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1. Introduction

Nowadays, rotordynamics is a technological field in which research is very active because in
spite of basic phenomena have been widely studied, there are many aspects that still need
theoretical and practical work in order to construct and analyze models to represent with
more precision the dynamic behavior of real machines. Dynamic studies in rotordynamics
usually are preformed by numerical simulations using the mathematical models reported in
literature. The mathematical description of rotating systems allows the possibility to predict
their dynamic behavior and to use this information for the design of control algorithms in
order to preserve the desired stability and dynamic performance. The accuracy of a model is
determined by comparing its response and the response of the real system to the same input
signal [19]. Rotor systems are subjected, in an intrinsic way, to endogenous disturbances,
centrifugal forces by the inevitable unbalance phenomenon. Magnitude of these unbalance
forces depends on the rotor mass, angular speed and distance between geometric center
and center mass of rotor [10, 11, 29]. This last parameter is known as eccentricity and
represents one of the most difficult parameter to measure or to estimate in a rotor system
and consequently, it is an important aspect for the accuracy model.

The recent trends in rotordynamic systems are moving to higher speeds, higher powers,
lighter and more compact machinery, which has resulted in machines operating above one or
more critical speeds and increasing the vibration problems [5, 31]. In literature, the unbalance
phenomenon has been widely reported as the main source of undesired vibration in rotating
machinery [5, 10, 11, 29]. An unacceptable level of vibration can cause failure in the bearings,
high levels of noise, wearing in the mechanical components and eventually, catastrophic
failures in machines [10, 29], hence, control algorithms are needed to reduce the unbalance
effects and to take vibrations amplitudes to acceptable values for a safe machine operation.
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In literature, some different approaches to solve the problem of the model accuracy have been
proposed. An estimation procedure to identify the distributed eccentricity along the shaft of
a Jeffcott-like rotor was presented by Yang and Lin (2002). The eccentricity distributions of
the shaft are assumed as polynomial of certain grade and the disk eccentricity is considered
as lumped. Measurements in different locations along the shaft and to different rotational
speeds are needed. By some numerical simulations, they found the method efficiency
depends on the number of sensors available and on the number of operating speeds. Some
other authors have proposed the problem solution in a lumped parameters approach. Maslen
et al. (2002) developed a method to analytically adjust the models of rotor systems to
make them consistent with experimental data under the assumption that the predominant
uncertainties in the models occur at discrete points, from effects like seal coefficients or
foundation interactions. The purpose of the method is to modify the engineering model
such that the output of the model matches the experimental data in frequency domain. They
show some examples to identify lumped stiffness at the supports and seal coefficients, but
not the associated unbalance parameters and the results are presented through numerical
simulations. De Queiroz (2009) presented a relatively simple feedback method to identify
the unknown unbalance parameters of a Jeffcott rotor based on a dynamic robust control
technique, in which the disturbance forces are estimated and then, from these forces, the
magnitude and phase of the unbalance are obtained. This strategy is proved by numerical
simulations and the rotational speed of the machine has to satisfy the persistency of
excitation condition in order to guarantee the convergence of the method. Using curve
fitting techniques and optimization procedures based on least-squares methods, Mahfoud
et al. (2009) proposed a method to identify the matrices of a rotordynamic model expressed
in state variables, measuring the full state vector (displacement, speed and acceleration) in
three steps. The impulse response for a null rotational speed is used to identify the speed
non-dependent matrix, the control matrix is identified using the steady-state response and
the dependent dynamic matrix is calculated from the permanent time response of the system
at an operational speed. Finally, the external forces can be found proposing an inverse
problem from the model with the three matrices previously determined. Recently, some
results in this issue have been published in specialized literature, Sudhakar and Sekhar
(2011) estimated the unbalance faults in a Jeffcott-like rotor system with fault identification
approach, obtaining good results in both numerical and experimental ways, showing the
need of new methods and techniques to solve the unbalance forces estimation problem.

The developments in the fields of electronics, computing and control systems have changed
the approach to reduce the level of vibration amplitudes in mechanical systems. In the
traditional approach, changes in stiffness or damping system parameters cause changes in the
dynamic system behavior. Nowadays, control systems can adapt dynamically these stiffness
or damping parameters depending on the requirements or apply force directly to reduce the
vibration effects. This trend is increasingly applied in rotating machinery and other fields
of structural mechanics [11]. For control purposes, many passive, semi-active and active
devices have been proposed [31]. Active Magnetic Bearings (AMB) have found an important
field of application in rotor systems because the advantages over other devices. The absence
of contact between an AMB and rotor avoids wearing and the need of lubrication, in addition,
AMB dynamics is relatively easy to control [21]. For this, many researchers have reported
results about showing the viability for AMB application in vibration control of rotating
machinery since the 1990’s [16, 26] until recent days [1, 13, 20, 28]. Piezoelectric actuators are
other devices with an increasing application in rotor systems, they represent an alternative
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because their main characteristics: very precise movement, compact, high force, low energy
consumption, quick response time, no electromagnetic interference. Some researchers have
presented numerical and experimental results in the active control of unbalance response in
rotors using piezoelectric actuators showing that it is possible to control vibration amplitudes
by these devices [15, 17, 22]. Finally, another alternative to vibration control in rotor systems
are the semi-active devices. A semi-active vibration control system replaces the actuators
to apply directly force for devices which can change the stiffness and/or damping system
parameters. Due to their low energy consumption, their application in theoretical and
practical issues in mechanical systems tends to increase in the last years. Magnetorheological
dampers represent the most used semi-active device in rotor systems [3, 9, 12].

Generally, a control scheme to vibration attenuation is designed using a system model,
so that it is very important that the model represents to the real system behavior with
good accuracy. As we mentioned above, in the models used to describe the dynamic
behavior of rotor systems, the amount and location of unbalance are some of the most
difficult parameters to be measured and, therefore, estimation techniques are needed to
establish these and other parameters to get the required accuracy in the model. Observers
(or estimators) can be designed, from measurements of the input and of the response of
the system to provide an approximation of system states or disturbances that can not be
directly measured [14]. Observers can be considered as subsystems that combine sensed
signals with other knowledge of the control system to produce estimated signals and offer
important advantages: they can remove sensors, which reduces cost and improves reliability,
and improve the quality of signals that come from the sensors, allowing performance
enhancement. However, observers have disadvantages: they can be complicated to
implement and they expend computational resources. Also, because observers form software
control loops, they can become unstable under certain conditions. Observers can also provide
observed disturbance signals, which can be used to improve disturbance response. In spite
of observers add complexity to the system and require computational resources, an observer
applied with skill can bring substantial performance benefits and do so, in many cases, while
reducing cost or increasing reliability [6].

This chapter deals with the active control problem of unbalance-induced synchronous
vibrations in variable-speed Jeffcott-like non-isotropic rotor-bearing systems using only
measurements of the radial displacement close to the disk. In this study, the rotor-bearing
system is supported by a conventional bearing at its left end and by an active control
device at the right one, which is used to provide the control forces. A robust and efficient
active unbalance control scheme based on on-line compensation of rotor unbalance-induced
perturbation force signals is proposed to suppress the undesirable vibrations affecting the
rotor-bearing system dynamics. The methodology presented by Sira-Ramirez et al. (2008) is
applied to design a Luenberger linear state observer to estimate the unbalance force signals
and velocities of the coordinates of the rotor center, which are required to implement the
proposed control scheme. The designed state observer is called the Generalized Proportional
Integral (GPI) observer because its design approach is the dual counterpart of the so-called
GPI controller [7]. A state-space based extended linear mathematical model is developed to
locally describe the dynamics of the perturbed rotor-bearing system for design purposes of
the disturbance observer. The modelling approach of disturbance signals through a family
of Taylor time-polynomials of fourth degree described in [23] is used to locally reconstruct
such unknown signals. A similar approach to reconstruct disturbance signals based also
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on its Taylor time-polynomial expansion has been previously proposed by Sira-Ramirez et
al. (2007) using the on-line algebraic parameter identification methodology described in [8].
Additionally, a Proportional-Integral (PI) control law is designed to perform robust tracking
tasks of smooth rotor speed reference profiles described by Bézier interpolation polynomials.
Simulation results are provided to show the efficient and robust performance of the active
vibration control scheme, estimation of the unbalance forces and rotor speed controller for
the tracking of a speed reference profile that takes the rotor system from a rest initial speed
to an operation speed above its first critical speeds.

2. Rotor system model

The rotor system in a Jeffcott configuration is shown in Fig. 1. The rotor is supported by a
conventional bearing at its left end and by an active suspension at the right one.

����
�����	


��
���
�����	���	

�����
��

�

Figure 1. Jeffcott like rotor system with active suspension.

In this study, the active suspension presented by Arias-Montiel and Silva-Navarro (2010b)
is considered. This control device is based on two linear electromechanical actuators and
helicoidal compression springs. Electromechanical actuators provide the control forces in
two perpendicular directions in order to compensate actively the unbalance effects and to
get reductions in vibration amplitudes. The active suspension is depicted in Fig. 2.
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Figure 2. Active suspension with linear actuators.

The Jeffcott like rotor system consists of a disk with mass m mounted at the mid span of a
flexible shaft. In Fig. 1, x and y denote the orthogonal coordinates of rotor geometric center,
u is the distance between the gravity center G and the geometric center S, which is known
as rotor eccentricity. Moreover, kx, ky, cx and cy are the shaft stiffness and viscous damping
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coefficients in x and y directions, respectively, ϕ and ω are the angular displacement and
velocity, respectively, J is the polar moment of inertia of the rotor, cϕ is the rotational viscous
damping coefficient and τ is the control torque to smoothly regulate the rotor speed through
an traditional PID driver. Considering ux and uy as the radial control forces provided by the
active suspension used to compensate the unbalance effects on the rotor in each movement
plane and τ as the control torque provided by the motor, the rotor system model can be
obtained by Euler-Lagrange formulation. Defining the coordinates of rotor gravity center xG

and yG as

xG = x + u cos (ϕ + β)

yG = y + u sin (ϕ + β) (1)

and their time derivatives

ẋG = ẋ − uφ̇ (sin ϕ + β)

ẏG = ẏ + uφ̇ (cos ϕ + β) (2)

We can obtain the system kinetic energy as

T =
1

2
mẋ2

G +
1

2
mẏ2

G +
1

2
Jφ̇2 (3)

and the potential energy as

V =
1

2
kxx2 +

1

2
kyy2 (4)

So, the system Lagrangian is given by

L = T − V =
1

2
mẋ2

G +
1

2
mẏ2

G +
1

2
Jφ̇2

−

1

2
kxx2

−

1

2
kyy2 (5)

and proposing the dissipation function of Rayleigh of the form

D =
1

2
cx ẋ2 +

1

2
cy ẏ2 +

1

2
cϕφ̇2 (6)

Then, considering φ̇=ω the dynamics equations for the system can be achieved from
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d

dt

[

∂L

∂ẋ

]

−

∂L

∂x
+

∂D

∂ẋ
= ux

d

dt

[

∂L

∂ẏ

]

−

∂L

∂y
+

∂D

∂ẏ
= uy

d

dt

[

∂L

∂ω

]

−

∂L

∂φ
+

∂D

∂ω
= τ (7)

From equations (7), one obtains

mẍ + cx ẋ + kxx − mω2u cos (ϕ + β)− mω̇u sin (ϕ + β) = ux

mÿ + cy ẏ + kyy − mω2u sin (ϕ + β) + mω̇u cos (ϕ + β) = uy

(J + mu2)ω̇ + cϕω − mẍu sin (ϕ + β) + mÿu cos (ϕ + β) = τ (8)

and rewriting these last equations

mẍ + cx ẋ + kxx = ux + ξx

mÿ + cy ẏ + kyy = uy + ξy

Jeω̇ + cϕω = τ + ξw

ϕ̇ = ω (9)

with

ξx = mu
[

ω̇ sin (ϕ + β) + ω2 cos (ϕ + β)
]

ξy = mu
[

−ω̇ cos (ϕ + β) + ω2 sin (ϕ + β)
]

ξw = mu [ẍ sin (ϕ + β)− ÿ cos (ϕ + β)]

Je = J + mu2

(10)

In the above, ξx, ξy and ξw are the centrifugal forces and perturbation torque, respectively,
induced by the rotor unbalance.

Defining the state space variables as z1 = x, z2 = ẋ, z3 = y, z4 = ẏ, z5 = ϕ, z6 = ϕ̇, the
generalized forces as u1 = ux, u2 = uy and u3 = τ and the total unbalance amplitude yu as
system output, one obtains the following state-space description of system (8):
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ż1 = z2

ż2 =
1

∆
f1 +

1

∆
g1

ż3 = z4

ż4 =
1

∆
f2 +

1

∆
g2

ż5 = z6

ż6 =
1

∆
f3 +

1

∆
g3

yu =
√

z2
1 + z2

3 (11)

where

f1 = −kx

[

1

m
−

u2

Je
cos2 (z5 + β)

]

z1 − cx

[

1

m
−

u2

Je
cos2 (z5 + β)

]

z2

+
u2ky

Je
cos (z5 + β) sin (z5 + β) z3

+
cyu2

Je
cos (z5 + β) sin (z5 + β) z4 −

cϕu

Je
z6 sin (z5 + β)

+

[

mu

(

1

m
−

u2

Je
cos2 (z5 + β)

)

cos (z5 + β)−
mu3

Je
cos (z5 + β) sin2 (z5 + β)

]

z2
6

g1 =

[

1

m
−

u2

Je
cos2 (z5 + β)

]

ux −
u2

Je
cos (z5 + β) sin2 (z5 + β) uy +

u

Je
sin (z5 + β) τ

f2 =
u2kx

Je
cos (z5 + β) sin (z5 + β) z1 +

cxu2

Je
cos (z5 + β) sin (z5 + β) z2

−ky

[

1

m
−

u2

Je
sin2 (z5 + β)

]

z3 − cy

[

1

m
−

u2

Je
sin2 (z5 + β)

]

z4

+
cϕu

Je
z6 cos (z5 + β) + mu

[

1

m
−

u2

Je
sin2 (z5 + β)

]

sin (z5 + β) z2
6

−

mu3

Je
cos2 (z5 + β) sin (z5 + β) z2

6
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g2 = −

u2

Je
cos (z5 + β) sin (z5 + β) ux +

[

1

m
−

u2

Je
sin2 (z5 + β)

]

uy

−

u

Je
cos (z5 + β) τ

f3 = −

ukx

Je
sin (z5 + β) z1 −

cxu

Je
sin (z5 + β) z2

+
uky

Je
cos (z5 + β) z3 +

cyu

Je
cos (z5 + β) z4 −

cϕ

Je
z6

g3 =
u

Je
sin (z5 + β) ux −

u

Je
cos (z5 + β) uy +

τ

Je

∆ =
1

Je

(

Je − mu2
)

3. Active unbalance control

For the design of the active unbalance control scheme proposed in this chapter, consider
the nonlinear ordinary differential equations that describe the dynamics of the rotor center,
where only the position coordinates are available for measurement

mẍ + cx ẋ + kxx = ux + ξx

mÿ + cy ẏ + kyy = uy + ξy (12)

where

ξx = mu
[

ω̇ sin (ϕ + β) + ω2 cos (ϕ + β)
]

ξy = mu
[

−ω̇ cos (ϕ + β) + ω2 sin (ϕ + β)
]

(13)

In our design approach, the unbalance forces ξx and ξy will be considered as unknown
disturbance signals.
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For the active unbalance suppression, Proportional-Derivative (PD) controllers with
compensation of the rotor unbalance-induced disturbance signals are proposed

ux = −α1,x̂̇x − α0,xx − ξ̂x(t)

uy = −α1,ŷ̇y − α0,yy − ξ̂y(t) (14)

where ξ̂x(t) and ξ̂y(t) are estimated perturbation signals of the actual time-varying unbalance

forces ξx(t) and ξy(t), respectively, and ̂̇x and ̂̇y are estimates of the velocities of the rotor
center in x and y directions, respectively.

In this chapter, an on-line estimation approach based on Luenberger linear estate observers
is proposed to estimate the disturbance and velocity signals, using measurements of the
rotor center coordinates (x, y), which could be obtained employing proximity sensors or
accelerometers in practical applications. A state-space based extended linear mathematical
model will be developed to locally describe the dynamics of the perturbed rotor-bearing
system for design purposes of the disturbance observer. A family of Taylor time polynomials
of fourth degree will be used to locally describe the unknown disturbance signals.

The use of the controllers (14) in the rotor-bearing system (12) yields the following
closed-loop dynamics for the rotor center coordinates

ẍ +
1

m
(cx + α1,x) ẋ +

1

m
(kx + α0,x) x = 0

ÿ +
1

m

(
cy + α1,y

)
ẏ +

1

m

(
ky + α0,y

)
y = 0 (15)

whose characteristic polynomials are given by

px (s) = s2 +
1

m
(cx + α1,x) s +

1

m
(kx + α0,x)

py (s) = s2 +
1

m

(
cy + α1,y

)
s +

1

m

(
ky + α0,y

)
(16)

Therefore, by selecting the controller gains αi,j, i = 0, 1, j = x, y, so that the characteristic
polynomials (16) be Hurwitz, one can guarantee that the dynamics of the rotor center
coordinates be globally asymptotically stable, i.e., limt→∞ x (t) = 0 and limt→∞ y (t) = 0.
It can be observed that a consequence of the unbalance cancellation is that the rotor
unbalance-induced perturbation torque signal ξω affecting additively the rotor velocity
dynamics is also suppressed, i.e., limt→∞ ξω (t) = 0.
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For the closed-loop dynamics of the coordinates of the rotor center, the following reference
system is proposed

ẍ + 2ζxωnx ẋ + ω2
nxx = 0

ÿ + 2ζxωnx ẏ + ω2
nxy = 0 (17)

where ζi, ωni > 0, i = x, y, are the viscous damping ratios and natural frequencies for the
rotor center dynamics. Then, the gains of the controllers (14) are calculated as

α1,x = 2mζxωnx − cx

α1,y = 2mζyωny − cy

α0,x = mω2
nx − kx

α0,y = mω2
ny − ky

Otherwise, a Proportional-Integral (PI) control law is proposed for tracking tasks of an
angular speed profile ω∗ (t) specified for the rotor system

τ = Jev + cϕω

v = ω̇∗ (t)− α1,ω [ω − ω∗ (t)]− α0,ω

∫ t

0
[ω − ω∗ (t)] dt (18)

By replacing the control law (18) into the rotor-bearing system (9), it is obtained the
homogenous differential equation that describes the dynamics of the angular speed tracking
error eω = ω − ω∗ (t), under the assumption that the unbalance was canceled by the action
of the PD control forces (14),

ëω + α1,ω ėω + α0,ωeω = 0 (19)

Then, the asymptotic convergence of the tracking error eω to zero can be achieved selecting
the design parameters α0,ω and α1,ω such as the characteristic polynomial associated to
tracking error dynamics in closed loop (19) given by

pω (s) = s2 + α1,ωs + α0,ω (20)
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be a Hurwitz polynomial. In this case, the asymptotic tracking of the specified angular speed
profile can be verified, i.e.,

lim
t→∞

eω (t) = 0 ⇒ lim
t→∞

ω (t) = ω∗ (t)

In this chapter, the following Hurwitz polynomial is proposed for the closed-loop rotor
angular speed dynamics

pωd (s) = s2 + 2ζrωnrs + ω2
nr (21)

where ζr and ωnr > 0 are the viscous damping ratio and natural frequency for rotor angular
speed dynamics. Then, the gains of the controller (18) are calculated as

α0,ω = ω2
nr

α1,ω = 2ζrωnr

4. Asymptotic estimation of unbalance forces

In the design process of the disturbance observer, it is assumed that the perturbation
force signals ξx and ξy can be locally approximated by a family of fourth degree Taylor
time-polynomials [23]:

ξi(t) =
4

∑
j=0

pj,it
j, i = x, y (22)

where the coefficients pj,i are completely unknown.

The perturbation signals can then be locally described by the following state-space based
linear mathematical model:

ξ̇1,i = ξ2,i

ξ̇2,i = ξ3,i

ξ̇3,i = ξ4,i

ξ̇4,i = ξ5,i

ξ̇5,i = 0 (23)
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where ξ1,i = ξi, ξ2,i = ξ̇i, ξ3,i = ξ̈i, ξ4,i = ξ
(3)
i , ξ5,i = ξ

(4)
i , i = x, y.

Therefore, an extended state space model for the perturbed rotor center dynamics is given
by

η̇1,i = η2,i

η̇2,i = −

ki

m
η1,i −

ci

m
η2,i +

1

m
ui +

1

m
ξ1,i

ξ̇1,i = ξ2,i

ξ̇2,i = ξ3,i

ξ̇3,i = ξ4,i

ξ̇4,i = ξ5,i

ξ̇5,i = 0 (24)

where η1,i = i, η2,i = η̇1,i, i = x, y.

From system (24), the following Luenberger linear state observer is proposed to estimate the
disturbance and rotor center velocity signals

̂̇η1,i = η̂2,i + β6,i

(
η1,i − η̂1,i

)

̂̇η2,i = −

ki

m
η̂1,i −

ci

m
η̂2,i +

1

m
ui +

1

m
ξ̂1,i + β5,i

(
η1,i − η̂1,i

)

̂̇ξ1,i = ξ̂2,i + β4,i

(
η1,i − η̂1,i

)

̂̇ξ2,i = ξ̂3,i + β3,i

(
η1,i − η̂1,i

)

̂̇ξ3,i = ξ̂4,i + β2,i

(
η1,i − η̂1,i

)

̂̇ξ4,i = ξ̂5,i + β1,i

(
η1,i − η̂1,i

)

̂̇ξ5,i = β0,i

(
η1,i − η̂1,i

)
(25)

The dynamics of the estimation errors, e1,i = η1,i − η̂1,i, e2,i = η2,i − η̂2,i, epk ,i = ξk,i − ξ̂k,i,
k = 1, 2, · · · , 5, i = x, y, are then given by

ė1,i = −β6,ie1,i + e2,i

ė2,i = −β5,ie1,i −
ki

m
e1,i −

ci

m
e2,i +

1

m
ep1,i

ėp1,i = −β4,ie1,i + ep2,i

ėp2,i = −β3,ie1,i + ep3,i

ėp3,i = −β2,ie1,i + ep4,i

ėp4,i = −β1,ie1,i + ep5,i

ėp5,i = −β0,ie1,i (26)
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Thus, the characteristic polynomials of the dynamics of the observation errors (26) are

po,i (s) = s7 +
(

β6,i +
ci

m

)

s6 +

(

β5,i +
ki

m
+

ci

m
β6,i

)

s5 +
1

m
β4,is

4

+
1

m
β3,is

3 +
1

m
β2,is

2 +
1

m
β1,is +

1

m
β0,i (27)

which are completely independents of any coefficients pj,i of the Taylor polynomial
expansions of disturbance signals ξi (t).

The design parameter for the state observer (25) are selected so that the characteristic
polynomials (27) be Hurwitz polynomials. Particularly, these polynomials are proposed of
the form

po,i (s) =
(

s + po,i

)

(

s2 + 2ζo,iωo,is + ω2
o,i

)3
, i = x, y. (28)

with po,i, ζo,i, ωo,i > 0.

Equating term by term the coefficients of both polynomials (28) and (27 ), one obtains that

β0,i = mω6
o,i po,i

β1,i = m
(

ω6
o,i + 6ζo,i po,iω

5
o,i

)

β2,i = m
(

6ω5
o,iζo,i + 12po,iω

4
o,iζ

2
o,i + 3po,iω

4
o,i

)

β3,i = m
(

12ω4
o,iζ

2
o,i + 3ω4

o,i + 8po,iω
3
o,iζ

3
o,i + 12po,iω

3
o,iζo,i

)

β4,i = m
(

8ω3
o,iζ

3
o,i + 12ω3

o,iζo,i + 12po,iω
2
o,iζ

2
o,i + 3po,iω

2
o,i

)

β5,i = 12ω2
o,iζ

2
o,i + 3ω2

o,i + 6po,iωo,iζo,i −
ci

m
β6,i −

ki

m

β6,i = po,i + 6ωo,iζo,i −
ci

m

5. Simulation results

In order to verify the dynamic behavior of the rotor speed controller, active unbalance control
scheme and estimation of the unbalance forces, some numerical simulations were carried out
using the numerical parameters shown in Table 1.

The performance of the rotor speed controller (18) was evaluated for the tracking of the
smooth speed reference profile ω∗(t) shown in Fig. 3, which allows to take the rotor from
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m = 3.85 kg cy = 14 N s/m u = 222 µm

kx = 1.9276 × 105 N/m d = 0.020 m β = π
4 rad

cx = 12 N s/m rdisk = 0.076 m cϕ = 1.5 ×10−3 Nm s/rad

ky = 2.0507 × 105 N/m l = 0.7293 m

Table 1. Rotor System Parameters.

an initial speed ω̄1 for t ≤ T1 to the desired final operation speed ω̄2 for t ≥ T2. In general,
the unbalance response has more interest when the rotor is running above its first critical
speeds ωcr1x =

√
kx/m = 223.76 rad/s = 2136.8 rpm and ωcr1y =

√

ky/m = 230.79 rad/s =
2203.9 rpm.

The speed profile specified for the rotor system is described by

ω∗(t) =







ω̄1 for 0 ≤ t < T1

ω̄1 + (ω̄2 − ω̄1)ψ (t, T1, T2) for T1 ≤ t ≤ T2

ω̄2 for t > T2

(29)

where ω̄1 = 0 rad/s, ω̄2 = 300 rad/s = 2864.8 rpm, T1 = 0 s, T2 = 10 s and ψ (t, T1, T2) is a
Bézier polynomial defined as

ψ (t) =

(

t − T1

T2 − T 1

)5 [

r1 − r2

(

t − T1

T2 − T 1

)

+r3

(

t − T1

T2 − T 1

)2

− ... − r6

(

t − T1

T2 − T 1

)5
]

with constants r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700 and r6 = 126.
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Figure 3. Smooth reference profiles for the rotor speed and acceleration, ω∗(t) and ω̇∗ (t).
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In Fig. 4 the robust and efficient performance of the PI speed controller (18) is shown. Here,
the active unbalance control scheme (14) is not performed, i.e., ux = uy ≡ 0. Therefore, some
irregularities of the control torque action can be observed when the rotor passes through its
first critical speeds. Fortunately, the presented speed controller results quite robust against
the bounded torque perturbation input signal ξw induced by the rotor unbalance.

It is important to note that the control gains were selected to get a closed-loop rotor speed
dynamics having a Hurwitz characteristic polynomial:

Pω (s) = s2 + 2ζrωnrs + ω2
nr

with ωnr = 15 rad/s and ζr = 0.7071.
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Figure 4. Rotor system response using local PI speed controller without active unbalance control.

Fig. 5 depicts the open-loop rotor unbalance response while the rotor is taken from the rest
initial speed (ω̄1 = 0 rad/s) to the operating speed (ω̄2= 300 rad/s) above its first critical
speeds by using the PI rotor speed controller (18). The presence of high vibration amplitude
levels (above 9 mm) at the resonant peaks can be observed. Note in Fig. 6 that the centrifugal
forces induced by the rotor unbalance are quite significant. Thus, the active rotor balancing
controllers (14) should be actively compensate those perturbation forces in real time.

On the other hand, Figs. 7-9 depict the closed-loop rotor-bearing system response by
using simultaneously the disturbance observer-based active unbalance control scheme (14),
PI rotor speed controller (18) and disturbance observer (25). One can see in Fig. 7 the
robust performance of the PI speed controller (18), achieving an effective tracking of the
smooth speed reference profile (29). Since the rotor unbalance-induced torque perturbation
input signal ξw is canceled by the active balancing controllers (14), a smooth curve of the
control torque is accomplished, eliminating the irregularities presented in the control torque
response without active unbalance control (4).
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Figure 5. Open-loop rotor unbalance response with local PI rotor speed controller.
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Figure 6. Rotor unbalance forces without active unbalance control.

The closed-loop rotor unbalance response is described in Fig. 8. The active unbalance
suppression can be clearly noted. In this case, the gains of the active unbalance controllers
were selected to get a closed-loop system dynamics having the Hurwitz characteristic
polynomials:

Px (s) = s2 + 2ζxωnxs + ω2
nx

Py (s) = s2 + 2ζyωnys + ω2
ny
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with ωnx = ωny = 10 rad/s and ζx = ζx = 0.7071.

Fig. (9) describes the active vibration control scheme response, which applies the active

compensation of the estimated unbalance force signals ξ̂x and ξ̂y shown in Fig. (10).

The characteristic polynomials, assigned to the observation error dynamics, must be faster
than the rotordynamics and, therefore, are specified as

Po,i (s) =
(
s + po,i

) (
s2 + 2ζo,iωo,is + ω2

o,i

)3
, i = x, y.

with desired parameters po,i = ωo,i = 1200 rad/s and ζo,i = 100.
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Figure 7. Rotor system response using local PI speed controller with active unbalance control.

0 2 4 6 8 10 12
−0.01

−0.005

0

0.005

0.01

x
[m

]

0 2 4 6 8 10 12
−0.01

−0.005

0

0.005

0.01

y
[m

]

0 2 4 6 8 10 12
0

0.005

0.01

t [s]

y
u
[m

]

Figure 8. Closed-loop rotor unbalance response with local PI rotor speed controller.
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Figure 9. Response of active unbalance Controllers.
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Figure 10. Estimates of the closed-loop rotor unbalance force signals using disturbance observer (25).

6. Conclusions

In this chapter, we have proposed a PD-like active vibration control scheme for robust
and efficient suppression of unbalance-induced synchronous vibrations in variable-speed
Jeffcott-like non-isotropic rotor-bearing systems of three degrees of freedom using only
measurements of the radial displacement close to the disk. In this study, we have
considered the application of an active suspension device, which is based on two linear
electromechanical actuators and helicoidal compression springs, to provide the control forces
required for on-line balance of the rotor system. The presented control approach is mainly
based on the compensation of bounded perturbation force signals induced by the rotor
unbalance, and the specification of the desired closed-loop rotor-bearing system dynamics
(viscous damping ratios and natural frequencies). A robust and fast estimation scheme of the
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perturbation force signals and velocities of the rotor center coordinates based on Luenberger
linear state observers has also been proposed. In the state observer design process, the
perturbation force signals were locally approximated by a family of Taylor time-polynomials
of fourth degree. Therefore, each perturbation signal was locally described by a state
space-based linear mathematical model of fifth order. Then, an extended lineal mathematical
model was obtained to locally describe the dynamics of the perturbed rotor system to be
used in the design of the disturbance and state observer. In addition, a PI rotor speed
controller was proposed to perform robust tracking tasks of smooth rotor speed reference
profiles described by Bézier interpolation polynomials. Simulations results show the robust
and efficient performance of the active vibration control scheme and rotor speed controller
proposed in this chapter, as well as the fast and effective estimation of the perturbation force
signals, when the rotor system is taken from a rest initial speed to an operation speed above
its first critical velocities. The proposed methodology can be applied for more complex and
realistic rotor-bearing systems (e.g., more disks, turbines, shaft geometries), finite element
models, monitoring and fault diagnosis quite common in industrial rotating machinery.
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