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1. Introduction

Gastric cancer remains a common cancer type in humans to dates, especially in the Andean
region of South America and in the Far East. Various factors contribute to cause of stomach
cancer, including Helicobacter pylori, smoking and diet. Most patients are diagnosed with ad‐
vanced gastric cancer, therefore, detailed elucidating mechanisms mediate gastric cancer
progression and improving gastric cancer clinic strategies are helpful.

The complex interaction among different etiological factors leads to genetic and epigenetic
alterations of proto-oncogenes and tumor-suppressor genes. Epigenetic regulation includes
histone modification and DNA methylation, which involved in regulation of cell growth
and development in mammals. Global DNA hypomethylation events were discovered in the
human tumor in the early 1980s, and promoter hypermethylation of tumor suppressor genes
were identified in cancer cells in mid 1990s.

Alteration of DNA methylation in the genome is found in almost types of cancer and can
lead to change gene expression, such as over-expression of oncogenes and down-regulation
of tumor suppressor genes during cancer progression. Promoter methylation is an alterna‐
tive mechanism of gene silencing in human tumorigenesis. Although a number of methylat‐
ed genes have been found in gastric cancer, useful methylation markers for early diagnosis
and prognostic evaluation of cancer.

© 2013 Leung et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Clinical features, epidemiology, pathogenesis and progression of
gastric cancer

2.1. Epidemiology

The incidence of stomach cancer is declining in most parts of the world, although it is ranked
fourth after lung, breast, and colorectal cancer. A total of 989,600 new stomach cancer cases and
738,000 deaths are estimated to have occurred in 2008, accounting for 8% of total cancer cases and
10% of total cancer-related deaths [1]. The declining incidence is associated with factors related
to the increased availability of refrigerated fresh foods and a decline in the consumption of those
preserved using salt. The incidence rate varies substantially among countries. High incidence
rates occur in East Asia, Eastern Europe, and South America. Regional variations reflect differ‐
ences in dietary patterns (e.g., low intake of fruits and vegetables, and high intake of salt, ni‐
trates,  salt-cured  fish,  and  smoked  meat).  Several  other  risk-implicated  factors  include
Helicobacter pylori infection, hypochlorhydria, polyps, genetic alteration (e.g., type-A blood, per‐
nicious anemia, CDH1 mutation, familial gastric cancer, Li-Fraumeni syndrome, and BRCA1 and
BRCA2), previous radiation exposure, and prior gastrectomy.

2.2. Pathology

More than 95% of stomach cancers are adenocarcinomas. Other malignant tumors are rare and
include carcinoid tumors, squamous cell carcinoma, adenoacanthoma, small cell carcinoma, mu‐
cinous carcinoma, and leiomyosarcoma. Although malignant lymphoma of the stomach is a rel‐
atively rare stomach neoplasm, it is the most common extranodal site for lymphomas of the
gastrointestinal tract. It is potentially associated with H. pylori infection because the lymphoid
tissue is often stimulated in response to colonization of the lining by H. pylori [2]. Furthermore,
almost all patients with gastric MALT lymphoma exhibit signs of H. pylori infection.

2.3. Staging

There are currently 2 classification systems in use for staging stomach cancer. The Japanese
classification is based on anatomic locations and the extent of the regional lymph [3]. The
other staging system was developed by the International Union against Cancer and the
American Joint Commission on Cancer. Tumor stage is determined based on tumor invasion
depth, whereas nodal stage is determined by the number of positive lymph nodes [4]. Ad‐
vances in diagnostic modalities such as endoscopic ultrasound, computed tomography (CT),
positron emission tomography, magnetic resonance imaging (MRI) and laparoscopy have
improved preoperative clinical staging. Classification provides useful information for tailor‐
ing initial treatment strategies.

2.4. Treatment

Surgery–Complete surgical resection is the primary treatment of early-stage stomach cancer.
Gastrectomy and lymphadenopathy are the most widely used approaches, although superfi‐
cial cancers can occasionally be treated by local endoscopical excision. Resection type (total
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or subtotal gastrectomy) and the extent of lymphadenectomy depend on the extent, location,
and stage of the disease.

Adjuvant treatment–Even patients who present the most favorable condition and undergo cura‐
tive surgical resection frequently expire from disease recurrence. Adjuvant therapy is common‐
ly conducted using chemotherapy, radiation therapy, or a combination of the two. A significant
survival benefit of postoperative adjuvant combined modality therapy using radiotherapy and
fluorouracil-based chemotherapy has been shown in several randomized trials [5-7].

Neoadjuvant treatment–Data from several uncontrolled series indicate that some patients
with initially unresectable locally advanced disease may respond sufficiently to chemothera‐
py or chemoradiotherapy and are able to undergo potentially curative surgery. The benefits
of preoperative therapy include an increased resectability rate, reduced rate of local and dis‐
tant recurrences, and improved survival. However, this approach has not been widely
adopted, primarily because of a lack of randomized trials that examine its advantages.

2.5. Prognosis

Gastric cancer (GC) is frequently diagnosed at an advanced stage. The prognosis of ad‐
vanced cancer remains poor. Prognosis has improved only modestly during the previous
two decades, attributable to advances in surgical treatment, postoperative care, and multi‐
modal therapy. In the United States, the 5-year survival rate for all stages was 27% between
2001 and 2007, compared to 15% between 1975 and 1977 [8]. Local recurrence and distant
metastases are the 2 primary areas of treatment failure in patients. After attempting curative
resection, recurrence was local or regional in 40% of cases and distant in 60% [9].

Recent advances in genomic science have enabled the identification of detailed molecular
mechanisms of stomach carcinogenesis and its progression. These techniques have been
used to identify markers for early detection of stomach cancer. A better knowledge of the
molecular bases will lead to new paradigms and potential therapeutic improvements. It can
provide better information on potential tumor aggressiveness and assist in the personaliza‐
tion of treatment strategies for better outcomes.

3. Principle of DNA epigenetic modification, DNA methylation and
detection

3.1. Genomic DNA methylation/demethylation

3.1.1. DNA methylation

Epigenetic regulation, including histone modification and DNA methylation, has a critical
role in regulating cell growth and development in mammals [10, 11]. DNA methylation in‐
volves the regulation of gene expression by establishing and maintaining DNA methylation
status at the promoter of critical genes. DNA methyltransferases (DNMTs) catalyze the co‐
valent addition of methyl groups to 5-position of cytosine (5-methylcytosine; 5mC) bases in
newly synthesized DNA (Fig. 1. Cytosine of CpG dinucleotides can be methylated by
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DNMTs to form 5mC, which use S-adenosyl methionine as a donor for the methyl group. In
mammalian cells, DNMTs genes are classified into de novo (DNMT3A and DNMT3B) and
maintenance (DNMT1), and function in printing methylation genome maps [11]. DNMT1 is
highly expressed in differentiated cells and efficiently hemi-methylated DNA during DNA
replication. DNMT3A and DNMT3B are most abundant in embryonic stem cells and have
low expressions in differentiated cells [12].

Figure 1. Schematic diagram depicting genomic DNA methylation and demethylation in cytosine

3.1.2. DNA demethylation

Tahiliani et al. [13] identified the leading enzyme (ten-eleven-translocation, TET) that can
convert 5mC to 5-hydroxymethylcytosine (5hmC). Three TET proteins (TET1, TET2, and
TET3) can convert 5mC to (5hmC), leading to DNA demethylation [14]. 5hmC is a potential‐
ly key intermediate in a possible active DNA demethylation process through DNA repair
mechanisms. 5hmC is generated from oxidized 5mC, and has a critical role in stem/progeni‐
tor cell differentiation [11, 15-23]. The role of 5hmC in gene regulation is a crucial issue that
is potentially associated with gastric cancer progression; however, its biological function in
gastric cancer is unknown.
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3.2. DNA methylation-regulated genes in gastric cancer

3.2.1. Protein coding genes

Global DNA hypomethylation events that occur primarily at DNA-repetitive regions and
hypermethylation at specific promoter CpG islands of tumor suppressor genes are frequent‐
ly observed in human tumors [10]. In gastric cancer, DNA methylation contributes to cancer
progression and leads to aberrantly silencing expression of tumor suppressor genes, or on‐
cogene reactivation [24]. Park et al.[25] profiled a global DNA methylation of gastric cancer
using a methylated DNA enrichment technique and performed an analysis using a next-
generation sequence approach. Gastric cancer was associated with hypermethylation of 5'
CpG islands and the 5'-end of protein-coding genes, as well as hypomethylation of DNA-
repetitive elements. During recent decades, a gain or loss of DNA methylation at the pro‐
moter of protein-coding gene events has been continuously studied. Numerous studies have
implicated an aberrant expression of methylation-associated genes involved in the patho‐
genesis of gastric cancer (Table 1). E (epithelial)-cadherin gene promoter hypermethylation
has frequently been observed in human gastric cancers, and methylation status has been as‐
sociated with deceased expression in gastric carcinogenesis [26]. Sudo et al. also reported
that promoter methylation-mediated silencing of the E-cadherin gene was closely associated
with the development of Epstein-Barr virus-associated gastric carcinoma [27]. Similarly, sev‐
eral studies have shown that the accumulation of DNA methylation in promoter regions of
tumor suppressor genes may alter cell cycle, growth, and motility, as well as adhesion mole‐
cules by silencing critical gene expression (including p16, p15, DAPK, RUNX3, MLH1, Table
1). In contrast to tumor suppressor genes, loss of DNA methylation has frequently occurred
in oncogene promoter regions and leads to aberrant overexpression in gastric cancer, such
as S100A6, S100A4, VEGF-C, PAR2, SNCG, and MAGE-A1-3 (Table 1).

Gene name Ref.

Protein-coding genes CXCL12, CDH1, ZNF331, EDNRB, SOX9, PTPN6, MOS, DCC,
CRK, VAV1, MLF1, MGMT, p16, RASSF2, hMLH1, HAND1,
HRASLS, TM, FLNc, ALX4, TMEFF2, CHCHD10, IGFBP3, NPR1,
GKN1, RASAL1, PAX5, SFRP1, GPX3, ADAMTS9, S100A6,
EphA1, p14, DAPK, WWOX, TCF4, RUNX3, CHFR, RECK,
BMP3, HACE1, PGP9.5, APC, VIM, MGMT, PTCH1a,
RASSF2A, S100A4, PKD1, TMS1, RUNX3, ER, p15, EphA7,
NID1, NID2, HHIP, VEGF-C, FHIT, MTAP, PLAGL1, PAR2,
DFNA5, RASSF1A, CTNNB1, MTSS1, LIMS2, SNCG, MAGE-
A1, MAGE-A2, MAGE-A3, CASP1, COX-2, Syk, ITGA1,
SOCS-1, SERPINB5, PTEN

[40, 45-47, 51, 54, 57, 60, 61,
65, 75-112]

Small nonprotein-coding
genes

miR-1,miR-9, miR-10b, miR-18b, miR-34b/c, miR-124a,
miR-129, miR-137, miR-148a, miR-152, miR-155, miR-181c,
miR-196b, miR-203, miR212, miR512, miR-516a

[29, 34, 35, 38, 39, 113-123]

The underline indicates that genes overexpressed with promoter hypomethylation in gastric cancer.

Table 1. Genes aberrantly expressed with hypo/hypermethylated promoter in gastric cancer.
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3.2.2. microRNA

MicroRNAs (miRNAs) are endogenous non-protein-coding RNAs of short 21-23 nucleotides
[28]. Abnormal miRNA expression has a critical role in gastric cancer progression. However,
miRNA transcription mechanisms are similar to classic protein-coding genes; the hypermethy‐
lated promoter region of tumor-suppressive miRNAs may result in gastric cancer formation and
progression. Our previous studies identified several methylation-associated miRNAs through
AGS treated with a demethylation agent [29, 30]. Among these miRNAs, we first observed a pri‐
mate-specific miRNA cluster (C19MC) comprising 46 pre-miRNAs, which could be co-regulat‐
ed depending on the methylation status of its distal CpG-rich domain in placenta tissue [30, 31].
C19MC expression has been shown to display a maternal-specific methylation imprint ac‐
quired in oocytes [31]. We also recently identified several tumor-suppressive miRNA that were
regulated with aberrant DNA methylation in gastric cancer (Figure 2). Expression of miR-1,
miR-9, miR-129, and miR-34b/c was suppressed by DNA hypermethylation, and miR-196b was
overexpressed with hypomethylation in gastric cancer [29, 32-35]. Numerous other studies have
shown that several tumor-suppressive miRNAs contain the aberrant hypermethylation of their
promoter regions in gastric cancer, including miR-9, miR-34b/c, miR-129, miR-137, miR-181c,
miR-199a, miR-212, miR-512, and miR-516 [29, 30, 34-40].

Figure 2. Schematic diagram depicting DNA hypo-/hypermethylation resulted miRNAs dysregulation in gastric cancer
according our recent studies.
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4. Promoter methylation of given genes versus clinical significance and
prognostic values and therapeutic applications

Promoter methylation is an alternative mechanism of gene silencing in human tumorigene‐
sis. Although a number of methylated genes have been observed in gastric cancer, useful
methylation markers for early diagnosis and prognostic evaluation of gastric cancer remain
unknown [41, 42]. Although the clinical outcome of gastric cancer has gradually improved,
the prognosis of patients at the advanced stage remains poor. The prognosis varies widely
in gastric cancer patients for undetermined biologic reasons. Thus, a greater understanding
of the pathogenesis and molecular mechanisms of gastric cancer may lead to novel diagnos‐
tic, therapeutic, and preventive strategies [41, 43]. Gastric carcinogenesis is a multistep proc‐
ess that includes numerous genetic and epigenetic alterations, such as activation of
oncogenes, overexpression of growth factors and receptors, and inactivation of tumor sup‐
pressor genes. In addition to genetic alterations, epigenetic alterations such as DNA methyl‐
ation of CpG islands are involved in cancer development and progression. Promoter
methylation is regarded as one of the primary mechanisms to inactivate tumor-related
genes, along with gene mutation and deletions, ultimately leading to carcinogenesis. Pro‐
moter methylation is a critical hallmark of cancer cells, and has a significant role in tumor
transformation and progression, impacting the clinical course of the disease. Although pro‐
moter methylation of a number of cancer-related genes, including tumor suppressor genes,
has been observed in gastric cancer and precancerous lesions, epigenetic inactivation of
genes related to tumor initiation and progression has not been well studied in gastric cancer
outcome [41].

4.1. Gene methylation and its impact on clinical outcome in gastric cancer

Using methylation-specific polymerase chain reactions (MSP) and quantitative methylation-
specific polymerase chain reactions (Q-MSP), the promoter methylation of specific genes is
examined, as well as their association with clinical outcomes of gastric cancer. Inactivation
of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic al‐
terations are known to play a significant role in carcinogenesis. An increasing amount of evi‐
dence shows that epigenetic silencing of the tumor suppressor genes, particularly caused by
hypermethylation of CpG islands in promoters, is critical to carcinogenesis and metastasis.
Here, we detail recent progress in the study of methylations of tumor suppressor genes in‐
volved in the pathogenesis of gastric cancer.

CDH1 E-cadherin is a cell adhesion molecule considered a potential invasion/metastasis
suppressor and is mutationally inactivated in almost half of all undifferentiated-scattered
(diffuse-type) gastric carcinomas. In addition, silencing of E-cadherin by CpG methylation
within its promoter region has been reported in several gastric carcinoma cell lines. Hyper‐
methylation of the E-cadherin promoter was evident in 30%-55% of primary gastric carcino‐
mas [26, 44-47] and occurred more frequently in carcinomas of the undifferentiated-
scattered type (in 15 of 18, 83%) than in other histologic subtypes (34%), and it was present
at similar rates in early (60%) versus advanced (49%) carcinomas [26]. E-cadherin methyla‐
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tion was present in 31% of gastric mucosae from dyspeptic patients, and was associated
with H. pylori infection, although this is independent of the age of the patient or presence or
absence of gastritis. E-cadherin methylation was present in 0% of normal mucosa, 57% of in‐
testinal metaplasias, and 58% of primary and 65% of metastatic cancers. E-cadherin methyla‐
tion status was concordant in 92% of intestinal metaplasias and primary cancers, and in 85%
of primary and metastatic cancers from the same resected specimen. E-cadherin methylation
in gastric cancer was associated with depth of tumor invasion and regional nodal metastasis
[48]. By examining the relationship between molecular changes in E-cadherin and metastasis
in early gastric carcinoma (EGC), Yi Kim et al. showed that 45.0% of 60 primary EGCs exhib‐
ited methylation in the CpG island of E-cadherin. Abnormal expression of E-cadherin was
significantly correlated with patient age, tumor size, Lauren classification, differentiation,
and lymph node metastasis [49]. Therefore, the E-cadherin promoter frequently undergoes
hypermethylation in human gastric cancers, particularly those of the undifferentiated-scat‐
tered histologic subtype. E-cadherin promoter hypermethylation is associated with de‐
creased expression and may occur during early stages of gastric cancer. Inactivation of E-
cadherin might be involved in metastasis in EGC and play an important role in microscopic
differentiation.

DAPK Death-associated protein kinase (DAP-kinase) is a serine/threonine kinase and a pos‐
itive mediator of apoptosis. Downregulation of DAP-kinase is associated with an increased
metastatic potential of tumors. Gene promoter hypermethylation could lead to downregula‐
tion of DAP-kinase. Methylation status was assessed by MSP. In total, 69.2% of GC demon‐
strated promoter methylation of DAP-kinase. Methylation of DAP-kinase was observed in
intestinal, diffuse, and mixed types of GC. It also occurred in similar frequencies among an‐
tral, body, and cardiac gastric cancer. No association between methylation status and age or
sex was demonstrated. However, the methylated cases were correlated with the presence of
nodal metastasis, advance stage of disease, and a poorer event-free survival. DAP-kinase
promoter methylation as a potential prognostic marker for gastric cancer patients deserved
further evaluation [50]. Aberrant methylation of DAPK genes was detected in 22% of tu‐
mors. Kato et al. examined 43 patients treated by 5-fluorouracil-based chemotherapy, who
had distant metastasis or recurrence after radical resection, to determine the relation be‐
tween chemosensitivity and methylation. The response rate was lower in patients with ei‐
ther DAPK methylation than without ( 21% vs. 45%). Overall survival tended to be shorter
in patients with both methylations compared with either or no methylation. The time to pro‐
gression of patients with methylation of DAPK was significantly shorter than of patients
without methylation. In conclusion, DAPK methylation might predict the prognosis and re‐
sponse to chemotherapy in gastric cancer [51].

CHFR Checkpoint with fork head-associated and ring finger (CHFR) governs the transition
from prophase to prometaphase in response to mitotic stress. MSP and combined bisulfite
restriction analysis (COBRA) are both used in detecting aberrant methylation of the CHFR
gene in gastric cancer. The methylation rates of the CHFR gene promoter were significantly
higher in gastric cancer samples than in the corresponding para cancer normal gastric muco‐
sa by MSP (52% vs. 19%). However, there was no significant correlation between methyla‐
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tion status of the CHFR gene and the clinicopathologic parameters of gastric cancer,
including age, sex, tumor size, clinical stage, Borrmann type, tumor invasion depth, differ‐
entiation, and lymph node metastasis. Aberrant methylation of the CHFR gene was detected
in 42% of gastric cancer specimens using COBRA and MSP. Therefore, aberrant methylation
of the CHFR gene is a frequent event in the carcinogenesis of gastric cancer. Detecting the
methylation of the CHFR gene in gastric mucosa may be conducive to the diagnosis of gas‐
tric cancer [52, 53]. However, the frequency of DAPK and CHFR methylation in cancer tis‐
sues was significantly associated with the extent of differentiation and lymph node
metastasis. DAPK and CHFR promoter hypermethylation may be critical in evaluating the
differentiation grade and lymph node status of gastric cancer. Weak gene expression and
loss of gene expression caused by promoter hypermethylation may be a cancer-specific
event [54, 55].

RUNX3 Runt-related transcription factor 3 (RUNX3) is a novel tumor suppressor gene that
is frequently silenced by promoter hypermethylation in gastric cancer. Sakakura et al. ob‐
served significant downregulation of RUNX3 through methylation on the promoter region
in primary tumors (75%), as well as in all clinical peritoneal metastases of gastric cancers
(100%), compared with normal gastric mucosa. Stable transfection of RUNX3 inhibited cell
proliferation slightly, and modest transforming growth factor-beta (TGF-beta)-induced anti‐
proliferative and apoptotic effects were observed. RUNX3 significantly inhibited peritoneal
metastases of gastric cancers in animals. Microarray analysis identified approximately 28
candidate genes under the possible downstream control of RUNX3, some of which were
considered to be potentially involved in peritoneal metastases, which were related to signal
transduction, apoptosis, immune responses, and cell adhesion. Some of the genes are in‐
volved in the TGF-beta signaling pathway. These results indicate that silencing of RUNX3
affects the expression of important genes involved in aspects of metastasis, including cell
adhesion, proliferation, apoptosis, and promoting the peritoneal metastasis of gastric cancer.
Identification of such genes could indicate novel therapeutic modalities and therapeutic tar‐
gets [56]. In other studies, overall, 55% of GC demonstrated methylation of the RUNX3 pro‐
moter; 82% of GC was classified as stable microsatellite instability, 5% as low-level
microsatellite instability and 13% as high-level microsatellite instability (MSI-H); and mito‐
chondrial microsatellite instability (mtMSI) was detected in 11% of GC. A significant associ‐
ation was found between mtMSI and tumor-node-metastasis staging. Furthermore, an
interesting association among the MSI-H status, mtMSI, and RUNX3 methylation. These da‐
ta suggest that RUNX3 is an important target of methylation in the evolution of mtMSI and
nuclear microsatellite instability (nMSI-H) [57].

p16  The  INK4a/ARF  locus  encodes  2  cell  cycle-regulatory  proteins:  p16INK4a  and
p14ARF. Silencing of p16INK4a and p14ARF expressions by aberrant methylation of the
CpG  islands  in  the  promoter  regions  has  recently  been  observed  to  be  an  alternative
mechanism that inactivates possible tumor suppressor functions in various tumors. Of 10
cell lines studied, silencing of the expression of p16INK4a and p14ARF caused by the de‐
tection of promoter methylation by MSP and RT-PCR in 6 (60%) and 2 (20%) cell lines, re‐
spectively. p14ARF silencing was detected only in cell lines derived from gastric cancer of
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the diffuse type,  whereas p16INK4a silencing was found in cell  lines derived from both
diffuse  and  intestinal  types.  In  primary  gastric  cancers,  promoter  methylation  of
p16INK4a and p14ARF was found in 17% and 24% of the tumors independently. Where‐
as p14ARF methylation was observed more frequently in intestinal type cancers in an ear‐
ly  stage  and  in  diffuse  type  cancers  in  an  advanced  stage,  MSI  tended  to  be  related
especially to p14ARF methylation in cancers of the intestinal type. Thus, the significance
of p14ARF methylation differed between intestinal  and diffuse types,  and such a differ‐
ence was not observed in p16INK4a methylation [58]. Aberrant p16 methylation was ob‐
served  in  38%  of  primary  gastric  cancers,  but  in  none  of  the  corresponding  gastric
mucosae  [59].  When carcinoma specimens  were  compared with  adjacent  normal  gastric
mucosa  samples,  a  significant  increase  in  promoter  methylation  of  p16,  Runx3,  DAPK,
and  CHFR  was  observed,  whereas  all  30  histologically  normal  gastric  specimens  were
methylation-free for all 4 genes. The methylation rate of the 4 genes increased from nor‐
mal stomach tissue to tumor-adjacent gastric mucosa to gastric cancer tissue [54].

4.2. Hypermethylation profiling

DNA methylation has been studied extensively in gastric cancer. However, most studies
have focused on aberrant methylation in a single gene. Because methylated genes rarely oc‐
cur more frequently in groups than in isolation, the concept of a CpG island methylator phe‐
notype (CIMP) in gastric. CIMP has been defined as a subset of malignancies that show
widespread hypermethylation of multiple promoter CpG island loci [60].

More recently, microarray technology has made it possible to comprehensively analyze gene
expression profiles [56, 61-64]. Representational difference analysis (RDA) is also used to
screen differentially methylated DNA sequences between gastric primary tumor and meta‐
static lymph nodes [65, 66]. By using these techniques, the expression levels of thousands of
genes can be analyzed in a single experiment. These technologies are a powerful tool for an‐
alyzing gene expression profiles related to the development and progression of specific dis‐
eases. Although there have been significant improvements in the analysis of genetic
alterations for gastric cancer, there is insufficient information on understanding a common
pathway for the development and progression of gastric cancer. Gastric cancer has diverse
clinical properties such as histological type, metastatic status, race, and sex. Thus, further ex‐
ploration to search for genetic alterations in gastric cancer is required.

5. Cirulating DNA methylation as biomarkers

Previous studies have demonstrated that tumor cells can release DNA to peripheral blood
and enriched circulating DNA level can be observed in the serum of cancer patients, several
times higher than the reference range. Previous studies have detected methylated DNA of
multiple gene promoters in blood plasma, urine, sputum and peritoneal washes in several
different cancers, and high-frequency hypermethylation of tumor suppression is mostly can‐
cer-specific; therefore, it may be used as a molecular diagnostic marker of cancer [67-74].
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Numerous studies have attempted to detect circulating methylated DNA from body fluid as
a good biomarker for prognosis and diagnosis of gastric carcinoma (Table 2). Detection of
promoter regions hypermethylation of candidate genes FAM5C, MYLK, RUNX3, TFP12,
RASSF1A, p16 and CDH1 in the serum have been applied to predict the clinical features of
gastric cancer patients. Furthermore, DNA methylation of BNIP3, CHFR, CYP1B1, MINT25,
SFRP2, RASSF2, p16, RUNX3, CDH1, hMLH1, ABCG2, BNIP3, and RECK in peritoneal fluid
form gastric cancer patients has been analyzed using quantitative methylation-specific poly‐
merase chain reaction and as a good biomarker for the diagnosis and detection of gastric
cancer. Thus, circulating methylated DNA can reflect the real methylation status of candi‐
date gene promoters in gastric cancer tissue by examining body fluid. Therefore, releasing
methylated DNA fragments has a high potential as a novel biomarker for the detection and
recurrence monitoring of gastric cancer.

Body fluid Gene name Ref.

serum FAM5C, MYLK, RUNX3, TFP12, RASSF1A, p16, CDH1, DAPK,

GSTP1, p15

[120, 124-127]

Peritoneal fluid BNIP3, CHFR, CYP1B1, MINT25, SFRP2, RASSF2, p16, RUNX3,

CDH1, hMLH1, ABCG2, BNIP3, RECK

[55, 120, 128, 129]

Table 2. The aberrant DNA methylation of gene promoter in body fluid is a promising biomarker for gastric cancer

6. Conclusion

Gastric cancer is one of the leading causes of cancer-related death in China. Although the
molecular mechanisms of gastric carcinogenesis are unclear, epigenetic silencing of tumor-
related genes by promoter hypermethylation has recently emerged as a crucial mechanism
of tumorigenesis. The promoter hypermethylation profile differs among cancer types and
within each gene, providing tumor type- and gene-specific hypermethylation profiles that
may be involved in the corresponding molecular mechanism of tumorigenesis. The identifi‐
cation of a novel gene targeted by promoter hypermethylation may provide insights into
mechanisms for the inactivation of tumor-suppressive pathways and is critical for the identi‐
fication of tumor markers in gastric cancer [42, 43]. Currently, DNA methylation markers
have been used in early detection, prognosis, and prediction of response to cancer therapy.
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