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1. Introduction

The impact of Einstein’s fundamental idea of gravitation as a curved space-time phenomenon
on our current understanding of the Universe has been enormously successful. A key
aspect of his celebrated theory of General Relativity (GR) is that the spatial sections of four
dimensional space-time need not be Euclidean. The Minkowskian description is just an
approximation valid on (relatively) local portions of space-time. On larger scales, however,
one must consider deformations induced by the matter on the geometry, which must be
dictated by some set of field equations. In this respect, the predictions of GR are in agreement
with experiments in scales that range from millimeters to astronomical units, scales in which
weak and strong field phenomena can be observed [39]. The theory is so successful in those
regimes and scales that it is generally accepted that it should work also at larger and shorter
scales, and at weaker and stronger regimes. The validity of these assumptions, obviously,
is not guaranteed a priori regardless of how beautiful and elegant the theory might appear.
Therefore, not only must we keep confronting the predictions of the theory with experiments
and/or observations at new scales, but also we have to demand theoretical consistency with
the other physical interactions and, in particular, in the quantum regime.

For the above reasons, we believe that scrutinizing the implicit assumptions and
mathematical structures behind the classical formulation of GR could help better understand
the starting point of some current approaches that go beyond our standard model of
gravitational physics. At the same time, this could provide new insights useful to address
from a different perspective some current open questions, such as the existence of black
hole and big bang singularities or the cosmic speedup problem. In this sense, Einstein
himself stated that ”the question whether the structure of [the spacetime] continuum is Euclidean,
or in accordance with Riemann’s general scheme, or otherwise, is . . . a physical question which must
be answered by experience, and not a question of a mere convention to be selected on practical
grounds” [10]. From these words it follows that questioning the regime of applicability of the
Riemannian nature of the geometry associated with the gravitational field and considering
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more general frameworks are legitimate questions that should be explored by all available
means (theoretical and experimental). These are some of the basic points to be addressed in
this work.

In this chapter we explore in some detail the implications of relaxing the Riemannian
condition on the geometry by allowing the connection to be determined from first principles,
not by choice or convention. This approach, known as metric-affine or Palatini formalism
[24], assumes that metric and connection are equally fundamental and independent
geometrical entities. In consequence, any geometrical theory of gravity formulated in
this approach must provide enough equations to determine the form of the metric and
the connection (within the unavoidable indeterminacy imposed by the underlying gauge
freedom). We derive and discuss the field equations of a rather general family of Palatini
theories and then focus on two particular subfamilies which have attracted special attention
in recent years, namely, f (R) and f (R, Q) theories. The interest in studying these particular
theories lies in their ability to avoid (or soften in some cases) big bang and black hole
singularities and their relation with recent approaches to quantum gravity. Here we will
focus on the early-time cosmology of such theories.

The content is organized as follows. We begin by briefly reviewing in section 2 the basics
of differentiable manifolds with affine and metric structures, to emphasize that metric and
connection are equally fundamental and independent geometrical objects. In section 3 a
derivation of the field equations for a generic action depending on the metric and the
Riemann tensor is presented taking into account also the presence of torsion. In section
4 we discuss a particular family of Lagrangians of the form f (R, RµνRµν) in combination
with perfect fluid matter, and prepare the notation and field equations needed to study
the dynamics of those theories. We then focus on the early-time characteristics of isotropic
and anisotropic homogeneous cosmologies 5 and show that nonsingular bouncing solutions
exist for f (R) and f (R, Q) models (subsections 5.5 and 5.6, respectively). We conclude with
a discussion of the results presented and point out some open questions that should be
addressed in the future.

2. Differentiable manifolds, affine connections, and the metric

In this section we quickly review some of the mathematical structures needed to construct a
geometric theory of the gravitational interactions. The goal is to put forward that metric and
connection are equally fundamental and independent geometrical entities, an aspect usually
overlooked in the construction of phenomenological extensions of GR. We will thus be more
sketchy than mathematically accurate. For a more exhaustive and precise discussion of these
topics see your favorite book on differentiable manifolds (or, for instance, [20]).

In the geometric description of gravitational theories, one begins by identifying physical
events with points on an n-dimensional manifold M. The next natural step is to provide
this manifold with a differentiable structure. One then labels the points p ∈ M with a set
of charts (Ui, ϕi), where the Ui are subsets of M and ϕi are maps from Ui to R

n (or an open
subset of R

n) such that every p ∈ M lies in at least one of the charts (Ui, ϕi). If for any two

charts (Ui, ϕi) and (Uj, ϕj) that overlap at some nonzero subset of points the map ϕi ◦ ϕj
−1

is not just continuous but differentiable, then we say that M is a differentiable manifold.
Since the Euclidean view of vectors as arrows connecting two points of the manifold is not
valid in general, to get a consistent definition we need to introduce first the concept of
curve and tangent vector to a curve at a point. We thus say that a smooth curve γ(t) in
M is a differentiable map that to each point of a segment associates a point in M, γ(t) :
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t ∈ [0, 1] → M. In a chart (U , ϕ), the points of the curve have the following coordinate
representation: x = ϕ(pt) = ϕ ◦ γ(t). If we consider now a function f on M, where f is a
map that to every p ∈ M assigns a real number ( f : M → R), the rate of change of f along
the curve γ(t) using the coordinates of the chart (U , ϕ) is given by

d f (ϕ ◦ γ(t))

dt
=

d f (x(t))

dt
=

∂ f

∂xµ

dxµ(t)

dt
≡ Xµ(t)

∂ f

∂xµ , (1)

where we have defined the components of the tangent vector to the curve in this chart as
Xµ ≡ dxµ(t)/dt. Vectors can thus be seen as differential operators X = Xµ∂µ whose action
on functions is of the form X[ f ] = Xµ∂µ f , thus providing a natural notion of directional
derivative for functions. The set {eµ ≡ ∂µ} defines a (coordinate) basis of the tangent space
of vectors at the point p, which we denote TpM. Obviously, vectors exist without specifying

the coordinates. Under changes of coordinates, we have V = Vµeµ = Ṽα ẽα = Ṽα ∂xµ

∂x̃α eµ,

which implies the well-known transformation law Vµ = Ṽα ∂xµ

∂x̃α for the vector components.
When a vector is assigned smoothly to each point of M, it is called a vector field over
M. Each component of a vector field is thus a smooth function from M → R. Given a
vector field X, an integral curve of X is defined as the curve whose tangent vector coincides
with X. For infinitesimal displacements of magnitude ǫ in the direction of X, a given point

p of coordinates xµ becomes σ
µ
ǫ (x) = xµ + ǫXµ(x). This transformation also induces a

correspondence between vectors of the tangent spaces TxM and Tσǫ(x)M. The effect of these

transformations on a vector field Y(x) leads to the concept of Lie derivative, whose action on
vector fields is defined as

LXY = [Xν∂νYµ(x)− Yν∂νXµ(x)] eµ ≡ [X, Y] . (2)

This derivative operator is independent of the choice of coordinates and follows naturally
from the differential structure of the manifold. It satisfies a number of useful properties
such as bilinearity in its two arguments, LX(Y + Z) = LXY + LXZ, LX+YZ = LXZ + LYZ,
and the chain rule LX f Y = (LX f )Y + fLXY, with LX f = X[ f ]. Though the Lie derivative
provides a natural directional derivative for functions, it does not work in the same way for
vectors and tensors of higher rank. In fact, since the partial derivatives of the vector X appear
explicitly in LXY, two vectors whose components at a given point have the same values but
whose partial derivatives at the point differ do not yield a vector that points in the same
direction, i.e., they are not proportional. Therefore, in order to introduce a proper notion
of directional derivative for vectors and tensors, we need to introduce a new structure called
connection which specifies how vectors (and tensors in general) are transported along a
curve.

Manifolds with a connection. We are thus going to introduce a derivative operator, which
we denote by ∇, such that given two vector fields X and Y we obtain a new vector field Z
defined by Z ≡ ∇XY. This derivative operator must be bilinear in its two arguments, ∇X(Y+
Z) = ∇XY+∇XZ, ∇X+YZ = ∇XZ+∇YZ, must satisfy the chain rule ∇X( f Y) = (∇X f )Y+
f∇XY, with ∇X f = X[ f ], and must also behave as a natural directional derivative in the
sense that ∇ f XY = f∇XY to guarantee that any two proportional vectors yield a result that
points in the same direction. In a given coordinate basis, we have ∇XY = Xµ∇eµ (Y

νeν) =

Xµ
(

eµ[Yν]eν + Yν∇eµ eν

)

. If our manifold is m−dimensional, defining m3 functions called

Introduction to Palatini Theories of Gravity and Nonsingular Cosmologies
http://dx.doi.org/10.5772/51807

159



connection coefficients Γ
λ
µν by ∇eµ eν ≡ Γ

λ
µνeλ we find that the last requirement, ∇ f XY =

f∇XY, is naturally satisfied. We thus find that

∇XY = Xµ

[

∂Yλ

∂xµ + Γ
λ
µνYν

]

eλ . (3)

The connection coefficients specify how the basis vectors change from point to point and,
in principle, can be arbitrarily defined. Under changes of coordinates, these coefficients
transform as follows:

∇eµ eν ≡ Γ
λ
µνeλ =

∂x̃α

∂xµ ∇ẽα

(

∂x̃β

∂xν
ẽβ

)

=
∂x̃α

∂xµ

[

∂xλ

∂x̃ν

∂2 x̃γ

∂xλ∂xν
+

∂x̃β

∂xν
Γ̃

γ
αβ

]

ẽγ = Γ
λ
µν

∂x̃γ

∂xλ
ẽγ , (4)

which implies

Γ
λ
µν =

∂xλ

∂x̃γ

∂x̃α

∂xµ

∂x̃β

∂xν
Γ̃

γ
αβ +

∂xλ

∂x̃γ

∂2 x̃γ

∂xµ∂xν
. (5)

This transformation law indicates that the connection coefficients do not transform as
tensorial quantities. Therefore, the connection cannot have an intrinsic geometrical meaning
as a measure of how much a manifold is curved. As intrinsic geometric objects, we can define
the torsion tensor

T(X, Y) = ∇XY −∇YX − [X, Y] , (6)

and the Riemann curvature tensor

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z . (7)

In a coordinate basis, these tensors have the following components:

T(eµ, eν) =
(

Γ
λ
µν − Γ

λ
νµ

)

eλ , (8)

R(eµ, eν)eλ =
[

∂µΓ
β
νλ − ∂νΓ

β
µλ + Γ

κ
νλΓ

γ
µκ − Γ

κ
µλΓ

γ
νκ

]

eγ . (9)

With the introduction of the connection, one can define the notion of parallel transport. Given
a curve γ(t) such that its tangent vector in a given chart has coordinates Xµ = dxµ(t)/dt,
we say that a vector Y is parallel transported along γ(t) if ∇XY = 0. In components,

this equation reads dYµ

dt + Γ
µ
αβ

dxα(t)
dt Yβ = 0, where d/dt ≡ Xµ∂µ. Geodesics are defined

as those curves which are parallel transported along themselves, namely, ∇XX = 0 or
dXµ

dt + Γ
µ
αβXαXβ = 0.

Manifolds with a metric. So far we have been able to construct a number of geometrical
objects such as directional derivatives of vectors and tensors in general, the torsion and
Riemann tensors, geodesic curves, . . . without the need to introduce a metric tensor. A metric
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tensor provides a notion of distance between nearby points and allows, among other things,
to determine lengths, angles, areas, and volumes of objects which are locally defined in
space-time. Formally, a (pseudo-Riemannian) metric tensor is a symmetric bilinear form
that at each p ∈ M satisfies gp(U, V) = gp(V, U) for any two vectors U, V ∈ TpM and
gp(U, V) = 0 for any U ∈ TpM iff V = 0. The metric tensor allows to define an inner
product between vectors and also gives rise to an isomorphism between TpM and the dual
space of one-forms T∗

pM. In a coordinate basis, it can be represented by g = gµνdxµ ⊗

dxν,
where the differentials dxµ form a basis of T∗

pM. In manifolds with a metric, one can
impose a particular relation between the metric and the connection by demanding that the
scalar product of any two vectors which are parallel transported along any curve remains
covariantly constant. This condition can be translated into1 ∇µgαβ = 0, which implies that

(recall that T
ρ
βσ ≡ Γ

ρ
βσ − Γ

ρ
σβ)

2Γ
λ
(µν) +

(

T
ρ
νσgρµ + T

ρ
µσgρν

)

gσλ = gλρ
[

∂µgρν + ∂νgρµ − ∂ρgµν
]

. (10)

From the right-hand side of this equation, one defines the Levi-Civita connection as

Lλ
µν ≡

gλρ

2

[

∂µgρν + ∂νgρµ − ∂ρgµν
]

. (11)

From this definition it follows that when the torsion vanishes, the connection is symmetric
and coincides with the Levi-Civita connection. In that case, when Γ

λ
µν = Lλ

µν, we say that
the associated geometry is Riemannian. It should be noted that though connections are not
tensors, the difference between any two connections is a tensor. This, in particular, allowed
us to construct the torsion tensor. With more generality, when the manifold is provided with
a metric, any connection Γ

λ
µν can be expressed as

Γ
λ
µν = Lλ

µν + Aλ
µν , (12)

where Aλ
µν is a tensor (which needs not be symmetric in its lower indices). Therefore, Palatini

theories of gravity, in which metric and connection are regarded as independent fields, can
be seen as theories in which an additional rank-three tensor field Aλ

µν has been added to the
gravitational Lagrangian.

3. Dynamics of Palatini theories

From the above quick review of the properties of differentiable manifolds with metric
and affine structures, it is clear that metric and connection are equally fundamental and
independent geometrical entities. In the construction of theories of gravity based on
geometry, we will thus assume this independence and will require those theories to yield
equations that allow to determine both the metric and the connection and the possible
relations between them. For simplicity, we will assume that the matter is only coupled to the

1 From now on we use the more standard notation ∇µ ≡ ∇eµ
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metric (which is consistent with the experimental tests of the equivalence principle [39]) but
will allow an independent connection to appear in the gravitational sector of the theory. As
pointed out above, this is equivalent to having, besides the metric, a rank-three gravitational
tensor field. From a geometric perspective, this possibility seems much more natural and
fundamental than considering, for instance, scalar fields in the gravitational sector, though
scalar-tensor theories have traditionally received much more attention in the literature.

We begin by deriving the field equations of Palatini theories in a very general case and then
consider some simplifications to make contact with the literature. For a generic Palatini
theory in which the connection appears through the Riemann tensor or contractions of it, the
action can be written as follows [25]

S =
1

2κ2

∫

d4x
√

−g f (gµν, Rα
βµν) + Sm[gµν, ψ] , (13)

where Sm is the matter action, ψ represents collectively the matter fields, κ2 is a constant with

suitable dimensions (if f = R, then κ2 = 8πG), and

Rα
βµν = ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γ

α
µλΓ

λ
νβ − Γ

α
νλΓ

λ
µβ (14)

represents the components of the Riemann tensor, the field strength of the connection Γ
α
µβ.

Note that since the connection is determined dynamically, i.e., we assume independence
between the metric and affine structures of the theory, we cannot assume any a priori
symmetry in its lower indices. This means that in the variation of the action to obtain
the field equations we must bear in mind that Γ

α
βγ 6= Γ

α
γβ, i.e., we admit the possibility

of nonvanishing torsion. It should be noted that in GR energy and momentum are the
sources of curvature, while torsion is sourced by the spin of particles [14]. The fact that
torsion is usually not considered in introductory courses on gravitation may be rooted in
the educational tradition of this subject and the fact that the spin of particles was discovered
many years after the original formulation of GR by Einstein. Another reason may be that the
effects of torsion are very weak in general, except at very high densities, where the role of
torsion becomes dominant and may even avoid the formation of singularities (see [30] for a
recent discussion and earlier literature on the topic). For these reasons, and to motivate and
facilitate the exploration of the effects of torsion in extensions of GR, our derivation of the
field equations will be as general as possible (within reasonable limits). We will assume a
symmetric metric tensor gµν = gνµ and the usual definitions for the Ricci tensor Rµν ≡ Rρ

µρν

and the Ricci scalar R ≡ gµνRµν. The variation of the action (13) with respect to the metric
and the connection can be expressed as

δS =
1

2κ2

∫

d4x
√

−g

[

(

∂ f

∂gµν −
f

2
gµν

)

δgµν +
∂ f

∂Rα
βµν

δRα
βµν

]

+ δSm . (15)

Straightforward manipulations show that δRα
βµν can be written as

δRα
βµν = ∇µ

(

δΓ
α
νβ

)

−∇ν

(

δΓ
α
µβ

)

+ 2Sλ
µνδΓ

α
λβ , (16)
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where Sλ
µν ≡ (Γλ

µν − Γ
λ
νµ)/2 now represents the torsion tensor (note the additional 1

2 factor as

compared to our initial definition in Eq.(8)) From now on we will use the notation Pα
βµν ≡

∂ f
∂Rα

βµν
. In order to put the δRα

βµν term in (15) in suitable form, we need to note that

IΓ =
∫

d4x
√

−gPα
βµν∇µδΓ

α
νβ =

∫

d4x
[

∇µ(
√

−gJµ)− δΓ
α
νβ∇µ

(

√

−gPα
βµν

)]

, (17)

where Jµ ≡ Pα
βµνδΓ

α
νβ. Since, in general, ∇µ(

√−gJµ) = ∂µ(
√−gJµ) + 2Sσ

σµ
√−gJµ, we find

that (17) can be written as

IΓ =
∫

d4x
[

∂µ(
√

−gJµ)− δΓ
α
νβ

{

∇µ

(

√

−gPα
βµν

)

− 2Sσ
σµ

√

−gPα
βµν

}]

. (18)

Using this result, (15) becomes

δS =
1

2κ2

∫

d4x

[

√

−g

(

∂ f

∂gµν − f

2
gµν

)

δgµν + ∂µ
(√

−gJµ
)

(19)

+

{

− 1√−g
∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

β[µν]
}

2
√

−gδΓ
α
νβ

]

+ δSm .

We thus find that the field equations can be written as follows

κ2Tµν =
∂ f

∂g(µν)
− f

2
gµν (20)

κ2Hα
νβ = − 1√−g

∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

β[µν] , (21)

where Pα
β[µν] = (Pα

βµν − Pα
βνµ)/2, Tµν = − 2√−g

δSm
δgµν is the energy-momentum tensor of

the matter, and Hα
νβ = − 1√−g

δSm
δΓ

α
νβ

represents the coupling of matter to the connection.

For simplicity, from now on we will assume that Hα
νβ = 0. Eq. (21) can be put in a

more convenient form if the connection is decomposed into its symmetric and antisymmetric
(torsion) parts, Γ

α
µν = Cα

µν + Sα
µν, such that ∇µ Aν = ∂µ Aν −Cα

µν Aα − Sα
µν Aα = ∇C

µ Aν − Sα
µν Aα

and ∇µ
√−g = ∇C

µ
√−g − Sα

µα
√−g. By doing this, (21) turns into

κ2Hα
νβ = − 1√−g

∇C
µ

(

√

−gPα
β[µν]

)

+ Sλ
µαPλ

β[µν] − S
β
µλPα

λ[µν] . (22)

3.1. Example: f(R,Q) theories

Eqs. (20) and (22) can be used to write the field equations for the metric and the connection
for specific choices of the Lagrangian f (gµν, Rα

βµν). To make contact with the literature [26],
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[5] ,[23], we now focus on the case f (R, Q) = f (gµνRµν, gµνgαβRµαRνβ). For this family of
Lagrangians, we obtain

Pα
βµν = δα

µ Mβν = δα
µ
(

fRgβν + 2 fQRβν
)

, (23)

where fX = ∂X f . Inserting this expression in (22) and tracing over α and ν, we find that

∇C
λ [
√−gMβλ] = (2

√−g/3)[Sσ
λσ Mβλ + (3/2)S

β
λµ Mλµ]. Using this result, the connection

equation can be put as follows

1√−g
∇C

α

[

√

−gMβν
]

= Sν
αλ Mβλ − Sν

βλ Mλν − Sλ
αλ Mβν +

2

3
δν

αSσ
λσ Mβλ (24)

The symmetric and antisymmetric combinations of this equation lead, respectively, to

1√−g
∇C

α

[

√

−gM(βν)
]

= Sν
αλ M[βλ] − S

β
αλ M[νλ] − Sλ

αλ M(βν) +
Sσ

λσ

3

(

δν
α Mβλ + δ

β
α Mνλ

)

(25)

1√−g
∇C

α

[

√

−gM[βν]
]

= Sν
αλ M(βλ) − S

β
αλ M(νλ) − Sλ

αλ M[βν] +
Sσ

λσ

3

(

δν
α Mβλ − δ

β
α Mνλ

)

.(26)

Important simplifications can be achieved considering the new variables

Γ̃
λ
µν = Γ

λ
µν + αδλ

ν Sσ
σµ , (27)

and taking the parameter α = 2/3, which implies that S̃λ
µν ≡ Γ̃

λ
[µν]

is such that S̃σ
σν = 0. The

symmetric and antisymmetric parts of Γ̃
λ
µν are related to those of Γ

λ
µν by

C̃λ
µν = Cλ

µν +
1

3

(

δλ
ν Sσ

σµ + δλ
µ Sσ

σν

)

(28)

S̃λ
µν = Sλ

µν +
1

3

(

δλ
ν Sσ

σµ − δλ
µ Sσ

σν

)

(29)

Using these variables, Eqs. (25) and (26) take the following compact form

1√−g
∇C̃

α

[

√

−gM(βν)
]

=
[

S̃ν
αλgβκ + S̃

β
αλgνκ

]

gλρ M[κρ] (30)

1√−g
∇C̃

α

[

√

−gM[βν]
]

=
[

S̃ν
αλgβκ − S̃

β
αλgνκ

]

gλρ M(κρ) . (31)

In these equations, M(βν) = fRgβν + 2 fQR(βν)(Γ), and M[βν] = 2 fQR[βν](Γ), where

R(βν)(Γ) = R(βν)(Γ̃) and R[βν](Γ) = R[βν](Γ̃) +
2
3

(

∂βSσ
σν − ∂νSσ

σβ

)

.
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In the recent literature on Palatini theories, only the torsionless case has been studied in
detail. When torsion is considered in f (R) theories, Eqs. (30) and (31) recover the results
presented in [24]. In general, those equations put forward that when the traceless torsion
tensor S̃ν

αλ vanishes, the symmetric and antisymmetric parts of Mβν decouple. The dynamics
of these theories, therefore, can be studied in different levels of complexity. The simplest case
will be studied here and consists on setting Sν

αλ and R[µν] to zero. A more detailed discussion
of the other cases can be found in [28].

3.2. Volume-invariant and torsionless f (R, Q)

When the torsion is set to zero, it can be shown [32], [12] that the vanishing of R[µν]
guarantees the existence of a volume element that is covariantly conserved by Γ

α
µν. The

rank-two tensor that defines that volume element must be a solution of (30), which in this
case takes the form

∇Γ
α

[

√

−g
(

fRgβν + 2 fQRβν(Γ)
)]

= 0 . (32)

Note that here Rβν(Γ) is symmetric because we are taking R[µν](Γ) = 0. To obtain the solution
of (32), we first consider (20) particularized to our theory (with Sν

αλ and R[µν] set to zero),

fRRµν −
f

2
gµν + 2 fQRµαRα

ν = κ2Tµν , (33)

and rewrite it in the following form

fRBµ
ν − f

2
δµ

ν + 2 fQBµ
αBα

ν = κ2Tµ
ν , (34)

where we have defined Bµ
ν ≡ Rµαgαν. This equation can be seen as a second-order algebraic

equation for the matrix B̂, whose components are [B̂]µ
ν ≡ Bµ

ν. The solutions to this equation

imply that B̂ is an algebraic function of the components of the stress-energy tensor Tµ
ν, i.e.,

B̂ = B̂(T̂). This relation is very important because it allows to express (32) in the form

∇Γ
α

[

√

−ggβλ
(

fRδν
λ + 2 fQBλ

ν
)

]

= 0 , (35)

where now fR, fQ and Bα
ν are functions of the stress-energy tensor of the matter. The

connection, therefore, can be obtained by elementary algebraic manipulations [23]. To do it,
one defines a rank-two symmetric tensor hµν such that

√−ggβλ
(

fRδν
λ + 2 fQBλ

ν
)

=
√
−hhβν,

which turns (35) into the well-known equation ∇µ

[√
−hhβν

]

= 0, and implies that Γ
α
βν is

given by the Christoffel symbols of the tensor hµν, i.e.,

Γ
α
βγ =

hαρ

2

(

∂βhργ + ∂γhρβ − ∂ρhβγ

)

. (36)
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From the defining expression of hµν, one finds that the relation between hµν and gµν can be
expressed as follows

hµν =
√

det Σ̂[Σ−1]µ
α

gαν , hµν =
gµαΣα

ν

√
det Σ̂

, (37)

where we have defined the matrix Σα
ν ≡

(

fRδν
α + 2 fQBα

ν
)

. With these relations and
definitions, the field equations for the metric hµν can be written in compact form expressing

(34) as Bµ
αΣα

ν =
f
2 δν

µ + κ2Tµ
ν and using the relation Bµ

αΣα
ν =

√
det Σ̂Rµα(h)hαν to obtain

[27]

Rµ
ν(h) =

1√
det Σ̂

(

f

2
δν

µ + κ2Tµ
ν

)

. (38)

In general, it will be more convenient to work with the field equations for the auxiliary
metric hµν because their form is more tractable. Nonetheless, if one insists on writing the
field equations using the metric gµν, one must note that the connection (36) is related to the
Levi-Civita connection of gµν by the tensor (recall Eq.(12))

Aα
βγ ≡ Γα

βγ − Lα
βγ =

hαρ

2

[

∇L
µhρν +∇L

ν hρµ −∇L
ρ hµν

]

. (39)

The Riemann tensors of Γα
βγ and Lα

βγ are thus related as follows

Rα
βµν(Γ) = Rα

βµν(L) +∇L
µ Aα

νβ −∇L
ν Aα

µβ + Aλ
νβ Aα

µλ − Aλ
µβ Aα

νλ , (40)

which allows to express (38) in terms of the Ricci tensor of the metric gµν, the usual covariant
derivatives of Lα

βγ, and the matter.

4. f (R, Q) theories with a perfect fluid

The explicit form of the matrix Σ̂ that relates the metrics hµν and gµν can only be found once
all the sources that make up Tµν have been specified. In our discussion we will just consider
a perfect fluid or a sum of non-interacting perfect fluids such that

Tµν = (ρ + P)uµuν + Pgµν (41)

with ρ = ∑i ρi and P = ∑i Pi. In order to find an expression for Σ̂, we first rewrite (34) using
matrix notation as

2 fQ B̂2 + fR B̂ − f

2
Î = κ2T̂ . (42)
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Using (41) this equation can be rewritten as follows

2 fQ

(

B̂ +
fR

4 fQ
Î

)2

=

(

κ2P +
f

2
+

f 2
R

8 fQ

)

Î + κ2(ρ + P)uµuµ . (43)

Denoting λ2 ≡
(

κ2P +
f
2 +

f 2
R

8 fQ

)

and making explicit the matrix representation, (43) becomes

2 fQ

(

B̂ +
fR

4 fQ
Î

)2

=

(

λ2 − κ2(ρ + P) ~0
~0 λ2 Î3X3

)

, (44)

where Î3X3 denotes 3-dimensional identity matrix. Since the right-hand side of (44) is a
diagonal matrix, it is immediate to compute its square root, which leads to

√

2 fQ

(

B̂ +
fR

4 fQ
Î

)

=

(

s1

√

λ2 − κ2(ρ + P) ~0
~0 λŜ3X3

)

, (45)

where s1 denotes a sign, which can be positive or negative, and Ŝ3X3 denotes a 3X3 diagonal
matrix with elements {si = ±1}. For consistency of the theory in the limit fQ → 0, we must

have s1 = 1 and Ŝ3X3 = Î3X3. This result allows to express Σ̂ as follows

Σ̂ =

(

σ1
~0

~0 σ2 Î3X3

)

, (46)

where σ1 and σ2 take the form

σ1 =
fR

2
±
√

2 fQ

√

λ2 − κ2(ρ + P)

σ2 =
fR

2
+
√

2 fQλ . (47)

Note that we have kept the two signs ± in σ1. The reason for this will be understood later,
when particular models are considered. The point is that in some cases of physical interest,
at high densities one should take the negative sign in front of the square root to guarantee
that σ1 is continuous and differentiable accross the point where the square root vanishes.
This technical issue does not arise for σ2.

4.1. Workable models: f (R, Q) = f̃ (R) + αQ

So far we have made progress without specifying the form of the Lagrangian f (R, Q).
However, in order to find the explicit dependence of R = Bµ

µ and Q = Bµ
αBα

µ with the ρ and
P of the fluids, we must choose a Lagrangian explicitly. Restricting the function f (R, Q) to the
family f (R, Q) = f̃ (R) + αQ, we will see that it is possible to find the generic dependence of
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Q with ρ and P, while R is found to depend only on the combination T = −ρ + 3P [23]. The
reason for this follows from the trace of (33) with gµν, which for this family of Lagrangians
gives the algebraic relation R f̃R − 2 f̃ = κ2T and implies that R = R(T) (like in Palatini f (R)
theories). For these theories, we have that fQ = α, which is a constant. Therefore, from the
trace of (44) we find

√

2 fQ

(

R +
fR

fQ

)

=
√

λ2 − κ2(ρ + P) + 3λ , (48)

which can be cast as

[

√

2 fQ

(

R +
fR

fQ

)

− 3λ

]2

= λ2
− κ2(ρ + P) (49)

After a bit of algebra we find that

λ =

√

2 fQ

8



3

(

R +
fR

fQ

)

±

√

(

R +
fR

fQ

)2

−
4κ2(ρ + P)

fQ



 (50)

From this expression and the definition of λ2, we find

αQ = −

(

f̃ +
f̃ 2
R

4 fQ
+ 2κ2P

)

+
fQ

16






3

(

R +
f̃R

fQ

)

±

√

√

√

√

(

R +
f̃R

fQ

)2

−
4κ2(ρ + P)

fQ







2

, (51)

where R, f̃ , and f̃R are functions of T = −ρ + 3P.

5. Nonsingular cosmologies in f (R, Q) theories

The difficulties faced by GR to provide a consistent description of singularities and quantum
phenomena at high energies (microscopic or Planck scales) is generally seen as an indication
that we should go beyond the standard geometric structures to successfully quantize the
theory and avoid singularities. This idea has motivated a variety of approaches that range
from the consideration of higher-dimensional superstrings and other extended objects [11],
to non-commutative geometries or non-perturbative quantization methods [3], [31], [35] ,
to name just a few well-known cases. Unfortunately, the formidable task of building a
satisfactory quantum theory of gravity is not yet complete. Moreover, even if we managed
to get such a theory, we would still have to face the challenge of testing its predictions. In
this sense, it should be noted that since the quantum gravitational regime is so far from our
current and future experimental capabilities, our only hope might be to use the information
available in the cosmic microwave background radiation to verify or rule out our theories [1].
How much of the quantum gravitational regime could be contrasted with these yet-to-come
theories is not clear. This is due, in part, because the theorized rapid accelerated expansion
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that took place during the inflationary period may have washed out many of the relevant
proper signatures needed to distinguish the predictions of different quantum theories of
gravity.

A conservative approach, therefore, consists on exploring the quantum properties and
interactions of the matter fields in the very early universe using the well-established
methods of quantum field theory in curved space-times [29]. The success of this approach
has been confirmed in combination with models of inflation and sheds relevant light
on the mechanisms that may have caused the primordial spectra of scalar and tensorial
perturbations [38], [19], [9],[18], [15]. The applicability of this approach, however, becomes
unreliable at increasing energies as the regime of the classical big bang singularity is
approached and the quantum fluctuations of the gravitational field can no longer be
neglected. At that stage, a complete quantum theory of gravity seems necessary to provide
a consistent description of the ongoing physical processes. Obviously, different quantum
theories could lead to completely different quantum gravitational scenarios and, therefore, a
generic quantum origin for the universe cannot be guessed a priori by any logical means.

In recent years, bouncing cosmological models have attracted much attention [21]. These
are scenarios in which the big bang singularity is replaced by a quantum-induced bounce
that connects an earlier phase of contraction with the subsequent expanding phase (in which
we happen to exist). In such scenarios, aside from the quantum regime, the contracting
and expanding phases are expected to asymptote an effective classical geometry whose
dynamics, on consistency grounds, should match that of GR at low energies. In this
context, and as an intermediate step between the quantum field theory approach in the
(singular) curved background provided by GR and a (nonsingular) full theory of quantum
gravity, one could consider the case of a smooth effective geometry free from big bang
singularities on top of which quantum matter fields could still be treated perturbatively
in a consistent way. This view would somehow disentangle the non-perturbative part
of the quantum gravitational sector into an effective classical, nonsingular geometry, plus
perturbative quantum corrections that propagate on top of the regular effective background.
The absence of curvature singularities would make the treatment of quantum fields on
the resulting geometry more reliable, and could help shed new light on the effects of the
matter-gravity interaction in the very-early universe.

In the literature there exist many interesting examples of (quantum and non-quantum)
cosmological models that avoid the big bang singularity by means of a bounce. Roughly,
those models can be classified in two large groups, depending on whether they contain a
modified gravitational sector or a modified matter sector (see [21] for details and a very
complete list of references). Generically, modified gravity theories imply the existence of
new dynamical degrees of freedom, such as gravitational scalar fields (like in scalar-tensor
theories), higher-derivatives of the metric, extra dimensions, . . . The consideration of exotic
matter sources may be justified, in some cases, from an effective field theory approach,
such as in the case of non-linear theories of electrodynamics, which naturally arise in
low-energy limits of string theories. In the remainder of this chapter, we are going to
study bouncing cosmological models from the modified gravity perspective provided by the
Palatini theories discussed above. This approach is particularly interesting because, despite
being a modified-gravity approach, the underlying mechanisms that modify the gravitational
dynamics are not associated with new dynamical degrees of freedom or higher-derivative
equations. In fact, it is the nontrivial role played by the matter in the determination of the
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space-time connection that induces nonlinearities in the matter sector that end up changing
the dynamics at very high matter-energy densities. In this sense, it should be noted that
the gravitational field equations in vacuum exactly recover those of GR (with possibly a
cosmological constant, depending on the particular Lagrangian chosen). For this reason, this
type of theories can be regarded as a minimal extension of the standard model of gravitational
physics, because they only appreciably depart from GR in regions that contain sources and
when those sources reach the energy-density scales that characterize the correcting terms of
the Lagrangian.

5.1. Homogeneous cosmologies in f (R, Q) theories

In this section we introduce the basic definitions and formulas needed to derive the

equations for the evolution of the expansion and shear [37] for an arbitrary Palatini f (R, Q)
theory of the kind presented in Section 3.2 . These magnitudes will be very useful to

extract information about the geometric properties of the space-time and to determine

whether cosmic singularities are present or not. We focus on homogeneous cosmologies

of the Bianchi I type (a different expansion factor for each spatial direction) because that

will allow us to test the rebustness of our results against deviations from the idealized

Friedmann-Robertson-Walker spacetimes (same expansion rate in all the spatial directions).

We will also particularize our results to the case of f (R) theories, i.e., no dependence on Q.

We consider a Bianchi I spacetime with physical line element of the form

ds2 = gµνdxµdxν = −dt2 +
3

∑
i=1

a2
i (t)(dxi)2 (52)

In terms of this line element, using the relation between metrics (37) and the expression (46)

for the matrix Σ̂ of a collection of perfect fluids, the nonzero components of the auxiliary

metric hµν become

htt = −

(

σ2
2√

σ1σ2

)

≡ −S (53)

hij =
√

σ1σ2a2
i δij ≡ Ωa2

i δij (54)

The relevant Christoffel symbols associated with hµν are the following:

Γt
tt =

Ṡ

2S
(55)

Γt
ij =

Ωa2
i

2S

[

Ω̇

Ω
+

2ȧi

ai

]

δij (56)

Γi
tj =

δi
j

2

[

Ω̇

Ω
+

2ȧi

ai

]

(57)
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The nonzero components of the corresponding Ricci tensor are

Rtt(h) = −∑
i

Ḣi − ∑
i

H2
i −

3

2

Ω̈

Ω
+

3

4

Ω̇

Ω

(

Ṡ

S
+

Ω̇

Ω

)

+
1

2

(

Ṡ

S
−

2Ω̇

Ω

)

∑
i

Hi (58)

Rij(h) =
δija

2
i

2

Ω

S

[

2Ḣi +
Ω̈

Ω
−

(

Ω̇

Ω

)2

+
Ω̇

Ω
∑
k

Hk +
1

2

Ω̇

Ω

(

3Ω̇

Ω
−

Ṡ

S

)

+

+ 2Hi

{

∑
k

Hk +
1

2

(

3Ω̇

Ω
−

Ṡ

S

)

}]

, (59)

where Hk ≡ ȧk/ak. For completeness, we give an expression for the corresponding scalar
curvature

R(h) =
1

S



2 ∑
k

Ḣk + ∑
k

H2
k +

(

∑
k

Hk

)2

+

(

3
Ω̇

Ω
−

{

Ṡ

S
−

Ω̇

Ω

})

∑
k

Hk + 3
Ω̈

Ω
−

3

2

Ω̇

Ω

Ṡ

S





(60)

From the above formulas, one can readily find the corresponding ones in the isotropic, flat
configuration by just replacing Hi → H. For the spatially nonflat case, the Rtt(h) component
is the same as in the flat case. The Rij(h) component, however, picks up a new piece, 2Kγij,

where γij represents the nonflat spatial metric of gij = a2
i γij. The Ricci scalar then becomes

R(h) → RK=0(h) + 6K
a2Ω

.

5.2. Shear

From the previous formulas and the field equation (38), we find that the combination Ri
i
−

Rj
j (no summation over indices) leads to

Ri
i
− Rj

j =
1

S

[

Ḣij + Hij

{

∑
k

Hk +
1

2

(

3Ω̇

Ω
−

Ṡ

S

)

}]

= 0 , (61)

where we have defined Hij ≡ Hi − Hj. Note that the final equality Ri
i
− Rj

j = 0, follows

from the fact that the right hand sides of Ri
i and Rj

j as given by (38) are equal. Expressing
(61) in the form

Ri
i
− Rj

j =
d

dt

[

ln Hij + ln(a1a2a3) + ln Ω3/2
− ln S1/2

]

= 0 , (62)

we see that it can be readily integrated regardless of the number and particular equations of
state of the fluids involved. The result is
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Hij = Cij
S

1
2

Ω
3
2

Cij

(a1a2a3)
=

Cij

σ1

V0

V(t)
, (63)

where the constants Cij = −Cji satisfy the relation C12 + C23 + C31 = 0, V0 represents a
reference volume, and V(t) = V0a1a2a3 represents the volume of the universe. It is worth
noting that writing explicitly the three equations (63) and combining them in pairs, one can
write the individual Hubble rates as follows

H1 = θ +
(C12 − C31)

3σ1

(

V0

V(t)

)

H2 = θ +
(C23 − C12)

3σ1

(

V0

V(t)

)

(64)

H3 = θ +
(C31 − C23)

3σ1

(

V0

V(t)

)

where θ is the expansion of a congruence of comoving observers and is defined as 3θ = ∑i Hi.

Using these relations, the shear σ2 = ∑i (Hi − θ)2 of the congruence takes the form

σ2 =
(C2

12 + C2
23 + C2

31)

9σ2
1

(

V0

V(t)

)2

, (65)

where we have used the relation (C12 + C23 + C31)
2 = 0.

5.3. Expansion

We now derive an equation for the evolution of the expansion with time and a relation
between expansion and shear. From previous results, one finds that

Gtt(h) ≡ −

1

2 ∑
k

H2
k +

1

2

(

∑
k

Hk

)2

+
Ω̇

Ω
∑
k

Hk +
3

4

(

Ω̇

Ω

)2

(66)

In terms of the expansion and shear, this equation becomes

Gtt ≡ 3

(

θ +
Ω̇

2Ω

)2

−

σ2

2
. (67)

From the field equation (38), we find that

Gtt =
f + κ2(ρ + 3P)

2σ1
, (68)
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which in combination with (67) yields

3

(

θ +
Ω̇

2Ω

)2

=
f + κ2(ρ + 3P)

2σ1
+

σ2

2
. (69)

For a set of non-interacting fluids with equations of state wi = Pi/ρi, we have that Ω =
Ω(ρi, wi) and, therefore, Ω̇ = ∑i Ωρi ρ̇i, where Ωρi ≡ ∂Ω/∂ρi. Since for those fluids the

conservation equation is ρ̇i = −3θ(1 + ωi)ρi, we find that Ω̇ = −3θ ∑i(1 + ωi)ρiΩρi . With
this result, (69) can be written as

3θ2

(

1 +
3

2
∆1

)2

=
f + κ2(ρ + 3P)

2σ1
+

σ2

2
, (70)

where we have defined

∆1 = −∑
i

(1 + wi)ρi
∂ρi Ω

Ω
. (71)

Note that in this last equation wi = wi(ρi), i.e., they need not be constants. For fluids with
constant wi, the conservation equation implies that their density depends on the volume

of the universe according to ρi(t) = ρi(t0)
(

V0

V(t)

)1+wi

. This implies that once a particular

Lagrangian is specified, the equations of state Pi = wiρi are given, and the anisotropy
constants Cij are chosen, the right-hand side of Eqs. (65) and (70) can be parametrized in
terms of V(t). This, in turn, allows us to parametrize the Hi functions of (64) in terms of
V(t) as well. This will be very useful later for our discussion of particular models.

In the isotropic case (σ2 = 0 , θ = ȧ/a ≡ H) with nonzero spatial curvature, (70) takes the
following form:

H
2 =

1

6σ1

[

f + κ2(ρ + 3P)− 6Kσ2

a2

]

[

1 + 3
2 ∆1

]2
(72)

The evolution equation for the expansion can be obtained by noting that the Rij equations,

which are of the form Rij ≡ (Ω/2S)gij [. . .] = ( f /2 + κ2P)gij/σ2, can be summed up to give

2(θ̇ + 3θ2) + θ

(

6Ω̇

Ω
−

Ṡ

S

)

+

{

Ω̈

Ω
+

1

2

Ω̇

Ω

(

Ω̇

Ω
−

Ṡ

S

)}

=

[

f + 2κ2P
]

σ1
. (73)

5.4. Limit to f (R)

We now consider the limit fQ → 0, namely, the case in which the Lagrangian only depends
on the Ricci scalar R. Doing this we will obtain the corresponding equations for shear and
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expansion in the f (R) case without the need for extra work. From the definitions of λ2 (see
below eq.(43)), and σ1 and σ2 in (47), it is easy to see that in the limit fQ → 0 we get

σ1 → σ2 → fR (74)

S → Ω → fR . (75)

With these rules it is easy to see that hµν = fRgµν, which makes (38) boil down to the expected

field equations for Palatini f (R) theories, namely, fRRµν(h)−
f
2 gµν = κ2Tµν. Equation (63)

turns into

Hij =
Cij

fR

V0

V(t)
, (76)

from which one can easily obtain expressions for H1, H2 and H3 as in (64). The shear becomes

σ2 =
(C2

12 + C2
23 + C2

31)

9 f 2
R

(

V0

V(t)

)2

, (77)

where C12 + C23 + C31 = 0. The relation between expansion and shear for a collection of
non-interacting perfect fluids now becomes

3θ2

(

1 +
3

2
∆̃1

)2

=
f + κ2(ρ + 3P)

2 fR
+

σ2

2
(78)

where ∆̃1 is given by (71) but with Ω replaced by fR. In the isotropic case with nonzero K
we find

H
2 =

1

6 fR

[

f + κ2(ρ + 3P)−
6K fR

a2

]

[

1 + 3
2 ∆̃1

]2
. (79)

5.5. Bouncing f (R) cosmologies

We now present the cosmological dynamics of simple f (R) models to illustrate how this
family of theories modifies the standard Big Bang picture of the early universe. Consider, for

instance, the model2 f (R) = R + aR2/RP, where RP = l−2
P = c3/h̄G is the Planck curvature.

From the trace equation R fR − 2 f = κ2T (see Sec.4.1), we find that this model leads to the
same relation between the matter and the scalar curvature as in GR, namely, R = −κ2T. This
implies that the theory behaves as GR whenever the energy density is much smaller than

the Planck density scale ρP ≡ RP/κ2. Since by definition θ = 1
3 ∑i

ȧi
ai

= 1
3

d
dt ln a1a2a3 = 1

3
V̇
V ,

where V = V0a1a2a3 represents the volume of the universe (with V0 = V(t0)), Eq. (78) for
this quadratic model with dust and radiation leads to

2 Note that the constant a could be absorbed into a redefinition of RP and, therefore, only its sign is relevant.
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θ2 =
1

9

(

V̇

V

)2

=

(

ρd + ρr +
aρd

2ρP

) (

1 +
2aρd

ρP

)

3
(

1 −
aρd

ρP

)2
+

(C2
12 + C2

23 + C2
31)

54
(

1 −
aρd

ρP

)2

(

V0

V(t)

)2

, (80)

where ρd = ρd,0

(

V0

V(t)

)

and ρr = ρr,0

(

V0

V(t)

)4/3
.

In general, an homogeneous cosmological model experiences a bounce when the expansion
θ vanishes, which implies an extremum (a maximum or a minimum) of the volume of the
Universe. If V(t) vanishes at some finite time, then a big bang or big crunch singularity
is found, depending on whether V̇ > 0 or V̇ < 0 at that time. Focusing for the moment
on the isotropic case, C2

12 + C2
23 + C2

31 = 0, we find that a bounce occurs if a < 0 when

ρd reaches the value ρB
d = ρP/(2|a|) [see Fig.1)] . This value of the density implies that

fR = 1 − 2aρd/ρP = 0. This condition, fR = 0, characterizes the location of the bounce
in Palatini f (R) theories with a single fluid with constant equation of state [5]. For our
quadratic model, in particular, bouncing solutions exist if the dynamics allows to reach the
density ρB =

ρP

2a(3w−1)
> 0. This means that for a > 0 fluids with w > 1/3 avoid the

initial singularity, whereas for a < 0 it takes w < 1/3. The case a = 0 naturally recovers
the equations of GR. It is worth noting that a cosmic bounce may arise even for presureless
matter, w = 0, if a < 0, which implies that exotic sources of matter-energy that violate the
energy conditions are not necessary to avoid the big bang singularity in this framework. The
reason for this is that at high energies gravitation may become repulsive for matter sources
with w > −1, whereas it is attractive at low energy-densities for those same sources. Note
also that the pure radiation universe, w = 1/3, is a peculiar case because it does not produce
any modified dynamics in Palatini f (R) theories. On physical grounds, however, it should
be noted that due to quantum effects related with the trace anomaly of the electromagnetic
field, a gas of photons in a SU(N) gauge theory with N f fermion flavors has an effective
equation of state given by

wrad
e f f =

1

3
−

5α2

18π2

(

Nc +
5
4 N f

) (

11
3 Nc −

2
3 N f

)

2 + 7
2

Nc N f

N2
c −1

, (81)

where Nc is the color number of the gauge theory (which has Nc(Nc − 1) generators) [13],
[17]. Therefore, a universe filled with photons should be able to avoid the singularity if a > 0.
In physically realistic scenarios, one should consider the co-existence of several fluids and
take into account the time dependence of the number of effective degrees of freedom and
the transfer of energy among different species [15], which leads to the possibility of having
different effective fluids at different stages of the cosmic expansion. In this sense, the "dust
plus radiation" model represented by (80) needs not be accurate at all times because dust
particles may become relativistic at high energies and contribute to ρr rather than to ρd. This
suggests that the choice/determination of the sign of the parameter a is not a trivial issue
and would require a very careful and elaborate analysis (which goes beyond the scope of this
introductory work).

When anisotropies are taken into account, one finds that bouncing solutions are still possible
as long as the amount of anisotropy is not too large. In Fig.2, we see that increasing the
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Figure 1. Representation of the Hubble function (left) and volume of the Universe (right) as a function of time for the model

f (R) = R − R2/2RP in a universe filled with dust and radiation (for the numerical integration ρd,0 = 103ρr,0, and V = 105V0).

The GR solutions corresponding to a contracting branch, which ends in a big crunch, and an expanding branch, which begins

with a big bang, are represented together with the bouncing solution of the Palatini model that interpolates between those

singular solutions.
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Figure 2. Representation of the expansion (left) and volume of the Universe (right) as a function of time for the model

f (R) = R − R2/2RP in a universe filled with dust and radiation with anisotropies (for the numerical integration ρd,0 = 103ρr,0,

and V = 105V0). From right to left, we have plotted the bouncing cases C2 = 0, 40, 40.60211073, 40.60211073942454489657,
and the collapsing case with C2 = 40.60211073942454489658. Fine tunning the value of C2 even more should allow to keep

the universe in its minimum for longer periods of time in the past, which eventually should lead to an asymptotically static

solution.

value of C2
≡ C2

12 + C2
23 + C2

31 from zero, the volume of the universe presents a minimum as

long as C2
< C2

c . If C2
> C2

c , the collapse is unavoidable and V → 0 in a finite time. The
critical case C2

→ C2
c represents a configuration that is neither a bouncing universe nor a

big bang. It corresponds to a state in which the volume of the universe remains constant in
the past and expands in the future. Though this solution is clearly unstable and fine-tuned,
its existence puts forward the possibility of obtaining static regular solutions corresponding
to ultracompact objects, which could shed new light on the internal structure of black holes
and/or topological deffects when Planck scale corrections to the gravitational action are taken
into account. It should be noted, however, that in order to obtain this asymptotically static
solution one must cross from the domain where fR > 0 to the region where fR < 0. Since
the shear, as defined in (77) for f (R) theories with perfect fluids, is proportional to 1/ f 2

R,
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the crossing through fR = 0 implies a divergence in some curvature scalars of the theory.
Whether this divergence is a true (or strong) physical singularity in the sense defined in [36],
[8], [16] is an open question that will be explored elsewhere. In any case, we remark that the
existence of that divergence does not have any effect on the time evolution of the expansion
θ, as can be seen in Fig.2.

5.6. Nonsingular universes in f (R, Q) Palatini theories

In the previous section we have seen that Palatini f (R) models are able to avoid the big

bang singularity in idealized homogeneous and isotropic scenarios but run into trouble

when anisotropies are present. The divergence of the shear is a generic problem for those

f (R) theories in which the function fR vanishes at some point, regardless of the number

and equation of state of the fluids involved. Though the nature of this divergence has

not been identified yet with that of a strong singularity, which besides the divergence of

some components of the Riemann, Ricci, and Weyl tensors also requires the divergence

of some of their integrals, its very presence is a disturbing aspect that one would like to

overcome within the framework of Palatini theories. In this sense, a natural step is to study

the behavior in anisotropic scenarios of some simple generalization of the f (R) family to

see if the situation improves. Using Lagrangians of the form presented in (4.1), we will

show next that completely regular bouncing solutions exist for both isotropic and anisotropic

homogeneous cosmologies.

5.6.1. Isotropic universe

Consider Eq.(72) particularized to the following f (R, Q) Lagrangian

f (R, Q) = R + a
R2

RP
+ b

Q

RP
(82)

For this theory, we find that R = κ2(ρ − 3P) and Q = Q(ρ, P) is given by (51) with α ≡ b/RP.

From now on we assume that the parameter b of the Lagrangian is positive and has been

absorbed into a redefinition of RP, which is assumed positive. This restriction is necessary

(though not sufficient) if one wants the scalar Q to be bounded from above when fluids with

w > −1 are considered. Stated differently, when b/RP > 0, positivity of the square root of

Eq.(51) establishes that there may exist a maximum for the combination ρ + P.

In order to have (72) well defined, one must make sure that the choice of sign in front of the

square root of σ1 in (47) is the correct one. In this sense, we find that to recover the f (R)
limit and GR at low curvatures, we must take the positive sign, i.e., σ1 = σ+

1 . However,

when considering particular models, which are characterized by the constant a and, for

instance, a constant equation of state w, one realizes that the square root may reach a zero at

some high density. Beyond that point, we may need to switch from σ+
1 to σ−

1 to guarantee

that σ1 is a continuous and differentiable function (see Fig.3 for an illustration of this point).

Bearing in mind this technical subtlety, one can then proceed to represent the Hubble function

for different choices of parameters and fluid combinations to determine whether bouncing

solutions exist or not.
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branch that starts at σ1 = 1 has the plus sign in front of the square root (continuous green line). When the square root vanishes
(at the blue dot), the function must be continued through the dashed red branch, which corresponds to the negative sign in

front of the square root.

The classification of the bouncing solutions of the model (82) with a fluid with constant w

was carried out in [5]. It was found that for every value of the parameter a there exist an
infinite number of bouncing solutions, which depend on the particular equation of state w.
The bouncing solutions can be divided into two large classes:

• Class I: a ≥ 0. The bounce occurs when the scalar Q reaches its maximum value and
happens for all equations of state satisfying the condition

w > wmin =
a

2 + 3a
. (83)

From this equation it follows that a radiation dominated universe, with w = 1/3, always
bounces for any a > 0.

• Class II: a ≤ 0. This case is more involved because the bounce can occur either at the
point where Q reaches its maximum or when σ1 vanishes. This last case can only happen
at high curvatures when we are in the branch defined by σ1 = σ

−
1 . To proceed with the

classification, we divide this sector into several intervals:

• If −1/4 < a ≤ 0. The bounce occurs if

−
1

3
+

1

3

√

1 + 4a

1 + a
< w < ∞ (84)

We see that when a = 0 we find agreement with the discussion of case I. As a

approaches the limiting value −1/4, the bouncing solutions extend up to w → −1/3.

• If −1/3 ≤ a ≤ −1/4. Numerically one finds that the bouncing solutions cannot be
extended below w < −1 and occur if −1 < w < ∞, where w = −1 is excluded.
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• If −1 ≤ a ≤ −1/3. In this case, one finds numerically that the bouncing solutions are

restricted to the interval −1 < w <
α+βa

(1+3a)2 > 1, where α = 1.1335 and β = −3.3608.

• If a ≤ −1. Similarly as the family a ≥ 0, this set of models also allows for a simple
characterization of the bouncing solutions, which correspond to the interval −1 < w <

a/(2 + 3a). In the limiting case a = −1 we obtain the condition −1 < w < 1 (compare
this with the numerical fit above, which gives −1 < w < 1.12).

5.7. Anisotropic universe

Using Eqs. (70) and (72), the expansion can be written as follows:

θ2 = H2 +
1

6

σ2

(1 + 3
2 ∆1)2

, (85)

where H represents the Hubble function in the K = 0 isotropic case. To better understand

the behavior of θ2, let us consider when and why H2 vanishes. Using the results of [5]

summarized above, one finds that H2 vanishes either when the density reaches the value

ρQmax
or when the function σ1 vanishes. These two conditions imply a divergence in the

quantity (1 + 3
2 ∆1)

2, which appears in the denominator of H2 and, therefore, force the

vanishing of H2 (isotropic bounce). Technically, these two types of divergences can be easily

characterized. From the definition of ∆1 in (71), one can see that ∆1 ∼ ∂ρΩ/Ω. Since

Ω ≡
√

σ1σ2, it is clear that ∆1 diverges when σ1 = 0. The divergence due to reaching

ρQmax
is a bit more elaborate. One must note that ∂ρΩ contain terms that are finite plus a

term of the form ∂ρλ, with λ defined below Eq. (43). In this λ there is a Q term hidden

in the function f (R, Q), which implies that ∂ρλ ∼ ∂ρQ/RP plus other finite terms. From

the definition of Q it follows that ∂ρQ has finite contributions plus the term ∂ρΦ/
√

Φ,

where Φ ≡ (1 + (1 + 2a)R/RP)
2 − 4κ2(ρ + P)/RP, which diverges when Φ vanishes. This

divergence of ∂ρQ indicates that Q cannot be extended beyond the maximum value Qmax.

Now, since the shear goes like σ2 ∼ 1/(σ1)
2 [see Eq.(65)], we see that the condition σ1 = 0

implies a divergence on σ2 (though θ2 remains finite). This is exactly the same type of

divergence that we already found in the f (R) models, where σ1 → fR. Since in the f (R)
models the bounce can only occur when fR = 0, there is no way to avoid the divergence of

the shear in the anisotropic case within the f (R) setting. On the contrary, since the quadratic

f (R, Q) model (82) allows for a second mechanism for the bounce, which takes place at ρQmax
,

there is a natural way out of the problem with the shear. Summarizing, we conclude that

for universes governed by the Lagrangian (82) and containing a single stiff fluid there exist

completely regular bouncing solutions in the anisotropic case for w >
a

2+3a if a ≥ 0, for

w0 < w < ∞ if −1/3 ≤ a ≤ 0, for w0 < w < (α + βa)/(1 + 3a)2 if −1 ≤ a ≤ −1/3, and

for −1/3 < w < a/(2 + 3a) if a ≤ −1, where w0 < 0 is defined as the equation of state for

which the (isotropic) bounce occurs when Q = Qmax and σ1 = 0 simultaneously (see [5] for

details). These results imply that for a < 0 the interval 0 ≤ w ≤ 1/3 is always included in

the family of completely regular isotropic and anisotropic bouncing solutions, which contain

the dust and radiation cases. For a ≥ 0, the radiation case is always nonsingular too.
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Figure 4. Representation of the expansion squared (left) and volume of the Universe (right) as a function of time for the

model f (R, Q) = R − l2
P R2/2 + l2

PQ in a radiation universe with anisotropies. We have plotted the bouncing cases C2 =
0, 50, 102, 103. Note that the bounce always occurs at the same maximum density (minimum volume). Note also that the time

spent in the bouncing region decreases as the anisotropy grows. The starting point of the time integration is chosen such that

at t = 0 the two branches of σ1 coincide.

5.8. Example: Radiation universe

As an illustrative example, we consider here the particular case of a universe filled with
radiation. Besides its obvious physical interest, this case leads to a number of algebraic
simplifications that make more transparent the form of some basic definitions

Q =
3R2

P

8



1 − 8κ2ρ

3RP
−

√

1 − 16κ2ρ

3RP



 (86)

σ
±
1 =

1

2
± 1

2
√

2

√

√

√

√

5 − 3

√

1 − 16κ2ρ

3RP
− 24κ2ρ

RP
(87)

σ2 =
1

2
+

1

2
√

2

√

√

√

√

5 − 3

√

1 − 16κ2ρ

3RP
− 8κ2ρ

3RP
(88)

Note that the coincidence of the two branches of σ1 occurs at κ2ρ = RP/6, where σ
±
1 =

1
2 . It is easy to see that at low densities (86) leads to Q ≈ 4(κ2ρ)2/3 + 32(κ2ρ)3/9RP +

320(κ2ρ)4/27R2
P + . . ., which recovers the expected result for GR, namely, Q = 3P2 + ρ2.

From this formula we also see that the maximum value of Q occurs at κ2ρmax = 3RP/16
and leads to Qmax = 3R2

P/16. At this point the shear also takes its maximum allowed value,

namely, σ2
max =

√
3/16R3/2

P (C2
12 + C2

23 + C2
31), which is always finite. At ρmax the expansion

vanishes producing a cosmic bounce regardless of the amount of anisotropy [see Fig.4].

6. Conclusions and open questions

In this chapter we have tried to convey the idea that in the construction of extended
theories of gravity, one should bear in mind the fact that metric and connection are equally
fundamental and independent objects. This observation allows to broaden the spectrum of
available possibilities to go beyond the standard model of gravitation. In fact, any theory of

Open Questions in Cosmology180



C2
=103

C2
=102

C2
=0

0.05 0.10 0.15 0.20 0.25
1

V

0.02

0.04

0.06

0.08

0.10

0.12

Θ
2

Dust+Radiation -Vs- Pure Radiation

Figure 5. Comparison of the expansion in a universe filled with dust and radiation (ρ0,rad = 10−3ρ0,dust) and a radiation

dominated universe (dashed lines) for several values of the anisotropy.

gravity based on a geometry in which the connection has been forced to be given by the
Christoffel symbols of the metric admits an alternative formulation in which the form of the
connection is dictated by the theory itself, i.e., it is not given by convention or selected on
practical grounds.

In our exploration of Palatini theories, we have seen that assuming that metric and connection
are independent geometrical objects has non-trivial effects on the resulting field equations as
compared with the usual metric formulation of the same theories. For the particular family
of f (R, Q) models studied here, we have seen that the metric is governed by second-order
equations that boil down to GR in vacuum. This is in sharp contrast with the usual metric
formulation of those same theories, where one finds fourth-order derivatives of the metric
(see, for instance, [2] for a detailed analysis of the cosmology of the quadratic model (82) in
metric formalism). The absence of higher-order derivatives in the Palatini formulation is a
remarkable point that seems not to have been sufficiently appreciated in the literature. In
fact, having second-order field equations is very important because it automatically implies
the absence of ghosts and other dynamical instabilities. In this sense, it should be noted
that Lovelock3 theories [40], which are generally regarded as the natural extension of the
Einstein-Hilbert Lagrangian to higher dimensions, have received a lot of attention in the
literature because they are seen as the most general actions for gravity that give at most
second-order field equations for the metric. As we have seen here, this property is shared (at
least) by all Palatini theories of the f (R, Q) type (with or without torsion). This puts forward
that Palatini theories, are natural candidates to explore new dynamics beyond GR.

Before concluding, we would like to stress the fact that the quadratic Palatini model (82) is
able to avoid the big bang singularity in very natural situations, such as in pure radiation,
pure dust, or dust plus radiation universes with or without anisotropies (see Fig.5). This
observation has been possible thanks to the formulas presented in section 5, where we have

3 We would like to mention that when Lovelock theories are formulated à la Palatini, the resulting field equations are
exactly the same as one finds in their usual metric formulation [7].
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extended the analysis carried out in [5] for a single perfect fluid with constant equation of
state to include several perfect fluids with arbitrary equation of state w(ρ). This allows
to explore the dynamics of realistic cosmological models with several fluids and is a
necessary step prior to the consideration of the growth and evolution of inhomogeneities
in these nonsingular backgrounds. Though the model (82) has been proposed on grounds
of mathematical simplicity and motivated by the form of the effective action provided by
perturbative quantization schemes in curved backgrounds, its ability to successfully deal
with cosmological [5] and black hole singularities [27] as well as other aspects of quantum
gravity phenomenology [26] demands further theoretical work to provide a more solid
ground to it. In this sense, we note that the effective dynamics of loop quantum cosmology
[4] in a Friedmann-Robertson-Walker background filled with a massless scalar can be exactly
reproduced by a Palatini f (R) theory [22]. The extension of that result to more general
spacetimes and matter sources could shed new light on the potential relation of (82) with a
more fundamental theory of quantum gravity. All these open questions will be considered
in detail elsewhere.
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