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1. Introduction

The thermodynamics of ferroelectric phase transitions is an important constituent part of the
phenomenological theories of them, as well as the interface dynamics of them. In particular,
if we confine the thermodynamics to the equilibrium range, we can say that the Landau-
Devonshire theory is a milestone in the process of the development of ferroelectric phase
transition theories. This can be found in many classical books such as [1,2]. Many studies
centering on it, especially the size-effects and surface-effects of ferroelectric phase transitions,
have been carried out. For the reason of simplicity, we just cite a few [3,4]. But we think these
are a kind of technical but not fundamental progress.

Why we think so is based on that the Landau-Devonshire theory is confined to the equilibrium
range in essene so it can’t deal with the outstanding irreversible phenomonon of first-order
ferroelectric phase transitions strictly, which is the „thermal hysteresis“. The Landau-Devon‐
shire theory attributes the phenomenon to a series of metastable states existing around the
Curie temperature TC . In principle, the metastable states are not the equilibrium ones and can
not be processed by using the equilibrium thermodynamics. Therefore, we believe the Landau-
Devonshire theory is problematic though it is successful in mathematics. The real processes of
phase transition were distorted. In this contribution, the Landau-Devonshire theory will be
reviewed critically, then the latest phenomenological theory of ferroelectric phase transitions
will be established on the basis of non-equilibrium or irreversible thermodynamics.

This contribution are organized as the follows. In Section 2, we will show the unpleasant
consequence caused by the metastable states hypothesis, and the evidence for the non-
existence of metastable states, i.e. the logical conflict. Then in Section 3 and 4, we will give the
non-equilibrium ( or irreversible ) thermodynamic description of ferroelectric phase transi‐
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tions, which eliminates the unpleasant consequence caused by the metastable states hypoth‐
esis. In Section 5, we will give the non-equilibrium thermodynamic explanation of the
irreversibility of ferroelectric phase transitions, i.e. the thermal hysteresis and the domain
occurrences in ferroelectrics. At last, in Section 6 we will make some concluding remarks and
look forward to some possible developments.

2. Limitations of Landau-Devonshire theory and demonstration of new
approach

The most outstanding merit of Landau-Devonshire theory is that the Curie temperature and
the spontaneous polarization at Curie temperature can be determined simply. However, in
the Landau-Devonshire theory, the path of a first-order ferroelectric phase transition is
believed to consist of a series of metastable states existing around the Curie temperature. This
is too difficult to believe because of the difficulties encounted ( just see the follows) TC .

2.1. Unpleasant consequence caused by metastable states hypothesis

Basing on the Landau-Devonshire theory, we make the following inference. Because of the
thermal hysteresis, a first-order ferroelectric phase transition must occur at another tempera‐
ture, which is different from the Curie temperature [5]. The state corresponding to the
mentioned temperature ( i.e. actural phase transition temperature ) is a metastable one. Since
the unified temperature and spontanous polarization can be said about the metastable state,
we neglect the heterogeneity of system actually. In other words, every part of the system, i.e.
either the surface or the inner part, is of equal value physically. When the phase transition
occurs at the certain temperature, every part of the system absorbs or releases the latent heat
simultaneously by a kind of action at a distance. ( The concept arose in the electromagnetism
first. Here it maybe a kind of heat transfer. ) Otherwise, the heat transfer in system, with a finite
rate, must destroy the homogeneity of system and lead to a non-equilibrium thermodynamic
approach. The unpleasant consequence, i.e. the action at a distance should be eliminated and
the lifeforce should be bestowed on the non-equilibrium thermodynamic approach.

In fact, a first-order phase transition process is always accompanied with the fundamental
characteristics, called the co-existence of phases and the moving interface ( i.e. phase boun‐
dary ). The fact reveals that the phase transition at various sites can not occur at the same time.
Yet, the phase transition is induced by the external actions ( i.e. absorption or release of latent
heat ). It conflicts sharply with the action at a distance.

2.2. Evidence for non-existence of metastable states: logical conflict

In the Landau-Devonshire theory, if we neglect the influence of stress, the elastic Gibbs energy
G1 can be expressed with a binary function of variables, namely the temperature T  and the
electric displacement D ( As G1 is independent of the orientation of D, here we are interested
in the magnitude of D only )
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( )1 1 ,G g T D= (1)

The long-standing, close correlation between analytical dynamics and thermodynamics
implies that Equation (1) can be taken as a scleronomic constraint equation

( ) ( )1 1 1 1, , , 0f G T D G g T D= - = (2)

where G1, T , D are the generalized displacements. The possible displacements dG1, dT  and
dD satisfy the following equation

1 1
1d d d 0

g g
G T D

T D
¶ ¶

- - =
¶ ¶

(3)

In the Landau-Devonshire theory, the scleronomic constraint equation, i.e. Equation (1) is
expressed in the form of the power series of D ( For simplicity, only the powers whose orders
are not more than six are considered )

2 4 6
1 10

1 1 1
2 4 6

G G D D D= + + +a b g (4)

where α, β, γ are the functions of T , and G10 is the elastic Gibbs energy of paraelectric phase.
The relation between G1 and D at various temperature, which belongs to first-order phase
transition ferroelectrics is represented graphically in Figure 1. The electric displacements
which correspond to the bilateral minima of G1 are identified as ±D *, and the electric displace‐
ment which corresponds to the middle minimum of G1 equals zero. The possible electric
displacements should be the above ones which correspond to the minima of G1.

Equivalently, imposed on the generalized displacements G1, T , D is a constraint, which is

1 0
G
D

¶
=

¶
(5)

So, the possible displacement dD should be the follows
dD *, −dD *, 0− (±D *)= ∓ D *, ± D *−0= ± D *, 0. After all, if our discussion are limited in the
equilibrium thermodynamics strictly, there must be the third constraint, i.e. the equilibrium
D and T  should satisfy

( ), 0h D T = (6)
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where h  is a binary function of the variables D and T . It can be determined by the principle
of minimum energy

1 minG = (7)

for certain T . Then, the metastable states are excluded. Thus, the thermal hysteresis does not
come into being. The corollary conflicts with the fact sharply. This reveals that the first-order
ferroelectric phase transition processes must not be reversible at all so as not to be dealt with
by using the equilibrium thermodynamics.

How can this difficulty be overcome? An expedient measure adopted by Devonshire is that
the metastable states are considered. However, do they really exist?

Because the metastable states are not the equilibrium ones, the relevant thermodynamic
variables or functions should be dependent on the time t . In addition, the metastable states are
close to equilibrium, so the heterogeneity of system can be neglected. Here, the elastic Gibbs
energy G ′

1 should be

( )1 2 , ,G g T D t¢ = (8)

For the same reason as was mentioned above, Equation (8) can be regarded as a rheonomic
constraint on the generalized displacements G ′

1, T , D

Figure 1. The relation between elastic Gibbs energy G1 and zero field electric displacement D belongs to the ferroelec‐
trics at various temperature, which undergoes a first-order phase transition [5]. T0 :the lowest temperature at which
the paraelectric phase may exist, i.e. the Curie-Weiss temperature; TC  :the phase transition temperature, i.e. the Curie
temperature; T1 : the highest temperature at which the ferroelectric phase may exist; T2 : the highest temperature at
which the ferroelectric phase may be induced by the external electric field.
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( ) ( )2 1 1 2, , , , , 0f G T D t G g T D t¢ ¢= - = (9)

In this case, the possible displacements dG ′
1, dT  and dD satisfy the following equation

2 2 2
1d d d d 0

g g g
G T D t

T D t
¶ ¶ ¶

¢ - - - =
¶ ¶ ¶

(10)

Comparing Equation (3) with Equation (10), we may find that the possible displacements here
are not the same as those in the former case which characterize the metastable states for they
satisfy the different constraint equations, respectively. ( In the latter case, the possible dis‐
placements are time-dependent, whereas in the former case they are not. ) Yet, the integral of
possible displacement dD is the possible electric displacement in every case. The possible
electric displacements which characterize one certain metastable state vary with the cases. A
self-contradiction arises. So the metastable states can not come into being.

What are the real states among a phase transition process? In fact, both the evolution with time
and the spatial heterogeneity need to be considered when the system is out of equilibrium
[6-9]. Just as what will be shown in Section 2.3, the real states should be the stationary ones,
which do not vary with the time but may be not metastable.

2.3. Real path: Existence of stationary states

The real path of a first-order ferroelectric phase transition is believed by us to consist of a series
of stationary states. At first, this was conjectured according to the experimental results, then
was demonstrated reliable with the aid of non-equilibrium variational principles.

Because in the experiments the ferroelectric phase transitions are often achieved by the quasi-
static heating or cooling, we conjetured that they are stationary states processes [8]. The results
on the motion of interface in ferroelectrics and antiferroelectrics support our opinion [10-12].
From Figure 2, we may find that the motion of interface is jerky especially when the average
velocity va is small. A sequence of segments of time corresponding to the states of rest may be
found. The experimental results about other materials such as PbTiO3 are alike [11]. This
reveals that in these segments of time ( i.e. characteristic time of phase transition ) the stationary
distributions of temperature, heat flux, stress, etc. may be established. Otherwise, if the motion
of interface is continuous and smooth, with the unceasing moving of interface ( where the
temperature is TC  ) to the inner part, the local temperature of outer part must change to keep
the temperature gradient ∇T  of this region unchanged for it is determined by
±lρv ′ = Jq

diff = −κ∇T , where l  is the latent heat ( per unit mass ), ρ is the mass density, v ′ is the

velocity of interface ( where the phase transition is occurring ), Jq
diff  is the diffusion of heat, i.e.

heat conduction, κ is the thermal conductivity ( and maybe a tensor. ) Then, the states are not
stationary.
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Figure 2. The position of phase boundary as a function of time for NaNbO3 single crystal for the various values of aver‐
age velocity va (the values in μm/s given against the curves) [12].

The non-equilibrium variational principles are just the analogue and generalization of the
variational principles in analytical dynamics. The principle of least dissipation of energy, the
Gauss’s principle of least constraint and the Hamiltonian principle etc., in non-equilibrium
thermodynamics play the fundamental roles as those in analytical dynamics. They describe
the characteristics of stationary states or determine the real path of a non-equilibrium process.

For the basic characteristics of non-equilibrium processes is the dissipation of energy, the
dissipation function φ is defined as

s= -j s p (11)

where σs is the rate of local entropy production and π is the external power supply ( per unit
volume and temperature ). After the rather lengthy deducing and utilizing the thermodynamic
Gauss’s principle of least constraint which makes the system choose a real path [13], the
evolution with time t  of the deviation from a given non-equilibrium stationary state,
ξ(t)= {ξi(t)}, was obtained in two cases. If no external power supply,
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( ) ( )
2

0
i

i

S
t

R
i it e=x x (12)

where ξi(0) is the initial value of ξi(t), Si is the coefficient between the linear variation in the

thermodynamic force χTi
(1)(ξ) and the deviation of the extensive pseudo-thermodynamic

variable from a given non-equilibrium stationary state ξi, Ri is the coefficient between the linear

variation in the dissipative force χDi
(1)(ξ̇) and the time-derivative of the deviation of the

extensive pseudo-thermodynamic variable from a given non-equilibrium stationary state ξ̇ i.

Equation (12) define the real path with the addition that Ri should be a suitable value Ri
*. If

the external power supply exists, similarly the evolution of deviation ξi can be obtained

( ) ( )
( )2

0
i i

i

S V
t

R
i it e

-

=x x (13)

where V i is the coefficient between the linear variation in the force related to the external power

χEi
(1) and the deviation of the extensive pseudo-thermodynamic variable from a given non-

equilibrium stationary state ξi. If the coefficients V i, Ri assume the suitable values V i
**, Ri

**,
the system choose a real path.

Figure 3. Three types of regions and their interfaces in the ferroelectric-paraelectric system in which a first-order
phase transition is occurring [13].
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Both the real paths in the two cases reveal that the deviations decrease exponentially when the
system regresses to the stationary states. Stationary states are a king of attractors to non-
equilibrium states. The decreases are steep. So the regressions are quick. It should be noted
that we are interested in calculating the change in the generalized displacements during a
macroscopically small time interval. In other words, we are concerned with the determination
of the path of an irreversible process which is described in terms of a finite difference equation.
In the limit as the time interval is allowed to approach zero, we obtain the variational equation
of thermodynamic path.

So, if the irreversible process is not quick enough, it can be regarded as the one that consists
of a series of stationary states. The ferroelectric phase transitions are usually achieved by the
quasi-static heating or cooling in the experiments. So, the processes are not quick enough to
make the states deviate from the corresponding stationary states in all the time. In Figure 3,
three types of regions and their interfaces are marked with I, II, III, 1, 2 respectively. The region
III where the phase transition will occur is in equilibrium and has no dissipation. In the region
I where the phase transition has occurred, there is no external power supply, and in the region
II ( i.e. the paraelectric-ferroelectric interface as a region with finite thickness instead of a
geometrical plane ) where the phase transition is occurring, there exists the external power
supply, i.e. the latent heat ( per unit volume and temperature ). According to the former
analysis in two cases, we may conclude that they are in stationary states except for the very
narrow intervals of time after the sudden lose of phase stability.

3. Thermo-electric coupling

In the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer [6,7], the
normal velocity of interface vn was obtained

( ) ( )1
n fer parfer par
v k T k T

l
é ù= Ñ - Ñ ×ê úë ûr

n (14)

where l  is the latent heat ( per unit mass ), ρ is the density of metastable phase (paraelectric
phase ), k fer  is the thermal conductivity coefficient of ferroelectric phase, k par  is the thermal
conductivity coefficient of paraelectric phase, (∇T ) fer  is the temperature gradient in ferro‐
electric phase part, (∇T ) par  is the temperature gradient in paraelectric phase part, n is the unit
vector in normal direction and directs from the ferroelectric phase part to the paraelectric phase
part. The temperature gradients can be studied from the point of view that a ferroelectric phase
transition is a stationary, thermo-electric coupled transport process [8].

3.1. Local entropy production

In the thermo-electric coupling case, the Gibbs equation was given as the following [8]
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d d d di i
i

T s u n= - × -åmE D (15)

where T , E , D is the temperature, the electric field intensity and the electric displacement
within a random small volume, respectively; s, u, μi, ni is the entropy density, the internal
energy density, the chemical potential and the molar quantity density in the small volume,
respectively. And there, it was assumed that the crystal system is mechanically-free ( i.e. no
force is exerted on it ). Differentiating Equation (15) and using the following relations

0u
t

¶
+ Ñ × =

¶ uJ (16)

( )0

t t
¶ +¶

= =
¶ ¶

e
P

E PD J (17)

0in
t

¶
+ Ñ × =

¶ niJ (18)

we have

1 i

i

s
t T T T
¶

= - Ñ × - × + Ñ ×
¶ å

m
u P ni

EJ J J (19)

where Ju, JP , Jni is the energy flux, the polarization current and the matter flux; P  is the
polarization. Ju should consist of three parts: the energy flux caused by the heat conduction,
the energy flux caused by the charge transport and the energy flux caused by the matter
transport

i
i

= + +åj mu q P niJ J J J (20)

where Jq is the heat flux, φ is the electrical potential and satisfies

= -ÑjE (21)

Then we deduce the following
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1
i

i

s
t T T T T

æ ö+ æ ö æ ö¶
= -Ñ × + ×Ñ + ×Ñ - ×Ñç ÷ ç ÷ ç ÷ç ÷¶ è ø è øè ø

å
j j mq P ni

q P
J J J

J J (22)

If we define a entropy flux Js and a rate of local entropy production σs as

T
+

=
jq P

s
J J

J (23)

1
s i

iT T T
æ ö æ ö

= ×Ñ + ×Ñ - ×Ñç ÷ ç ÷
è ø è ø

åjs mni
q P

J
J J (24)

Equation (22) can be written as

s
s
t
¶

+ Ñ × =
¶

ssJ (25)

This is the local entropy balance equation. We know, the system is in the crystalline states
before and after a phase transition so that there is no diffusion of any kind of particles in the
system. So, Jni =0. The local entropy production can be reduced as

1
s T T

æ ö æ ö
= ×Ñ + ×Ñç ÷ ç ÷

è ø è ø

js q PJ J (26)

We know the existence of ferroics is due to the molecular field. It is an internal field. So we
must take it into account. Here, the electric field should be the sum of the external electric field
Ee and the internal electric field Ei

e= + iE E E (27)

Correspondingly, there are the external electrical potential φe and the internal electrical
potential φi and they satisfy

e= -ÑjeE (28)

i= -ÑjiE (29)

Advances in Ferroelectrics34



If the external electric field is not applied, φe can be a random constant. There is no harm in
letting the constant equal zero. Then the entropy production equals

1 i
s T T

æ öæ ö
= ×Ñ + ×Ñç ÷ç ÷

è ø è ø

j
s q PJ J (30)

According to the crystal structures of ferroelectrics [2], we know the polarization current JP
originates from the displacement or ordering of ions in ferroelectrics. We may consider it as
the transport of charges influenced by the internal electric field.

3.2. Description of phase transitions and verification of interface dynamics

Assume the external electric field is not applied. Here are the thermodynamic fluxex Jq, JP  and
the corresponding thermodynamic forces X q, XP

1
T
æ ö

= Ñç ÷
è ø

qX (31)

i
T

æ ö
= Ñç ÷

è ø

j
PX (32)

J i can be expanded linearly with X j(i, j =q, P)

= × + ×q qq q qP PJ L X L X (33)

= × + ×P Pq q PP PJ L X L X (34)

where L qq, L qP , L Pq and L PP  are the transport coefficients, which are four second-order
tensors. They should satisfy the generalized Onsager relations [14]
L qq = L qq

T , L qP = L Pq
T ,

T
PP PP=L L (35)

Because to a first-order ferroelectric phase transition the electric displacement changes
suddenly and so does the internal electrical potential, the force XP  of the region where the
phase transition is occurring can be regarded as a large constant roughly in the characteristic
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times of phase transition ( i.e. the times in which the interface keeps rest ). For the ferroelectric
phase transition may be regarded as a stationary states process, the principle of minimum
entropy production must be satisfied [15].

According to Equations (30)-(35), we have

: : :s = + +s qq q q qP q P PP P PL X X 2L X X L X X (36)

If there is no any restriction on X q and XP , according to the conditions on which the entropy
production is a minimum

0s
æ ö¶
ç ÷ = × + × = =
ç ÷¶è ø

s

P

qq q qP P q
q X

2L X 2L X 2J
X (37)

0sæ ö¶
= × + × = =ç ÷ç ÷¶è ø

s

q

Pq q PP P P
P X

2L X 2L X 2J
X (38)

We know the stationary states are equilibrium ones actually. If we let X q ( or XP  ) be a constant,
according to Equation (38) ( or (37) ) we know JP  ( or Jq ) which is corresponded to another
force XP  ( or X q ) should be zero.

Then, a first-order ferroelectric phase transition can be described by the second paradigm.
Since the force XP  of the region where the phase transition is occurring is a large constant, the
flux Jq of this region should be zero ( but JP ≠0 ). This states clearly that the pure heat conduction
and the heat conduction induced by the thermo-electric coupling cancel out each other so as
to release or absorb the latent heat. It is certain that the latent heat passes through the region
where the phase transition has occurred ( at the outside of the region where the phase transition
is occurring ) and exchanges itself with the thermal bath. Accompanied with the change of the
surface’s temperature and the unceasing jerky moving of the region where the phase transition
is occurring, a constant temperature gradient is kept in the region where the phase transition
has occurred, i.e. the force X q is a constant. So, the flux JP =0 ( but Jq ≠0 ). This states clearly
that the electric displacement of the region where the phase transition has occurred will not
change but keep the value at Curie temperature or zero until the phase transition finishes.
Differently, the region where the phase transition will occur should be described by the first
paradigm for there is no restriction on the two forces XP , X q. The states of this region are
equilibrium ones. So the temperature gradient ∇T  should be zero.

Considering that (∇T ) par ≈0 for the region where the phase transition will occur ( i.e. the
paraelectric phase part ) can be regarded as an equilibrium system, we modify Equation (14) as
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( )fer fer
n

k T
v

l

Ñ ×
=

r

n
(39)

In order to compare it with the experiments, we make use of the following values which are
about PbTiO3 crystal: ρ =7.1g/cm3 [16], l  =900cal/mol [17], k fer  =8.8 ×  105erg/cm�s�K [18]. The
value of the velocity of the interface’s fast motion, which has been measured in the experiments,
is 0.5mm/s [11]. According to Equation (39), we calculate the corresponding temperature
gradient to be 57.35K/cm. However, in [19] it is reported that the experimental temperature
gradient varies from 1.5 to 3.5K/mm while the experimental velocity of the interface’s motion
varies from 732 to 843μm/s. Considering the model is rather rough, we may conclude that the
theory coincides with the experiments.

3.3. Relation between latent heat and spontaneous polarization

In the experiments, the latent heat and the spotaneous polarization are measured often for
first-order ferroelectric phase transitions. So in the follows, we will establish the relation
between latent heat and spontaneous polarization in the realm of non-equilibrium thermody‐
namics.

All the quantities of the region where the phase transition has occurred are marked with the
superscript “I”; all the quantities of the region where the phase transition is occurring are
marked with the superscript “II”; and all the quantities of the region where the phase transition
will occur are marked with the superscript “III”. Let’s consider the heating processes of phase
transition firstly. In the region where the phase transition has occurred,

I para I para I para
q qq q al- - -= × = rJ L X v (40)

where we have ignored the difference between the mass density of ferroelectric phase and that
of paraelectric phase ( almost the same ) and denote them as ρ, va is the average velocity of
interface. In the region where the phase transition is occurring,

0II II II II
q qq q qP= × + × =II

PJ L X L X (41)

II II II II II
P Pq q PP P= × + ×J L X L X (42)

The heat which is transferred to the region where the phase transition is occurring is absorbed
as the latent heat because the pure heat conduction and the heat conduction induced by the
thermo-electric coupling cancel out each other. So,
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II II
a qq ql = ×rv L X (43)

According to Eqations (41)-(43), we work out

( ) ( )1 1II II II II II
P Pq qq PP qP al

- -é ù= × - × ×ê úë û
rJ L L L L v (44)

where the superscript “-1” means reverse. While

0d spon spon III spon IIIII III
P it - -= - = Ñ - = -ò e jJ D P P (45)

where we utilized the boundary condition of D and considered the region where the phase
transition will occur is in equilibrium, the superscript “spon” means spontaneous. So,

dspon spon III II
P t-= = -òP P J (46)

The relation between latent heat and spontaneous polarization are obtained. In the cooling
processes of phase transition,

I ferr I ferr I ferr I ferr II II
a qq q qP P qq ql - - - -- = × + × = ×rv L X L X L X (47)

0d spon I spon III I
P it - -¢ = = - Ñ +ò e jJ D P (48)

Repeating the above steps, we obtain

0dspon I II I
P it- ¢= + Ñò e jP J (49)

With

( ) ( )1 1II II II II II II
P Pq qq PP qP a Pl

- -é ù¢ = - × - × × = -ê úë û
rJ L L L L v J (50)

Then we find that P spon−III  ( serves as the equilibrium polarization ) is not equal P spon−I  ( serves
as the non-equilibrium polarization ). For the region where the phase transition will occur is
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stressed [9], there is some difference between P spon(=P spon−III ) and the equilibrium spontane‐
ous polarization without the affects of stress P spon′ because of the piezoelectric effect.

4. Thermo-electro-mechanical coupling

The comprehensive thermo-electro-mechanical coupling may be found in ferroelectric phase
transition processes. Because there exists not only the change of polarization but also the
changes of the system’s volume and shape when a ferroelectric phase transition occurs in it,
the mechanics can not be ignored even if it is mechanically-free, i.e. no external force is exerted
on it. To a first-order ferroelectric phase transition, it occurs at the surface layer of system firstly,
then in the inner part. So, the stress may be found in the system.

Since one aspect of the nature of ferroelectric phase transitions is the thermo-electro-mechan‐
ical coupling, we take the mechanics into account on the basis of Section 3, where only the
thermo-electric coupling has been considered. This may lead to a complete description in the
sense of continuum physics.

4.1. Deformation mechanics

For a continuum, the momentum equation in differential form can be written as

Ñ × + =r rσ f a (51)

where σ, f , a, ρ is the stress, the volume force exerted on unit mass, the acceleration and the

mass density, respectively. Let k =
1
2 v

2 be the local kinetic energy density (per unit mass), with

v is the velocity. Then

d
d
k
t
= ×v a (52)

where t  is the time. In terms of

∇ ⋅ (v ⋅σ)=v ⋅ (∇ ⋅σ) + (∇v) :σ (53)

( ): :Ñ =σ v σ d (54)

we can deduce the following balance equation of mechanical energy basing on Equations
(51) (52)
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ρ
dk
dt −∇ ⋅ (v ⋅σ)=ρv ⋅ f −σ :d (55)

which is in differential form and in Lagrangian form. Or in Eulerian form

∂ (ρk )
∂ t +∇ ⋅ (ρkv −v ⋅σ)=ρv ⋅ f −σ :d (56)

where d =
1
2 (∇v + v∇ )=

1
2 ∇v + (∇v)T  is the rate of deformation or strain rate ( the super‐

script “T” means transposition ).

To a ferroelectric phase transition, f  and σ may be the nominal volume force and stress, which
are the embodiments of the actions of thermo-electro-mechanical coupling and are two internal
fields. Generally, they are the sums of real and nominal volume force or stress

real nom= +f f f (57)

real nom= +σ σ σ (58)

The nominal volume force and stress are not zero until the eigen ( or free ) deformation of
system finishes in phase transitions. If they are zero, the eigen ( or free ) deformation finishes.

4.2. Local entropy production and description of phase transitions

The Gibbs equation was given as the following [9]

Tds +∑
i
μidni +

1
ρ E ⋅dD + f ⋅dr +

1
ρ∇ ⋅ (v ⋅σ)dt =du + dk (59)

where T , E , D is the local temperature, the local electric field intensity and the local electric
displacement, respectively; s, u, ni, μi is the local entropy density ( per unit mass ), the local
internal energy density ( per unit mass ), the local molar quantity density ( per unit mass ) and
the chemical potential, respectively; r  is the displacement vector. If the external electric field
is not applied, the quantity E  is the internal electric field Ei only [8].

Make the material derivative of Equation (59) with t , then obtain

ρ
ds
dt +

ρ
T ∑i

μi
dni
dt +

1
T Ei ⋅

dD
dt +

ρ
T f ⋅

dr
dt +

1
T ∇ ⋅ (v ⋅σ)=

ρ
T

de
dt (60)
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where e is the total energy with e =u + k . We know, the system is in the crystalline states before
and after a phase transition so that there is no diffusion of any kind of particles in the system.

So, ni as the local molar quantity ( per unit mass ) does not change with t , i.e. 
dni
dt =0. 

dD
dt  stands

for the polarization current JP , while 
dr
dt  stands for the velocity v, Ei = −∇φi ( φi stands for the

internal electric potential ).

After the lengthy and troublesome deduction [9], the local entropy balance equation in
Lagrangian form can be obtained

d
d s s
s
t
= -Ñ × +r sJ (61)

with the entropy flux Js

Js =
Jq
diff + φi JP −v ⋅σ

T
(62)

and the rate of local entropy production σs

σs = Jq
diff ⋅∇ ( 1

T ) + JP ⋅∇ (φiT )−σ : v∇ ( 1
T ) −ρf ⋅ vT (63)

where Jq
diff  is the diffusion of heat, i.e. heat conduction.

Here are the thermodynamic fluxes Jq
diff (= Jq), JP , σ(= Jσ), ρf (= J f ) and the corresponding

thermodynamic forces X q, XP , Xσ, X f

1
q T

æ ö
= Ñç ÷

è ø
X (64)

i
P T

æ ö
= Ñç ÷

è ø

j
X (65)

1
T
æ ö

= - Ñç ÷
è ø

sX v (66)
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f T
= -

vX (67)

J i(i =q, P , σ, f ) can be expanded linearly with X j( j =q, P , σ, f )

:q qq q qP P q qf f= × + × + + ×s sJ L X L X L X L X (68)

:P Pq q PP P P Pf f= × + × + + ×s sJ L X L X L X L X (69)

:q q P P f f= × + × + + ×s s s ss s sJ L X L X L X L X (70)

:f fq q fP P f ff f= × + × + + ×s sJ L X L X L X L X (71)

where L qq, L PP , L ff , L qP , L Pq, L qf , L fq, L Pf , L fP  are nine second-order tensors,
L qσ, L σq, L Pσ, L σP , L σf , L fσ are six third-order tensors, L σσ is a fourth-order tensor. They
should satisfy the generalized Onsager relations [14]
L αα = L αα

T

( ),  ,  ,  q P f=a s (72)

L αβ = L βα
T

( ),  ,  ,  , ,  and q P f= ¹a b s a b (73)

So the rate of local entropy production can be written as

:

     :

     

     :

T
s qq q q qP P q q q qf f q

T
Pq q P PP P P P P Pf f P

T T T T T
q q P P f f

T
fq q f fP P f f f ff f f

= + × × + + × ×

+ × × + + + × ×

+ + + × +

+ × × + × × + +

L

L

L L L L

L

s s

s s

s s s s ss s s s s

s s

s L X X L X X L X X L X X

L X X L X X L X X L X X

L X X L X X L X X L X X

L X X L X X L X X L X X

(74)

According to the condition on which the local entropy production is a minimum, from
Equation (74) we can deduce the following
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( )

, , 

2 :

             :

             2 :

             2
             0

P f

s
qq q qP P q qf f

q

T T T
Pq P q fq f

qq q qP P q qf f

q

æ ö¶
ç ÷ = × + × + + ×
ç ÷¶è ø

+ × + + ×

= × + × + + ×

=

=

s

s s

s s

s s

s

X X X

L X L X L X L X
X

L X L X L X

L X L X L X L X

J

(75)

( )

, , 

2 :

              :

              2 :

              2
              0

q f

Ts
qP q Pq q PP P P

P

T T
Pf f P fP f

Pq q PP P P Pf f

P

æ ö¶
= × + × + × +ç ÷ç ÷¶è ø

+ × + + ×

= × + × + + ×

=
=

s

s s

s s

s s

s

X X X

L X L X L X L X
X

L X L X L X

L X L X L X L X

J

(76)

( )

, , 

              2 :

              2 :

              2
              0

q P f

T Ts
q q P P q q P P

T
f f f f

q q P P f f

æ ö¶
= × + × + × + ×ç ÷ç ÷¶è ø

+ + × + ×

= × + × + + ×

=

=

s s s s
s

ss s s s

s s ss s s

s

s

X X X

L X L X L X L X
X

L X L X L X

L X L X L X L X

J

(77)

( )

, , 

:

             : 2

             2 :

             2
             0

q P

T T Ts
qf q Pf P f fq q

f

fP P f ff f

fq q fP P f ff f

f

æ ö¶
ç ÷ = × + × + + ×
ç ÷¶è ø

+ × + + ×

= × + × + + ×

=

=

s

s s

s s

s s

s

X X X

L X L X L X L X
X

L X L X L X

L X L X L X L X

J

(78)

This reveals that if the k  forces among those are kept constant, i.e.
X i = const(i =1, 2, ⋅ ⋅ ⋅ , k , k <4), the fluxes corresponding to the left 4−k  forces are zero. Of

course, if there are no restrictions on X i(i =1, 2, 3, 4), all the flues are zero. ( For convenience,

we have modified the superscripts q, P , σ, f  to be 1,2,3,4 ).
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We may describe a ferroelectric phase transition by using the two paradigms above similarly
as we have done in Section 3. To a first-order ferroelectric phase transition, the forces
XP , Xσ, X f  of the region where the phase transition is occurring can be regarded as three large
constants roughly in the characteristic times of phase transition ( i.e. the times in which the
interface keeps rest ) because the electric displacement, the volume and the shape change
suddenly. So, the flux Jq

diff  of the region should be zero (but JP ≠0, σ ≠0, ρf ≠0 ). This states
clearly that the pure heat conduction and the heat conduction induced by the thermo-electric
coupling and the thermo-mechanical coupling cancel out each other so as to release or absorb
the latent heat. The phase transition occurs at the surface layer firstly, which is mechanically-
free. So, when the phase transition occurs in this region, the flux σ maybe the nominal stress
σ nom only, which does work to realize the transformation from internal energy to kinetic
energy. When the phase transition occurs in the inner part, the flux σ should be the sum of
σ real  and σ nom because the sudden changes of the inner part’s volume and shape have to
overcome the bound of outer part then σ real  arises. The region where the phase transition is
occurring, i.e. the phase boundary is accompanied with the real stress σ real  usually, which does
work to realize the transformation from kinetic energy to internal energy. This has been
predicted and described with a propagating stress wave [20].

It is certain that the latent heat passes through the region where the phase transition has
occurred ( at the outside of the region where the phase transition is occurring ) and exchange
itself with the thermal bath. For ±lρva= Jq

diff = −κ ⋅∇T , a constant temperature gradient ∇T  is
kept in the region where the phase transition has occurrd, i.e. the force X q at every site is a
constant ( which does not change with the time but may vary with the position ). So, the fluxes
JP =σ =ρf =0 ( but the flux Jq

diff ≠0 ). This states clearly that the electric displacement D will not
change but keep the value at Curie temperature or zero until the phase transition finishes and
σ real = −σ nom in this region. Because the electric displacement D and the strain ( or deformation )
are all determined by the crystal structure of system, JP =0 reveals that D of this region does
not change so does not the crystal structure then does not the strain ( or deformation ).
According to [20], we know the region where the phase transition has occurred is unstressed,
i.e. σ real =0, then σ nom=0. This reveals that the eigen ( or free ) strain ( or deformation ) of system
induced by the thermo-electro-mechanical coupling of phase transition is complete and the
change of it terminates before the phase transition finishes. The two deductions coincide with
each other. σ real  may relaxes via the free surface.

The region where the phase transition will occur should be in equilibrium because there are
no restrictions on the forces X q, XP , Xσ, X f . Whereas, according to [20], the region is stressed,

i.e. σ real ≠0. To the heating process of phase transition, this may lead to a change of the
spontaneous polarization of this region because of the electro-mechanical coupling ( piezo‐
electric effect ).

An immediate result of the above irreversible thermodynamic description is that the action at
a distance, which is the kind of heat transfer at phase transitions, is removed absolutely. The
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latent heat is transferred within a finite time so the occurrence of phase transition in the inner
part is delayed. ( Of course, another cause is the stress, just see Section 5 ) In other words, the
various parts absorb or release the latent heat at the various times. The action at a distance
does not affect the phase transition necessarily.

5. Irreversibility: Thermal hysteresis and occurrences of domain structure

5.1. Thermal hysteresis

The “thermal hysteresis” of first-order ferroelectric phase transitions is an irreversible
phenomenon obviously. But it was treated by using the equilibrium thermodynamics for
ferroelectric phase transitions, the well-known Landau-Devonshire theory [2]. So, there is an
inherent contradiction in this case. The system in which a first-order ferroelectric phase
transition occurs is heterogeneous. The occurrences of phase transition in different parts are
not at the same time. The phase transition occurs at the surface layer then in the inner part of
system. According to the description above, we know a constant temperature gradient is kept
in the region where the phase transition has occurred. The temperature of surface layer, which
is usually regarded as the temperature of the whole system in experiments, must be higher
( or lower ) than the Curie temperature. This may lead to the thermal hysteresis.

No doubt that the shape and the area of surface can greatly affect the above processes. We may
conclude that the thermal hysteresis can be reduced if the system has a larger specific surface
and, the thermal hysteresis can be neglected if a finite system has an extremely-large specific
surface. So, the thermal hysteresis is not an intrinsic property of the system.

The region where the phase transition will occur can be regarded as an equilibrium system for
there are no restrictions on the forces X q, XP , Xσ, X f . In other words, the forces and the
corresponding fluxes are zero in this region. To a system where a second-order ferroelectric
phase transition occurs, the case is somewhat like that of the region where a first-order
ferroelectric phase transition will occur. The spontaneous polarization, the volume and the
shape of system are continuous at the Curie temperature and change with the infinitesimal
magnitudes. This means X q, XP , Xσ, X f  and Jq

diff , JP , σ, ρf  can be arbitrary infinitesimal
magnitudes. The second-order phase transition occurs in every part of the system simultane‐
ously, i.e. there is no the co-existence of two phases ( ferroelectric and paraelectric ). So, there
is no the latent heat and stress. The thermal hysteresis disappears.

The region where a first-order ferroelectric phase transition will occur is stressed. This reveals
that the occurrences of phase transition in the inner part have to overcome the bound of outer
part, where the phase transition occurs earlier. This may lead to the delay of phase transition
in the inner part.

5.2. Occurrences of domain structure

Though the rationalization of the existence of domain structures can be explained by the
equilibrium  thermodynamics,  the  evolving  characteristics  of  domain  occurrences  in
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ferroelectrics  can  not  be  explained  by  it,  but  can  be  explained  by  the  non-equilibrium
thermodynamics.

In the region where the phase transition is occurring, the thermodynamic forces XP  (= ∇ ( φiT ) ),
Xσ (= −v∇ ( 1

T ) ), X f  (= −
v
T  ) can be regarded as three large constants in the characteristic

times of transition and the thermodynamic flux Jq
diff =0 (but JP ≠0, σ ≠0, ρf ≠0 ). The local

entropy production (cf. Equation (63)) reduces to

1i
s T T T

é ùæ ö æ ö
= ×Ñ - Ñ - ×ç ÷ ê úç ÷

è øè ø ë û

j
s rP

vJ v f� : (79)

Now, we are facing a set of complicated fields of T , v and φi, respectively. Assume that the
phase transition front is denoted by S . The points included in S  stand for the locations where
the transition is occurring. Because the transition occurs along all directions from the outer

part to the inner part, we may infer that the orientations of ∇ ( φiT ), or of −v∇ ( 1
T ) and or of

−
v
T  vary continuously such that they are differently oriented at different locations.

There are always several ( at least two ) symmetry equivalent orientations in the prototype
phase ( in most cases it is the high temperature phase ), which are the possible orientations for
spontaneous polarization ( or spontaneous deformation or spontaneous displacement ).
Therefore, the spontaneous polarization, the spontaneous deformation and the spontaneous
displacement must take an appropriate orientation respectively to ensure σs is a positive
minimum when the system transforms from the prototype ( paraelectric ) phase to the
ferroelectric ( low temperature ) phase. The underlying reasons are that

( )0dd
d dt t

+
= =

e i
P

E PDJ (80)

= ε� L: (81)

d
dt

= -Ñ ×r r vf � (82)

where L , ε,  and ε0 are the modulus of rigidity, the strain and the permittivity of vacuum,
respectively. Therefore, P , ε at different locations will be differently oriented. The domain
structures in ferroelectrics thus occur.
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It seems that the picture of domain occurrences for first-order ferroelectric phase transition
systems should disappear when we face second-order ferroelectric phase transition systems.
This is true if the transition processes proceed infinitely slowly as expounded by the equili‐
brium thermodynamics. But any actual process proceeds with finite rate, so it is irreversible.
Then the above picture revives.

In [21], the domain occurrences in ferromagnetics can be described parallelly by analogy. And
the case of ferroelastic domain occurrences is a reduced, simpler one compared with that of
ferroelectrics or ferromagnetics.

It is well known that the Landau theory or the Curie principle tells us how to determine the
symmetry change at a phase transition. A concise statement is as follows [22]: for a crystal
undergoing a phase transition with a space-group symmetry reduction from G0 to G, whereas
G determines the symmetry of transition parameter ( or vice versa ), it is the symmetry
operations lost in going from G0 to G that determine the domain structure in the low-symmetry
phase. The ferroic phase transitions are the ones accompanied by a change of point group
symmetry [23]. Therefore, the substitution of “point group” for the “space group” in the above
statement will be adequate for ferroic phase transitions. From the above statement, the domain
structure is a manifestation of the symmetry operations lost at the phase transition. In our
treatment of the domain occurrences in ferroics, we took into account the finiteness of system
( i.e. existence of surface ) and the irreversibility of process ( asymmetry of time ). The finiteness

of system make the thermodynamic forces such as ∇ ( φiT ), −v∇ ( 1
T ), −

v
T  have infinite

space symmetry. The infinite space symmetry, combined with the asymmetry of time,
reproduces the symmetry operations lost at the phase transition in the ferroic phase. It can be
viewed as an embodiment of time-space symmetry.

After all, for the domain structures can exist in equilibrium systems, they are the equilibrium
structures but not the dissipative ones, for the latter can only exist in systems far from
equilibrium [24].

6. Concluding remarks

In order to overcome the shortcoming of Landau-Devonshire theory, the non-equilibrium
thermodynamics was applied to study the ferroelectric phase transitions. The essence of
transitions is the thermo-electro-mechanical coupling. Moreover, the irreversibility, namely
thermal hysteresis and domain occurrences can be explained well in the realm of non-
equilibrium thermodynamics.

The non-equilibrium thermodynamic approach utilized here is the linear thermodynamic one
actully. In order to get the more adequate approaches, we should pay attention to the new
developments of non-equilibrium thermodynamics. The thermodynamics with internal
variables [25] and the extended ( irreversible ) thermodynamics [26] are two current ones. They
all expand the fundamental variables spaces to describe the irreversible processes more
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adequately. Whereas, the relevant theoretical processing must be more complicated undoubt‐
ly. This situation needs very much effort.

Acknowledgements

The work is supported by the Natural Science Foundation Program of Shandong Province,
China ( Grant No. ZR2011AM019 ).

Author details

Shu-Tao Ai*

School of Science, Linyi University, Linyi, People’s Republic of China

References

[1] Grindlay, I. An Introduction to the Phenomenological Theory of Ferroelectricity.
Oxford: Pergamon; (1970).

[2] Lines, M E, & Glass, A M. Principles and Applications of Ferroelectrics and Related
Materials. Oxford: Clarendon; (1977).

[3] Tilley, D R, & Zeks, B. Landau Theory of Phase Transitions in Thick Films. Solid State
Communications (1984). , 49(8), 823-828.

[4] Scott, J F, Duiker, H M, Beale, P D, Pouligny, B, Dimmler, K, Parris, M, Butler, D, &
Eaton, S. Properties of Ceramic KNO3 Thin-Film Memories. Physica B+C (1988).

[5] Zhong, W L. Physics of Ferroelectrics ( in Chinese ). Beijing: Science Press; (1996).

[6] Gordon, A. Finite-Size Effects in Dynamics of Paraelectric-Ferroelectric Interfaces
Induced by Latent Heat Transfer. Physics Letters A (2001).

[7] Gordon, A, Dorfman, S, & Fuks, D. Temperature-Induced Motion of Interface Boun‐
daries in Confined Ferroelectrics. Philosophical Magazine B (2002). , 82(1), 63-71.

[8] Ai, S T. Paraelectric-Ferroelectric Interface Dynamics Induced by Latent Heat Transfer
and Irreversible Thermodynamics of Ferroelectric Phase Transitions. Ferroelectrics
(2006). , 345(1), 59-66.

[9] Ai, S T. Mechanical-Thermal-Electric Coupling and Irreversibility of Ferroelectric Phase
Transitions. Ferroelectrics (2007). , 350(1), 81-92.

Advances in Ferroelectrics48



[10] Yufatova, S M, Sindeyev, Y G, Garilyatchenko, V G, & Fesenko, E G. Different Kinetics
Types of Phase Transformations in Lead Titanate. Ferroelectrics (1980). , 26(1), 809-812.

[11] Dec, J. Jerky Phase Front Motion in PbTiO3 Crystal. Journal of Physics C (1988). , 21(7),
1257-1263.

[12] Dec, J, & Yurkevich, J. The Antiferroelectric Phase Boundary as a Kink. Ferroelectrics
(1990). , 110(1), 77-83.

[13] Ai, S T, Xu, C T, Wang, Y L, Zhang, S Y, Ning, X F, & Noll, E. Comparison of and
Comments on Two Thermodynamic Approaches ( Reversible and Irreversible ) to
Ferroelectric Phase Transitions. Phase Transitions (2008). , 81(5), 479-490.

[14] Ai, S T, Zhang, S Y, Jiang, J S, & Wang, C C. On Transport Coefficients of Ferroelectrics
and Onsager Reciprocal Relations. Ferroelectrics (2011). , 423(1), 54-62.

[15] Lavenda, B H. Thermodynamics of Irreversible Processes. London and Basingstoke:
Macmillan; (1978).

[16] Chewasatn, S, & Milne, S T. Synthesis and Characterization of PbTiO3 and Ca and Mn
Modified PbTiO3 Fibres Produced by Extrusion of Diol Based Gels. Journal of Material
Science (1994). , 29(14), 3621-3629.

[17] Nomura, S, & Sawada, S. Dielectric Properties of Lead-Strontium Titanate. Journal of
the Physical Society of Japan (1955). , 10(2), 108-111.

[18] Mante, A, & Volger, H. J. The Thermal Conductivity of PbTiO3 in the Neighbourhood
of Its Ferroelectric Transition Temperature. Physics Letters A (1967). , 24(3), 139-140.

[19] Dec, J. The Phase Boundary as a Kink. Ferroelectrics (1989). , 89(1), 193-200.

[20] Gordon, A. Propagation of Solitary Stress Wave at First-Order Ferroelectric Phase
Transitions. Physics Letters A (1991).

[21] Ai, S T, Zhang, S Y, Ning, X F, Wang, Y L, & Xu, C T. Non-Equilibrium Thermodynamic
Explanation of Domain Occurrences in Ferroics. Ferroelectrics Letters Section (2010). ,
37(2), 30-34.

[22] Janovec, V. A Symmetry Approach to Domain Structures. Ferroelectrics (1976). , 12(1),
43-53.

[23] Wadhawan, V K. Ferroelasticity and Related Properties of Crystals. Phase Transitions
(1982). , 3(1), 3-103.

[24] Glansdoff, P, & Prigogine, I. Thermodynamic Theory of Structure, Stability and
Fluctuation. New York: Wiley-Interscience; (1971).

[25] Maugin, G A, & Muschik, W. Thermodynamics with Internal Variables (I) General
Concepts, (II) Applications. Journal of Non-Equilibrium Thermodynamics (1994).

[26] Jou, D, Casas-vázquez, J, & Lebon, G. Extended Irreversible Thermodynamics ( 3rd

edition ). Berlin: Springer; (2001).

Advances in Thermodynamics of Ferroelectric Phase Transitions
http://dx.doi.org/10.5772/52089

49




