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1. Introduction

Rheumatoid arthritis (RA) is a complex, debilitating, chronic, systemic autoimmune disease
characterised by immunological, inflammatory and mesenchymal tissue reactions in the
synovium that are accompanied by polyarticular synovitis and ultimately lead to the progres‐
sive destruction of articular and periarticular structures [1,2]. A critical factor that contributes
to joint damage is the excessive production of inflammatory mediators by resident and/or
infiltrating inflammatory cells. Among the main mediators involved in the join damage
process are free radicals, extracellular matrix–degrading enzymes, pro-inflammatory cyto‐
kines, including interleukin(IL)-6, IL-1 and tumour necrosis factor (TNF)-α, as well as chemo‐
kines, such as CXCL1, and lipid mediators, such as leukotriene (LT)B4 [3,4,5].

Endothelins  (ETs)  are  a  family  of  naturally  occurring peptides  [6]  with  well-established
growth-promoting,  vasoactive,  and  nociceptive  properties  that  affect  the  function  of  a
number of tissues and systems [7].  ETs have pathophysiological  roles in pulmonary hy‐
pertension,  arterial  hypertension,  atherosclerosis,  cerebral  vasospasm  and  inflammatory
processes [8,9,10,11].

Recently, new evidence has demonstrated that endogenous endothelins (ETs) also play a role
in articular inflammation by regulating inflammatory pain, edema formation, leukocyte influx
and the production of inflammatory mediators. The present chapter attempts to provide an
overview of the evidence accumulated to date, which suggests that ETs play a pivotal role in ar‐
ticular inflammation, and the blockade of these endogenous peptides can represent a promis‐
ing therapeutic tool for the treatment of RA and other articular inflammatory diseases. To
address this issue in a comprehensive manner, however, it is important to briefly provide some
fundamental aspects of endothelin biosynthesis and release as well as information about the re‐
ceptors that they interact with and the modes of action of these peptides.
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2. The endothelin system

The endothelin system comprises a family of three highly conserved vasoactive peptides,
which bind to two endothelin receptors (endothelin receptor types A [ETA] and B [ETB]), with
differing affinities that are determined by the N-terminal domain of the peptide. ET-1 has a
higher affinity than ET-2, which, in turn, has a higher affinity than ET-3. In humans, the affinity
of ET-1 for the ETA receptor is 1,000-fold higher than that of ET-3 [12] (Fig 1).

ET -1, the most prominent representative of the ET family, was first identified as a potent
vasoconstrictor secreted by vascular endothelial cells [13]. Since the initial description of ET-1
[14], it has become evident that in addition to modulating vascular tone, ET peptides are also
involved in numerous other pathophysiological processes and are produced not only by
endothelial cells but by a wide variety of cells in virtually all organs [7] (Table 1).

Tissue Cell type Reference

Lung Alveolar epithelium [15-17]

Liver Hepatocytes [18]

Kupffer cells

Skin fibroblast [19, 20]

Synovia synoviocytes [21, 22]

Heart myocytes [23]

Table 1. Localization of ET system in different cells

Numerous lines of evidence indicate that ET-1 acts locally via both autocrine and paracrine
mechanisms in physiological and pathological situations. Contribution of the ET system to
disease progression can occur due to either an increase in tissue ET-1 production or an increase
in the tissue expression of its receptors. ET-1 is upregulated by angiotensin II, vasopressin,
thrombin, lipopolysaccharide, insulin, TGF-β, epithelial growth factor, and EGF-2 and is
downregulated by nitric oxide, prostaglandin, and natriuretic hormone [24, 25].

The release of endothelins is regulated both at the gene expression level and at the peptide
synthesis level. Preproendothelins are synthesized via the transcriptional activation of the
preproendothelin gene, which is regulated by c-fos and c-jun, nuclear factor-1, AP-1 and
GATA-2 [26, 27]. The translational product is a 203-amino acid peptide known as preproen‐
dothelin, which is cleaved at dibasic sites by furin-like endopeptidases to form big endothelins.
These biologically inactive 37- to 41-amino acid intermediates [25] are cleaved at Trp21–Val 22
by a family of endothelin-converting enzymes (ECE) to produce mature ET-1 [28, 29] (Fig 1).
Three isoforms of ECE have been reported [30]: ECE-1, ECE-2 and ECE-3. Four variants of
ECE-1 have been reported in humans [31], ECE-1a ECE-1b, ECE-1c and ECE-1d, which are the
result of alternative splicing of ECE-1 mRNA. Interestingly, chymase, the mast cell-derived
serine protease, also hydrolyses big ET-1 [1–38] into the intermediate peptide ET-1 [1–31]
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which is then readily transformed to ET-1 by neutral endopeptidase 24-11 (NEP) in tissue
homogenates [32]. Recently, the chymase-dependent production of ET-1 was proposed to play
an important role in cardiovascular and pulmonary pathologies [7, 33].

The ETA and ETB receptors belong to the superfamily of G-protein–coupled receptors with
seven transmembrane domains and are differentially expressed according to cell type [34, 35].
The ETA receptor is found predominantly in smooth muscle cells and cardiac muscles [36].
Both receptors, however, have a fairly widespread distribution across many cell types (Table 2)

Figure 1. Endothelin structure, receptors and production

3. Endothelin signaling

The detailed mechanism by which ET induces intracellular responses remains unclear. ET
receptor activation leads to diverse cellular responses through interaction with a chain of
pathways that includes the G-protein-activated cell surface receptor, the coupling of G-
proteins and the phospholipase (PLC) pathway as well as other G protein-activated effectors.
In one of the canonical signalling pathways, ETA induced activation of phospholipase C leads
to the formation of inositol triphosphate and diacylglycerol from phosphatidylinositol. Inositol
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1,4,5-triphosphate (IP3] then diffuses to specific receptors on the endoplasmic reticulum and
releases stored Ca2+ into the cytosol. This causes a rapid elevation in intracellular Ca2+, which,
in turn, causes cellular contraction, followed by vasoconstriction [37-39].

Additionally, ET-1 is known to stimulate arachidonic acid production and prostaglandin
release in rabbit iris [40], porcine coronary artery [41] and mouse paw [42]. This occurs as a
result of the activation of phospholipase A2 and increased intracellular Ca2+ [43].

In addition to phospholipase activation and prostaglandin production, endothelin-1 also
stimulates protein tyrosine kinases (PTK), such as FAK and RAS, in neoplastic cells [44]. The
activation of PTKs results in the induction of the RAF/MEK/MAPK pathway, which subse‐
quently stimulates the transcription of proto-oncogenes, such as c-FOS, c-MYC, c-JUN, and,
in turn, activates cell growth and metastasis.

Nitric oxide (NO) is a versatile molecule with a multitude of functions, including the regulation
of vascular tone, neuronal signalling and host defence [45]. In a classic ET-1 signalling pathway,
ET-1 stimulates NO production in endothelial cells by activating endothelial cell NO synthase
(eNOS) [46, 47] via PI3-K/Akt activation, which in turn, stimulates the phosphorylation of
eNOS and subsequent NO production [47]. Interestingly, NO appears to antagonize ET-1
synthesis by inhibiting preproET-1 transcription [48].

4. Evidence for the involvement of ET-1 in rheumatoid arthritis

ET-1 has been demonstrated to participate in the pathogenesis of a number of diseases, such
as sepsis, bronchial asthma and pulmonary hypertension [49]. In addition to their well-
recognised vasoconstrictive properties, ETs play an important role in inflammatory reactions
modulating hyperalgesia, edema formation [50-52] and cell migration [53, 54]. Considering
their pro-inflammatory properties and the presence of ETs in the plasma and synovial fluid
from RA patients, the participation of ETs in RA is strongly indicated. These findings will be
described in the following sections.

5. Presence of endothelins in plasma and synovial fluid from human RA
patients

High levels of ET-1 are detected in the synovial fluid of RA, osteoarthritis (OA), and gout pa‐
tients. Plasma levels of ET-1 in patients with active RA exceed the values in patients with non‐
active RA. Moreover, ET-1 is secreted from macrophage-like synoviocytes, and the levels of
ET-1-like immunoreactivity in synovial fluid are several times higher than those in plasma [21,
22, 55, 56]. In addition, specific 125I-labeled-ET-1-binding sites that are characteristic of the
ETA receptor were localised to the media of the synovial blood vessels in sections of rheuma‐
toid, osteoarthritic, and normal synovium, suggesting that endothelin may act locally to modu‐
late synovial perfusion and exacerbate hypoxia in chronic arthritis.[Table 2].
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Disease Source Number of

patients

References

Gout Serum 81 [58]

Rheumatoid Arthritis Serum 20, 397, 23 [55, 59]

Plasma 12 [60, 61]

Synovial Fluid 20 [55-57]

Hypertrophic osteoarthropathy Plasma 20 [62]

Table 2. Presence of ET-1 Serum, Pasma or Synovial Fluid from Patients

6. Evidences from in vitro studies

Exogenous ET-1 presents a remarkable variety of inflammatory properties,  including the
activation of resident and inflammatory cells and the stimulation of cytokine production
[11, 63, 64], (table 3).

Accordingly, increased expression of the preproET-1 gene and significant amounts of endo‐
thelin-1 are produced by resident cells of the synovia, including endothelial cells of the synovial
blood vessels [57], fibroblasts [65], articular chondrocytes [66-70], macrophage-like synovio‐
cyte and fibroblast-like synoviocytes [21, 22].

ET-1 modulates the expression of adhesion molecules on endothelial cells and on fibroblast-
like synovial cells [65], stimulates the production of fibronectin and collagen in synoviocytes
[65, 71], ), stimulates cytokine production on monocytes and macrophages [53, 72, 73], and
regulates neutrophil adhesion and migration [9, 53, 74].

Cell Type Effect

Endothelial cells Production of reactive oxygen species, TNF-α,

IL-1, IL-6, NO, PGE2

Expression of ICAM-1, VCAM-1, E-Selectin

Fibroblasts Production of reactive oxygen species,

proliferation, resistance to apoptosis

Macrophages Production of TNF-α, IL-1, IL-6, IL-8, GMCSF,

reactive oxygen species,

Chemotaxis

Mast Cells Degranulation, release of histamine, production

of LTC4

Neutrophils Agregation, chemotaxis, release of PAF, elastase

Table 3. Effect of exogenous ET-1 on different cells types

In addition to its pro-inflammatory effects, ET-1 is mitogenic to articular chondrocytes [75]
and activates these cells. ET-1 binds to the specific endothelin A or endothelin B receptors
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expressed on chondrocytes [76, 77] and triggers a cascade of intracellular events, including
phospholipase C activation [75] and the phosphorylation of p38, Akt, p44/42, and SAP/JNK,
in a sequential manner [78] thereby inducing an increase in intracellular calcium [75, 79] and
prostaglandin production [66]. ET-1 causes the overproduction of nitric oxide (NO) and
metalloproteinase (MMP)-1 and -13 in human osteoarthritic chondrocytes [80]. The production
of these enzymes seems to occur through the activation of at least two kinases, p38 MAP kinase
and PKA [78]. NO seems to be a key molecule that is produced in parallel with the ET-1-
induced overproduction of MMPs

Additionally, ET-1 also increases collagenase activity and decreases protein levels of tissue
inhibitor of metalloproteinases 1 (TIMP-1), leading to type II collagen breakdown [81]. The
endothelin-1 receptors expressed in articular chondrocytes can be up-regulated by the growth
factors PDGF, EGF, IGF-1 and TGFα, which are increased in the synovial fluid of RA patients
[68, 77].

It is interesting to note the age-related differences in the production of ET-1 and the expression
of receptors from chondrocytes. In vitro studies have shown that chondrocytes obtained from
older donors produce more ET-1 and express more ET-1-specific receptors (as shown by
binding assays) both under basal conditions and after challenge with IL-1β or TNF-α, possibly
implicating ET-1 in age-related osteoarthritis [69].

Thus, blocking the effects of ET-1 may become a useful therapeutic approach aimed at stopping
cartilage destruction in rheumatic conditions such as rheumatoid arthritis and OA

7. Evidence from in vivo studies

Active rheumatoid arthritis is characterised by a strong inflammatory reaction and hyperplasia
of synovial tissue that is an unremitting and profoundly debilitating consequence of the disease
and can lead to substantial loss of function and mobility. [82, 83]. In this regard, ETs are well
documented as participating in a wide variety of inflammatory and/or pain-related processes
(for summary see table 4).

Animal Model Effect References

Paw oedema Edema

Nociception

Hyperalgesia

[52, 84, 85]

[86-90]

[42, 91, 92]

Mouse cheek model Nociception [55, 59, 93]

Pleurisy Cell migration/

Cytokine production

[53, 73, 85, 94]

knee-joint inflammation Hyperalgesia/edema [95-100]

surgical osteoarthritis nociception [95]

Table 4. Endothelins in Vascular Permeability and Pain.
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8. Effects of exogenous endothelins in vascular permeability and pain

ET-related peptides induce profound effects on the microvasculature in vivo, acting as
powerful constrictors of arterioles and venules [101-103] and decreasing blood flow in rabbit
and human skin [103, 104]. Exogenous ETs exhibit dual effects on vascular permeability that
at first glance could be considered to be paradoxical.

Early reports demonstrated a marked inhibitory effect of ET-1 (when administered locally or
intradermally) on vascular permeability. ET-1 inhibited plasma extravasation that was
induced in rat or rabbit dorsal skin by several stimuli [105, 106]. ET-1 (0.5 pmol/site) also
inhibited paw edema and pleural exudation induced by PAF in mice [107]. Notably, the studies
that describe the anti-edematogenic effect of ETs have used the local or intradermic adminis‐
tration of low concentrations of ET-1 (between 0.01 pmol to 0.05 pmol). The mechanisms
involved in this effect are not clear and may be a consequence of local vasoconstriction or may
be explained by the differential effects of ETs on the smooth muscle of arterial and venous
vasculature [108]. Nevertheless, the anti-edematogenic effect of exogenous ETs appears to be
dependent both on concentration and on the vascular beds.

There  are  compelling  data  describing  the  edematogenic  properties  of  exogenous  ET-1.
The  vasoconstriction  effect  of  ET-1  may actually  be  masking  an  edematogenic  effect  of
the peptide because it was also found that ET-1 causes a flare reaction and oedema sur‐
rounding the ischaemic area in the human forearm [109, 110].  Accordingly, endothelin-1
(up  to  10  pmol)  is  able  to  induce  ETA  receptor  mediated  oedema  in  the  mouse  hind
paw [85,  87].  ET-1 markedly enhances extravasation of plasma proteins from the micro‐
vasculature in distal organs when administered intravenously [51, 111-113]. This effect is
mediated indirectly via the release of PAF and TXA2 in response to ETA receptor activa‐
tion [112, 114-116]. Endothelin-1 enhances neutrophil adhesion to human coronary artery
endothelial cells via ETA receptors [54]. ET-1(1–30 pmol/cavity) or sarafotoxin S6c [0.1–30
pmol/cavity)  also  triggered  edema  formation  and  neutrophil  accumulation  within  6  h
when injected in the synovial cavity [117].

The nociceptive properties of exogenous ET-1 are also well described. Human subjects report
a deep burning pain and tenderness following ET-1 injection into the forearm [50, 109]. Recent
results confirm that exogenous ET-1 is capable of evoking acute pain in humans. Spontaneous
pain was found to develop rapidly after intradermal injection of ET-1 into the volar aspect of
the forearm of healthy males at high concentrations (10−7 and 10−6 M). It decreasing gradually,
ending 30 and 60 min after ET-1 administration, respectively [118].

Endothelin-1 triggers ETA receptor-mediated nociception, hyperalgesia and oedema in the
mouse hind paw [87]. In mice, ET-1 also causes ETA receptor-mediated enhancement of
capsaicin-induced nociception [86], potentiates formalin-induced nociception and paw edema
[86, 119] and prostate cancer-induced pain [120].

Endothelin-1 also causes articular nociception as well as hyperalgesia to prostaglandin E2 in
dogs [50] and carrageenan in rats [98] when injected into a naive knee-joint. Nociception
induced by endothelin-1 in the naive articulation of the rat is mediated largely via ETA
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receptors [42, 99], whereas both ETA and ETB receptors underlie its action in the joint primed
(pre-inflamed) with carrageenan. Interestingly, ET-1 peptide-induced hypernociception was
not altered by the inhibition of neutrophil migration or ET(B) receptor antagonism but rather
by ET(A) receptor antagonism. Furthermore, LPS-induced nociception in the carrageenan-
primed joint of the rat is largely mediated by endothelin release and the activation of ETB
receptors within the joint itself [98]. The pro-nociceptive role of ETB receptors was confirmed
by the fact that when its highly selective agonist, sarafotoxin S6c [34], was injected 72 h after
priming with carrageenan, pain was increased, indicating incapacitation. Surprisingly,
sarafotoxin produced an anti-nociceptive effect when it was given 24 h before either the initial
injection of carrageenan into the naive joint or restimulation of the primed joint with carra‐
geenan, ET-1, or S6c [96]. ETB activation exerts an apparent prophylactic action, inhibiting the
development of inflammatory (carrageenan-induced) pain. In addition, ETB receptor-
operated mechanisms limit the priming effect of carrageenan to nociception evoked by
subsequent inflammatory insult. These findings dramatically illustrate the dual pro- and anti-
nociceptive roles of the ETB receptors under the same inflammatory conditions. These roles
are dependent upon the order in which these stimulus occur.

9. Effects of endogenous endothelins in inflammatory process

Consistent with the observed pro-inflammatory effects of endothelins, the studies with ETA
and ETB receptor antagonists have confirmed the role of endothelins in a wide range of
inflammatory reactions.

ETA receptor antagonists inhibit allergic paw oedema in mice and plasma extravasation
during endotoxin shock in rats [121]. The ETA receptor antagonist BQ-123 inhibits eosinophil
migration and lymphocyte accumulation in allergic pleurisy. BQ-123 also inhibited interleu‐
kin-5 levels in the exudate and plasma, as well as intracellular staining of interleukin-4,
interleukin-5, and interferon-gamma in CD4+ lymphocytes [73]. Endogenous endothelins also
participate in delayed eosinophil and neutrophil recruitment in murine pleurisy. Mononuclear
and eosinophil accumulation triggered by OVA were reduced by BQ-123 (150 pmol/cavity) or
bosentan (by 68 and 43% inhibition of eosinophilia) but were unaffected BQ-788, the ETB
receptor antagonist. BQ-123 and bosentan also inhibited LPS-induced increases in neutrophils
(by 67 and 40%) and eosinophils (by 63 and 74%) at 24 h [53, 94] and abrogated the increase in
tumour necrosis factor alpha, interleukin-6 and keratinocyte-derived chemokine/CXC
chemokine ligand 1 4 h after LPS stimulation [74].

Endogenous endothelins contribute to ovalbumin elicited nociceptive responses in the hind
paw of sensitised mice, which are mediated locally by IL-15-triggered ETA and ETB receptor
mechanisms [42, 88, 122]. Interestingly, ET-1 peptide-induced hypernociception was not
altered by the inhibition of neutrophil migration or ET(B) receptor antagonism but rather by
ET(A) receptor antagonism. Furthermore, ET(A), but not ET(B), receptor antagonism inhibited
antigen-induced PGE[2] production, whereas either the selective or combined blockade of
ET(A) and/or ET(B) receptors reduced antigen challenge-induced hypernociception and
neutrophil recruitment [122].
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10. Protective effect of the dual ET receptor antagonist on RA in animal
models

As indicated above, exogenous ET-1 exhibits well established inflammatory properties and
elicits acute nociception. There is also compelling evidence that endogenous endothelins play
a role in different aspects of the inflammatory reaction and hyperalgesia. However, the
implication of endothelins in the inflammatory process during experimental rheumatoid
arthritis was only recently addressed. Most of these studies used the selective ETA receptor
antagonist BQ123, the selective ETB receptor antagonist BQ788, or the dual ET receptor
antagonist bosentan, which is the prototype sentan-class drug and was first approved by the
US Food and Drug Administration (FDA) for human use in pulmonary arterial hypertension
[123, 124].

In the murine model of zymosan-induced arthritis, the intra-articular administration of
selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively) markedly
reduced knee joint edema formation and neutrophil influx into the synovial cavity 6 and 24 h
after stimulation. Moreover, increased expression of pre-pro-ET-1 mRNA and the ETA and
ETB receptors in knee joint synovial tissue was observed in parallel with the inflammatory
process [117]. Likewise, the dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also
reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment
with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF production
within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene
B4 at both time points. These findings suggest that endogenous ETs contribute to knee joint
inflammation, acting through ETA and ETB receptors to modulate edema formation, neutro‐
phil recruitment, and the production of inflammatory mediators [117].

Daily oral administration of bosentan significantly attenuated knee joint swelling and inflam‐
mation to an extent that was comparable to dexamethasone in antigen-induced arthritis (AIA).
In addition, bosentan reduced inflammatory mechanical hyperalgesia. Chronic bosentan
administration also inhibited joint swelling and protected against inflammation and joint
destruction during AIA flare-up reactions. Unlike in the zymosan-induced arthritis model, the
use of the ETA-selective antagonist ambrisentan failed to promote any detectable anti-
inflammatory or antinociceptive activity in the AIA study [125].

Moreover, the lipid anti-inflammatory mediator lipoxin A4  was described as exerting an‐
ti-inflammatory  effects  on  articular  inflammation,  inhibiting  oedema  and  neutrophil  in‐
flux  and  the  levels  of  preproET-1  mRNA,  KC/CXCL1,  LTB4  and  TNF-α  through  a
mechanism that involved the inhibition of ET-1 expression and its  effects.  Likewise,  lip‐
oxin  A4  treatment  also  inhibited  ET-1-induced  oedema formation  and  neutrophil  influx
into mouse knee joints [126].

The efficacy of the dual ET receptor antagonist bosentan was described in the collagen-induced
arthritis (CIA) model, which is the animal model that best resembles human RA [127]. Oral
treatment with bosentan (100 mg/kg) markedly ameliorated the clinical aspects of CIA (visual
clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage,
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leukocyte infiltration and proinflammatory cytokine levels (IL-1β, TNF-α and IL-17) in the
joint tissues. Bosentan treatment also inhibited the preproET mRNA expression that is elevated
in the lymph nodes of arthritic mice. In this same article, Donate and co-workers [127]
demonstrated that pre-pro-ET mRNA expression increased in PBMCs from rheumatoid
arthritis (RA) patients but returned to basal levels in PBMCs from patients undergoing anti-
TNF therapy. Further supporting the involvement of TNF-α in the upregulation of ET system
genes, the authors showed that TNF-α increased the expression of pre-pro-ET-1, ETA and ETB
in PBMCs from healthy donors and RA patients. TNF-α also increased the expression of
IL-1β mRNA in PBMCs. Interestingly, the effect of TNF-α on the ET system genes was more
prominent in cells from RA patients than in cells from healthy donors. However, this effect
was not observed for IL-1β expression, suggesting a specific effect of TNF-α on the ET system.

11. Concluding remarks

Taken together, these data highlight the importance of ETs in the context of articular inflam‐
mation suggesting a central role for these peptides and represent innovative and promising
therapeutic tools for the treatment of RA (Fig 2).

Figure 2. Role of endogenous endothelins in development of RA
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