Mahalanobis or Manhattan distance, for example. The minimum distance is calculated and 

the object is assigned to the corresponding class. A classification is dependent on the 

number of objects in each class. 

3. Chemometrics in medicinal chemistry  

3.1. The QSAR principle: Hansch analysis  

The development of new drugs is a continuous challenge, before uncountable diseases the 

lack an adequate pharmaceutical approach. The modern medicinal chemists concern 

specially with methods based upon rational and quantitative procedures, aiming to focus on 

potentially efficient candidates. In that context, the use of chemometric methods is very 

important, in quantitative structure-activity relationship (QSAR) studies, and it presupposes 

that the biological activity (BA), measured through a biological response (BR), keeps a 

relationship with chemical structure (CS): 

  BR = f CS  (4) 

The first attempt to quantitatively relate chemical structure to chemical behavior in a series 

of structuraly kindred compounds remounts to 1940´s, with Hammett [3] who, studying the 

meta- and para-substituted benzoic acids at 25°C, stablished linear relationships between 

the R = X substituted benzoic acid ionization constant (KX) and the ionization constant of 

the non-substituted benzoic acid (R = H): 
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   

6 4 6 4/ /

log log log

+

X
X H

H

m p R C H COOH m p R C H COO + H

K
σ = = K K

K

    

 
  

 

 (5) 

The σ constant is group-specific, and represents the electronic effect (inductive and 

resonance type) pursuit by R group. In 1964, Corwin Hansch [4] combined the use of the 

electronic constants to the lipophylic parameter (π), which represents the contribution of 

each R group to the overall lipophylicity:  

    log log logX
X H

H

P
π = = P P

P

 
  

 
 (6) 

where PX is the X-substituted compound octanol-water partition coefficient, and PH, the 

partition coefficient for a non-substituted compound. Thus, a QSAR equation evolves some 

kind of RB, for example, the negative logarithm of the minimal inhibitory concentration 

(MIC) for am antimicrobial compounds series (-log(MIC)), and the electronic (σ) and 
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lipophylic effect (π) of the R groups, the makes distinction among the several series 

representatives, can be expressed as 

   1
log logMIC = = a σ + b π+ c

MIC

 
   

 
 (7) 

where a, b and c are the multiple regression coefficients. 

The Hansch´s hypothesis that RB may be related to specific physico-chemical to each 

substituent present in the basic skeleton in a congener series of similar BA led to the 

proposition of numerous descriptors, of different kinds, useful to the identification of the 

principal effects that show up in drug action. 

3.2. Physico-chemical descriptors  

There are several physico-chemical descriptors, useful in QSAR studies that can be divided 

in categories: constitutional, topological, stereochemical and electronic ones, beside the so 

called indicator variables.  

3.2.1. Constitutional descriptors  

This kind of descriptor is related to the presence of structural characteristics that can affect 

the BA, such as: amount of unsaturated bonds, amount of hydrogen-bond donors, average 

ring size, etc.  

3.2.2. Topological descriptors  

These are descriptors that represent shape and connectivity, such as: ramifications, spacing 

groups, unsaturations, etc. The Kier [5] and Wiener [6] descriptors are typical. 

3.2.3. Steric (or stereochemical) descriptors  

Steric descriptors exist to describe effects related to the size of chemical groups and 

hindrance behavior. Taft steric descriptor, Es, [7] is a common example.  

3.2.4. Eletronic descriptors  

These variables are related to molecular electronic densities, and are used to be calculated 

by quantum methods. One can mention as examples: dipole moments, atomic partial 

charges, highest occupied molecular orbital energy (HOMO) and lowest unoccupied 

molecular orbital energy (LUMO).  

3.2.5. Indicator variable and Taylor analysis  

Indicator variables represent a useful way to convert a qualitative information into 

quantitative once, just as the occurrence of some kind of structural feature – setting 1 when 
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this feature is present, and 0 otherwise. The Taylor QSAR [8] approach employs indicator 

variables.  

3.3. Chemometric methods applied to drug design  

Chemometric statistical methods find in QSAR a large application field, considering that the 

multivariate problems are inherent to it.  

3.3.1. Discriminatory and classificatory methods  

Those methods aim the grouping and classification of compounds and variables in classes or 

categories that share resemblances, and are very interesting in pattern recognition situations 

and in dimensionality reduction of complex systems.  

3.3.2. Principal Component Analysis (PCA)  

Principal component (PCs) methods aim to combine correlated variables, projecting them in a 

new coordinate system, so that fewer variables are obtains, without any intercorrelation. The 

former coordinates are projects in a new axis system, in which the system variability is 

maximum along PC1, decreasing along the other axises (PC2, PC3...), all of the orthogonal each 

other, what allows one to deal just with the first components (usually PC1, PC2 and PC3). 

Thus, from a multi-variable universe, commonly multicolinear, one can obtain a simpler 

system with almost the same amount of information. Naming X the data matrix, with I×J 

dimension (I molecules and J descritors), a PCA generates two matrices, T e L, so that 

 TX = TL  (8) 

The matrix T is of scores, and represents the position of the compounds in a a novel 

coordinate system in which the components are its axises, and L is the loading matrix. 

Plotting the PCs instead of the original descriptors, one obtains groups governed by the 

similarities among the data. 

3.3.3. Hierarchical Cluster Analysis (HCA)  

This analysis is also useful to the classification of compounds, permitting visually 

distinguish the patterns and cluster. The plot resembling a tree, called dendogram, presents 

similar compounds at the same branches. Those branches are plotted based upon a 

similarity matrix, S, and each component of it is given by the similarity index between two 

samples k and l, Skl: 

 1.0 kl
kl

max

d
S =

d
  (9) 

In this expression, dkl is the Euclidian distance between k and l, and dmax, the maximum 

distance. Ferreira [9] describes a PCA/HCA analysis for a 25-compound series of 1,4- 
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naphtoquinones with antitumour activity. Using electronic descriptors, it was possible to 

distinguish active from inactive compounds (Figure 4). The loadings values indicate that the 

presence of high-density groups in side chain and terminal positions favours activity. The 

same profile arise from the dendogram analysis. 

 

Figure 4. PC1 versus PC2 scores plot. 

 

Figure 5. Dendogram for a naphtoquinone series 

3.4. Multivariate regression  

To construct a QSAR equation (Eq. 1), it is necessary to adopt some kind of multivariate 

fitting method in order to correlate the descriptors with the BR. The main methods are: 
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multilinear regression (MLR), principal component regression (PCR) and partial-least 

squares (PLS). 

3.4.1. Multilinear regression (MLR)  

The objective of this method is obtaining a relationship among a number of descriptors 

limited to 1/5 of the number of compounds and the BR, as an equation of the form:  

      1 1 1 2 1 2 3 1 3BR = α ±ε D +α ±ε D +α ±ε D + +ε     (10)  

in which i are the regression coefficients, Di are the descriptors, εi, the coefficients 

confidence interval and ε, the independent term. The model statistical validation is very 

important, and it requires the consistency in the Di descriptors unit, as well as in values 

magnitude (necessarily). Statistical parameter like the fitting coefficient (r), the sample 

standard deviation (s), the cross-validation coefficient (q2) and the Fischer test (F) are used in 

this task. The MLR is quite sensitive to multicollinearity: variables intercorrelated (tipically, 

com r2 > 0.6) must not be used together. This is a common problem in multi-descriptor 

system that may be dealed with other regression methods. 

3.4.2. Principal component regression (PCR)  

In order to avoid multicollinearity, it is possible to make the regression, not with the 

descriptors themselves, but with their principal components (PCs) generated in a PCA 

treatment. The main advantage of this approach is the assurance that every variable are 

independent and no n-correlated, despite it is necessary to analyze the loading matrix (L). In 

this kind of regression, the variables are defined to maximize the descriptor matrix variance, 

without force a correlation with the BR  

3.4.3. Partial least square (PLS)  

Similarly to PCR, the PCs are employed, but in this case, the BR matrix has maximum 

variability, so that each loading matrix component (L) is a good predictor for each BR matrix 

component. This is the most used regression method, and it is adequate for dealing with 3D-

QSAR problems, in which a set of compounds preciously aligned is put within a grid of 

interaction points with a molecular probe. Each point energy is a variable in the QSAR 

equation, which are by their turn corrlated with the BR to achieve a tridimensional profile of 

the critical sites that favours or disfavours the interaction with a hypothetical biological 

receptor. 

4. Design of experiments  

The exploration for new sources of energy such as biodiesel is of great importance today as 

well as their production processes. The factorial design is an important tool to reduce the 

search time, waste of reagents and hence operating costs [10]. A factorial design is 
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performed with the interest to determine the experimental variables and interactions 

between variables that have significant influence on the different responses of interest [11]. 

After selecting the significant variables, we must evaluate the experimental methodology 

and the influence of a particular variable on the yield of the reaction, a statistical 

experimental design, full factorial type, in which the independent variables are: the nature 

and concentration of catalyst temperature and the molar ratio between alcohol and oil and 

the dependent variable is the yield of esters produced. The variables that were not selected 

must be fixed throughout the experiment [12]. In a subsequent step must be chosen which 

planning used for estimating the effect (the effect) of the different variables results in a 

reduced number of conducting experiments. In the screening study the interactions between 

the variables (main interactions) and second order, usually obtained by full or fractional 

factorial designs. In the experiments are evaluated best experimental conditions, as well as 

their simultaneous effects that influence the yield of the reaction are therefore extremely 

important for understanding the behavior of the system [13]. The values of "p" and greater 

than or equal to 0.05 indicate that the factors: variable (1), variable (2), variable (3), variable 

(4) and the interactions of the variables are statistically significant at 95% reliable, since they 

are greater than 0.05. These parameters were evaluated at a low level (-1) and high (+1) are 

significant to the process of positive or negative manner. The Figure. 6 shows the profile of 

the Pareto chart [7] 

 

Figure 6. Pareto chart of the resulting fractional factorial design to evaluate the effects of each variable 

and their interactions in the reaction yield. 

The analysis parameters obtained by means of multivariate optimization consists in 

choosing the conditions for preliminary assessment of experimental variables (fractional 

factorial design) followed by a response surface methodology (central composite design) 

made from the screening of the variables that may affect the synthesis of biodiesel. 

Generated model and the set of significant effects can evaluate through the study of 
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response surface methodology, as shown in Figure 7 and 8, and their interference in the 

response, ie the yield of the reaction, in which the dark area demonstrates the conditions 

that process has higher yield.  

 

Figure 7. (a) Response surface generated by the central composite design for optimization of variables 1 

and 3 

 

Figure 8. Zoom applied to the surface region of response.  

Thus, the statistical analysis shown to be an important tool to evaluate, select and propose 

new technological routes, either through raw materials and / or process evaluation of the 

parameters that most influence the transesterification reaction to obtain for biofuels.  
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5. Conclusion of chapter  

This chapter had as aim to show the versatility tools chemometrics in several areas. Was 

showed application chemometrics theory in drug design, natural products chemistry but it 

is not limited in theses area. Well, we hope to have expanded the range of chemometrics  
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