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1. Introduction

Statistical signal processing [1] traditionally focuses on extraction of information from noisy
measurements. Typically, parameters or states are estimated by various filtering operations.
Here, the quality of signal processing operations will be assessed by evaluating the statistical
uncertainty of the result [2]. The processing could for instance simulate, correct, modulate,
evaluate, or control the response of a physical system. Depending on the addressed task and
the system, this can often be formulated in terms of a differential or difference signal processing
model equation in time, with uncertain parameters and driven by an exciting input signal
corrupted by noise. The quantity of primary interest may not be the output signal but can be
extracted from it. If this uncertain dynamic model is linear-in-response it can be translated into
a linear digital filter for highly efficient and standardized evaluation [3]. A statistical model of
the parameters describing to which degree the dynamic model is known and accurate will be
assumed given, instead of being the target of investigation as in system identification [4]. Model
uncertainty (of parameters) is then propagated to model-ing uncertainty (of the result). The two
are to be clearly distinguished – the former relate to the input while the latter relate to the
output of the model.

Quantification of uncertainty of complex computations is an emerging topic, driven by the
general need for quality assessment and rapid development of modern computers. Applica‐
tions include e.g. various mechanical and electrical applications [5-7] using uncertain differ‐
ential equations, and statistical signal processing. The so-called brute force Monte Carlo
method [8-9] is the indisputable reference method to propagate model uncertainty. Its main
disadvantage is its slow convergence, or requirement of using many samples of the model
(large ensembles). Thus, it cannot be used for demanding complex models. The ensemble size
is a key aspect which motivates deterministic sampling. Small ensembles are found by
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substituting the random generator with a customized deterministic sampling rule. Since any
computerized random generator produces a pseudo-random rather than a truly random
sequence, this is equivalent of modifying the random generator to be accurate for small
ensembles of definite size, rather than being asymptotically exact (infinite ensembles). Correct‐
ness of very large ensembles is of theoretical but hardly practical interest for complex models,
if the convergence to the asymptotic result is very slow.

2. Modeling uncertainty of signals

2.1. Problem definition

Suppose the (output) signal y(x, t)∈R of interest is generated from the (input) signal x(t)∈R
passing through a dynamic system H , with parameters ak∈R, bk∈R,
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The model is given in n =u + v + 1 uncertain parameters, which can be arranged in a column
vector q = (b0 ⋯ bv a1 ⋯ au)T . For systems continuous-in-time (CT), D =∂t  is the differen‐

tial operator in time while for systems discrete-in-time (DT), D =Δ −1 is the negative unit
displacement operator, Δ −1xk = xk−1. There are several approximate methods to sample CT
systems to DT systems, see [3] and references therein. The discretization techniques are beyond
the scope of this presentation and DT systems will be assumed. If u ≥1, there is feedback in the
system which results in an impulse response h (q, t) of infinite duration. For finite accuracy
however, the duration is finite. The system is linear-in-response,
y(x =αx1 + βx2, t)=α y(x1, t) + β y(x2, t). Most importantly, the system is non-linear-in-param‐
eters if u ≥1. This is the typical situation addressed here.

Systems of the form in Eq. 1 may be directly realized as digital filters,y(q, x, t)=h (q)∗ x(t),
where ∗  denotes the filtering operation. The coefficients bk  and ak  are the numerator and
denominator coefficients of the filter with impulse response h (q), respectively. Its z-transform
H (q, z) is obtained with the substitution Δ → z. The parameterization can be changed to for
instance gainK , poles pk  and zeros zk , or poles pk  and residues rk ,
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The parameterization should be carefully chosen as it affects the convergence rate of Taylor
expansions (section 3.1) as well as the physical interpretation. The parameters and their
statistics are preferably extracted from measurements using system identification techniques
[4]. Note that complex-valued poles and zeros are conjugated in pairs [10].

The problem to be addressed is the statistical evaluation of any function
g(y(t)=h (q, t)∗ x(t)), given statistical models of q and x. It will here consist of evaluating its

time-dependent mean g(y)  and standard deviation g(y)− g(y) 2 . Without loss of
generality, the analysis will be made for g(y)= y. Digital filtering will be utilized for evaluating
samples of the model, i.e. filtering with definite sets of q and signals x.

2.2. Nomenclature

Statistical expectations of any signal, model or function g(q) over finite discrete E  as well as
continuous ensembles or probability distributions (no subscript) are defined as,
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Samples of q are labeled q̂, with their components organized in columns. Sample indices will
be given as superscripts in parenthesis, eg. q̂(k ) is a column vector denoting the k − th sample
of parameter q. Variations from the mean are written as δq(E )≡q − q (E ).

Only uniform (UNI) and normal distributions (NRM) will be utilized. Either the mean and
standard deviation, or the interval in brackets will be given in parenthesis, e.g.

q ~UNI(0.5,1 / 2 3)=UNI( 0, 1 ). Statistical moments M i
(k ) = (δqi)kk  carry the information

contained in the marginalized probability density functions (pdf)

f i(δqi)≡ ∫
Q

f q(δq)dq1⋯dqi−1dqi+1⋯dqn, where Q denotes the sample space. While M i
(2) describes

the width of f i(δqi), M i
(3) is related but different to its skewness [11]. Further, the shape is

reflected in M i
(4), similarly to the curtosis [11]. Since UNI(0,1) and NRM(0,1) are normalized

and symmetric f i(δqi)= f i(−δqi), M i
(2) =1 and M i

(3) =0. Their differences are first reflected in

their fourth moment, M i
(4) =1 / 4 5, 1 / 2 3≈ (0.11, 0.29) for UNI(0,1) and NRM(0,1), respec‐

tively. The maximum variation of the parameter qi is expressed by the range

M i
(∞)≡ lim

k→∞
|M i

(k ) | =max(|δqi |). Dependencies are expressed in mixed moments

(δqi1)k1(δqi2)k2⋯ (E ). The discussion will be limited to correlations described by the covariance

matrix cov(q)= δqδq T , where the vector multiplication is an outer product.
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Matrix size will be indicated with subscripts, e.g. Vn×m is a matrix of n rows and m columns
with elements V jk , j =1, …n and k =1, …m. The identity matrix will be denotedI , while
matrices with equal elements (i) will have their size attached, (in×n) jk = i. For a matrix (vector)
D, diag(D) is a vector (diagonal matrix) with components (diagonal elements) equal to the
diagonal elements (components) of D. The trace of a matrix is denoted Tr.

A method will be stated intrusive if manipulations of the model are required. For the targeted
highly complex models, it will be assumed that the computational cost for their evaluation
dominates all other calculations. The efficiency ρ of any method will accordingly be defined
by the least required number of evaluations of the original model.

2.3. Fundamentals of non-linear propagation of uncertainty

Linearity in parameters (LP) is to be distinguished from linearity in response (LR),
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for some vector Cn×1. Different concepts of linearity are used,
y(q1 + q2, x, t)≠ y(q1, x, t) + y(q2, x, t) for LP models. Strictly speaking, LP denotes models that
are affine, i.e. written as linear combinations of their parameters. Most constructed systems
are designed to be as close to LR as possible while most models are not LP. There is hence no
contradiction in non-linear (LP) propagation of uncertainty with linear (LR) digital filters, as
here.

For non-linear propagation of uncertainty, the asymmetry of the resulting pdf is central. It can
be expressed as a lack of commutation of non-linear propagation and statistical evaluation of
a center value (⋅C ), as measured with the scent [12],

( ) ( ).C Cy q y qz º - (5)

The method for evaluating the center is left unspecified, as there are several alternatives. The
most common choice is to use the mean, ⋅C = ⋅ . The lowest order approximation of the scent
can then be obtained by calculating the expectation of a Taylor expansion (section 3.1),
ζ =Tr cov(q)⋅Η(y) / 2, where Η(y) jk =∂2 y / ∂qj∂qk  is the Hessian matrix signal of y, evaluated

at q . The scent is related to the skewness γ = δ y 3 / δ y 2 3/2. The additional asymmetry caused
by the non-linearity of the model is measured with the scent but differently. The scent
addresses how parametric uncertainties are propagated and not how the result is distributed,
e.g. ζ =0 for all LP models for which γ may attain any value. A finite scent thus implies the
model is not LP, but not the reverse. The scent should not be confused with bias. Bias is a
property of an estimator, while scent is a property of a model. For every model, such as the
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REF (section 6.1), many different estimators of yC(q) can be used, e.g. the different ensembles
in section 5.6, see result in Fig. 5 (left). Consequently, an unbiased estimator of yC(q) correctly
accounts for rather than ignores its finite scent, or deviation from y(qC).

The scent is important since yC  and not y(qc) is the main result utilized in applications. The

corresponding difference [13] in the standard deviation My
(2) from its linearized approximation

∇ y T cov(q)∇ y, with (∇ y) jk =∂ j y(tk ), affects the confidence in the result. Its accuracy is
usually less critical. An accurate evaluation of the scent is perhaps the strongest feature of the
unscented Kalman filter, which provides the foundation for the presented approach as well as
the origin of the term ‘scent’.

3. Conventional methods

A brief resume of the most traditional related methods of uncertainty propagation, applicable
to signal processing models, is here given together with their pros and cons. Advanced
intrusive methods like e.g. polynomial chaos expansions [14-15] not directly related to the
proposed method are omitted.

3.1. Taylor expansions

The indisputable default methods of uncertainty propagation are based on Taylor expansions.
These methods are intrusive if the differentiations are made analytically. Convergent series
require regular differentiable models and numerical or analytical complexity make them error
prone. Their applicability is therefore limited for complex models.

The transfer function H (q, z) of the digital filter can be expanded in a Taylor series,
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This defines n sensitivity systems (column vector) Ek
(1)( q , z), n(n + 1) / 2 unique quadratic

variation systems (matrix) E (2)( q , z), and so on. These variation systems differ (intrusive)
from H (q, z) but may nevertheless be realized as digital filters [3,7,10], just as H (q, z). The
corresponding variation of y(q, x, t)=h (q, t)∗ x(t) is given by,

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 21, , , Tr , ,
2
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Deterministic Sampling for Quantification of Modeling Uncertainty of Signals
http://dx.doi.org/10.5772/52193

57



where e (k )( q , t) are the impulse responses of the systems E (k )( q , z). Utilizing digital filters
with impulse responses e (k )( q , t), the differentiations are conveniently done once, and not
repeatedly for every signal x(t). The linearity in parameters of the model can easily be studied
for many different input signals x(t), by evaluating e (k )( q , t)∗ x(t). Due to the large number
of variation systems, higher order perturbation analyses rapidly become intractable though.
The established method is limited to linearization (LIN) [16] (e (1)). It will always incorrectly
yield vanishing scent, ζ =0. A first order estimate of ζ is instead given by the expectation of
second term in Eq. 7, ζ ≈Tr cov(q)Η( q , t) / 2, where the matrix of Hessian signals
Η( q , t)= e (2)( q , t)∗ x(t) is obtained with repeated digital filtering.

3.2. Brute force Monte Carlo

Monte Carlo (MC) methods [8-9], or random sampling of uncertain models was originally
introduced and phrased ‘statistical sampling’ by Enrico Fermi already in the 1930’s [17]. The
MC methods realize uncertain signal processing models in finite ensembles. Every ensemble
consists of a possible set of well-defined model systems, all (usually) having the same structure
but slightly different parameter values. In the original so-called brute force Monte Carlo
method, each set of parameters is assigned to the output of random generators with appro‐
priate statistics. The convergence to the assigned statistics is very slow [5] but it is asymptot‐
ically exact and the required number of samples is essentially independent of the number of
parameters. Hence it does not suffer from the curse-of-dimensionality of many other methods.
The outstanding simplicity in application is likely the cause of its popularity, just as the slow
convergence or low efficiency is the main reason for its failures.

In MC, arbitrary distributions and dependencies are usually obtained by means of transfor‐
mations of samples of elementary distributions. Independent samples q̂(k ) of any probability
density function (pdf) ϕ(x) can be constructed with the inverse transform method [9]. It
consists of a calculation of the inverse of its cumulative distribution function (cdf) Φ(y) and
generation of a uniformly distributed random sequence ẑ (k ),

( ) ( )( ) ( ) ( ) ( )1ˆ ˆ , , ~ UNI 0,1 , 1,2, .
y

k kq z y x dx z k mf-
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Covariance may be included with an appropriate transformation of samples of canonical
parameters q̃ : q =U T Sq̃ with cov(q̃)= I ,
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The matrices S , U  are found by calculating the eigenvalues (S 2) and eigenvectors (U ) [11] of
cov(q). This transformation makes the marginal pdfs f k (qk ) to differ substantially from the
univariate pdfs ϕk  of the independent but scaled parameters Sq̃k ,
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All ϕk  are hence mixed according to U . Dependencies are thus difficult to account for. One
rare exception is provided by the multinomial distribution [9]. It is often better to assign the
pdfs to the canonical parameters in the original instead of the canonical basis. The transfor‐
mation then reads q̃ : q =U T SU q̃. As required, it leaves cov(q) invariant. The marginalization
in Eq. 10 changes accordingly, U →SU T S −1U . Since the transformation U T SU S −1 of Sq̃k

contains cancelling operations U , U T  and S , S −1, it is generally less distorting than U T .
Indeed, if the commutator S , U T ≡SU T −U T S  vanishes, U T SU S −1 = I . The transformation
U T  must satisfy the stronger criterion U = I  to avoid mixing. For any transformation q →Wq,
an indicator of mixing of the components of q is given by,
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A simple example illustrates that the mixing effect can be considerable, even for minute
correlations. Assume a model has two parameters with a covariance matrix,
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Large rotations are required because the canonical variances S jj
2  are similar, i.e. cov(q) is almost

degenerate. As shown in Fig. 1, the large rotations mix the assigned pdfs ϕk (Sq̃k ) to marginal

pdfs f k (qk ) beyond recognition for the transformation U T  but not for U T SU S −1.
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Figure 1. Left: The sample space of independent scaled parameters (I :qk =Sq̃k ) (Eq. 12), and of the two transforma‐

tions (U T ) (rotated) and (U T SUS −1) (skewed and tilted). Right: Assigned pdfs ϕk (Sq̃k ) (dashed) and obtained margin‐
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al pdfs f k (qk ) (solid) ) with mixing Ψ(U T ) = 1.00 and Ψ(U T SUS −1) = 0.058, and magnified upper transition region
(inset).

Specifying both marginal probability distributions and covariance is either redundant or
inconsistent, as the latter is uniquely determined by the former. Nevertheless, this reflects the
typical available information for signal processing applications. The moments can be accu‐
rately determined [4] for sufficiently large data sets but the joint distribution f (q) is hardly
ever known with any precision. Some of its properties are usually assigned, with varying

degree of confidence. For instance, the allowed maximal range M (∞) of the parameters of
digital filters is given by stability constraints. The transformation technique above is well

adapted to these facts, since the covariance is prioritised. The transformation q =U T SU q̃ will
be utilized in section 5.2 to include correlations with limited mixing of the statistics assigned
to independent normalized canonical parameters q̃.

3.3. Refinements of Monte Carlo

To increase the efficiency of MC, the original brute force sampling technique has been further
developed in mainly two directions: model simplification and sample distribution improve‐
ment. In response surface methodology (RSM) [18], the model is replaced by a simple approx‐
imate surrogate model. A model of order v may be found by applying linear (with respect to

C) regression at collocation points [15] q̂(k ) =μ (k ),
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where Rj(q) is basis function j. Since it may be non-linear, RSM allows for non-linear propa‐

gation of uncertainty and may give a substantially different and more accurate result than LIN.
If only linear basis functions are used Rj(q)=qj, RSM becomes equivalent to LIN. The best least

square approximation is directly obtained from Eq. 13 [19],

( ) 1T TC R R R H
-

= (14)

Let RSM(r) utilize a complete set of mixed polynomial basis functions up to order r . Its least
number (v) of collocation points grows rapidly with both the number of parameters (n) and
polynomial order (r) [12],
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In practice, r >3 often yields an unacceptable number of samples, see table 1.

n= 2 n= 5 n= 10 n= 20

r = 1 3 6 11 21

r = 2 6 21 66 231

r = 3 10 56 286 1771

Table 1. Efficiency ρ=v for RSM(r), for selected polynomial orders r  and numbers n of parameters.

The distribution of samples may be improved with stratification, as in Latin Hypercube
sampling (LHS) [18]. By dividing the sample space into intervals, or stratas representing equal
probability the need for large ensembles is reduced. In LHS, each parameter is sampled exactly
once in each of its stratas giving a generalized latin square [20]. This selection pushes the
samples away from each other and distributes them more evenly. To illustrate the improve‐
ment with stratification, sample one parameter q ~NRM(0, 1). After division into m intervals
of equal probability, samples are found with the inverse transform method described in section
3.2 (Eq. 8). As seen in Fig. 2, the convergence improves dramatically. Still, even for m =100
samples the second moment (left) varies noticeably. The convergence is generally poorer for
higher order moments M (k ), as shown for k =4 (right).
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Figure 2. The second M (2) (left) and fourth M (4) (right) moments for stratified (solid) and brute force sampling (∗ ) of
q~NRM(0, 1), compared to a fixed grid (dashed).

In this case, it is questionable if 100 samples are sufficient to represent as few as four moments
M (1)−M (4). The probabilistically evenly distributed fixed grid (dashed) converges more
rapidly to the proper statistics. Despite the prevailing tradition, there is no absolute require‐
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ment of using a random generator to represent statistical information. Fixed grids are examples
of deterministic sampling. Stratification provides an interesting intermediate type of sampling
since it is partially deterministic – the strata are constructed deterministically but the samples
within each stratum are generated randomly. The construction of a fixed grid requires focus
on the most relevant features. To reproduce M (1)−M (4) exactly, a very sparse grid or few
deterministic samples are needed,

( ) ( )
( )( ) ( )

1.376 0.325 ~ UNI 0,1
ˆ .

1.732 0 4 ~ NRM 0,1

q
q

q

ì ± ±ï= í
± ´ïî

(16)

If the problem at hand only depends on these moments, the exact solution will be obtained.
The size of such small ensembles must be fixed, no matter how they are generated. Adding,
or perturbing a single sample would modify the statistics substantially.

4. Deterministic sampling

Deterministic sampling (DS) of uncertain systems is a viable alternative to random sampling
(RS). Instead of using random generators, specific DS rules are devised to generate appropriate,
but still statistical (Fermi’s notation, see section 3.2) ensembles. A rudimentary example
illustrates the principle: Assume a model y(q) depends on one parameter q with mean q  and
variance δq 2 . To estimate the mean y  and the variance δ y 2  of the model, the samples (filter

parameters) q̂(1,2) = q ± δq 2  are appropriate since they satisfy the desired statistics, q̂ E = q
and δq̂2

E = δq 2 . The formula for q̂(1,2) constitutes the sampling rule and q̂(1,2) is the statistical
ensemble containing only two model samples. By paying the computational cost of using more
samples and improving the sampling rule, additional moments δq k , k >2 or other statistical
features can be accounted for.

In deterministic sampling the model evaluations involve no approximations and are non-
invasive. In many respects, deterministic sampling is constructed and optimized for quantifi‐
cation of modeling uncertainty: Minimal ensembles allow for evaluation of the most
numerically demanding models. The model evaluations are exact and non-invasive to fully
respect non-linear deeply hidden parameter dependences. Only vaguely known statistics of
the model is approximated.

4.1. Concepts of deterministic sampling

DS does not per se specify the goal of sampling, e.g. given mean and covariance of the
parameters. In the example at the end of section 3.3, the primary target was the joint pdf of the
parameters. In section 4.2, the target is M (2)(q). In section 5, this will be complemented with
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additional requirements. DS can also be utilized for direct evaluation of confidence intervals
[12]. The targets of various DS methods may differ but the focus on the most influential
statistical aspect and customization is shared. In stark contrast, almost without exception RS
targets the joint pdf of the parameters and ignores the final utilization. Adaptation and fixed
ensemble sizes provides the principal means to improve the efficiency of sampling.

4.2. Propagation of covariance in the standard unscented Kalman filter

The reference will be the specific variant of DS used for propagating covariance in what will
be referred to as the standard unscented Kalman filter (UKF) [21-23]. The ensemble consists
of 2n samples, or sigma-points,

( ) ( ),
:ˆ , cov , 1,2, ,s k T
kq q s n q k n sº + × × D DD = = = ±K (17)

where Δ:k  denotes the k-th column of Δ. The sampling rule is manifested in the square root
calculation of the covariance matrix (Δ). As suggested [23] it may be found with a Cholesky
factorization [19]. The square root matrix is not unique though – the Cholesky root is upper
triangular and thus asymmetric. A more symmetric standard alternative is to evaluate the
matrix square root in a canonical basis [24] Uq where cov(Uq) is diagonal. The canonical
variations Uδq̂(s ,v) will be unit vectors in the n positive and negative directions of the princi‐
pal axes of the covariance matrix, amplified by the marginal standard deviations and most

importantly, n. For many parameters with large covariance, the scaling with n may cause
the UKF to fail since the scaling is not related to the variability of the parameters, only their
total number. A possible solution to the scaling problem is provided by the scaled unscented
transformation [25]. However, it is based on Taylor expansions and thus suffers from an
approximation problem of the model.

5. Sampling with conservation of moments

One class of methods of deterministic sampling conserves a limited number of statistical
moments. The model parameters are sampled to satisfy these moments and collected in
ensembles, similar to how parameters are sampled to fulfill probability distributions in RS.

5.1. Principle

The constraints of satisfying statistical moments constitute an infinite system of equations for
the samples δq̂ i

(v). It can formally be viewed as sampling (=̂ ) of the joint pdf f (q),
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The infinite number of equations requires an infinite number of samples. However, it is
implicitly assumed that relatively few moments are known and significantly influence the
result of interest. Only a few moments then needs to be accurately represented by {δq̂(v)}.
Typically, δqi  and δqi1δqi2  are estimated when models are identified [4,7]. In addition, the

range M (∞) or another higher diagonal moment can generally be determined from underlying
physical constraints like stability. Clearly, any sampling rule must generate a fixed number of
samples and create them simultaneously. The samples are consequently strongly dependent.
One obvious sampling method is to solve Eq. 18 numerically for a sufficiently large number
of samples δq̂, as in Eq. 16. Due to the strong non-linearities, this is quite difficult for a large
number of moments but may be feasible for a few moments.

5.2. The excitation matrix

The UKF (section 4.2) utilizes DS with conservation of all first ( δqi ) and second ( δqi1δqi2 )
statistical moments. The invariance in its formulation allows for any additional ‘half’ unitary
transformation Δ →ΔV , V :V V T = I . This results in another equally valid matrix Δ̃, since
Δ̃Δ̃T =ΔV ΔV T =ΔV V T Δ T =ΔΔ T . Since the transformation V  is allowed and influences the
result, the result of applying the UKF is not unique. The matrix V  condenses this invariance
and provides practical means to manipulate the UKF ensemble. A key feature of V  is the
absence of constraints on V T V . That makes it possible to stretch V  ‘horizontally’ (as long as
V V T = I ). That corresponds to adding samples (sigma-points). The improved transformation
U T SU  (section 3.2) can be applied by also combining U  with V . The square root of the
covariance matrix will then read Δ =U T SUV  instead of Δ =U T SV ,

1 1
ˆ ˆ1 , , , 1 0.T T

n m m n m mq U SUV V m V VV I V´ ´ ´ ´S º × + º × = × = (19)

The samples q̂(k ) are here collected in columns of the ensemble matrix Σ. The matrix
cov(q)=ΔΔ T =U T S 2U  is diagonalized,S 2 =eig(cov(q)), with the unitary transformation U
[24]. The normalization factor m is included in the excitation matrix V̂  to satisfy the correct
covariance, ΣΣ T =ΔΔ T , just as the factor n was included in Eq. 17 (the ensemble is here
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expanded from n to m samples). The excitation matrix controls the sampling beyond the first
and second moments, e.g. the range of the samples. Row k  of the matrix SV̂  can be interpreted
as deterministic samples of the pdf ϕk (Sq̃k ), assigned to canonical parameters in RS, see section
3.2. All ensembles will be described with a unique excitation matrixV̂ .

The adopted transformation U T SU S −1 of SV̂  distorts all higher moments than the second.
This mixing effect is indicated by the index Ψ(U T SU S −1) defined in Eq. 11. To diagonalize
large matrices cov(q) many efficient techniques have been developed. This should not cause
any difficulties even for n ~1000, especially since cov(q) usually is either very sparse, or rank
deficient for models with many parameters.

5.3. Elimination of singular values

The rationale for applying the reduction to be presented is that any model is derived from a
limited set of experiments, resulting in a usually moderate rank of cov(q). If the number of
parameters is large, it is thus often (nearly) rank deficient. The widely practiced singular value
decomposition (SVD) [19] may then be used to reduce the excitation matrix and hence the
number of samples. The most general form of SVD cannot be used here since it renders an
asymmetric decomposition cov(q)=U T S 2W , where U U T =U T U =W W T =W T W = I  and
S jk

2 =δ jkSkk ≥0. Different matrices U , W  allow for decomposition of an arbitrary matrix. For
the symmetric matrix cov(q), a symmetric SVD U =W  can be found with the less general
eigenvalue decomposition [24], according to the spectral theorem [11]. As cov(q) is positive
definite, all its eigenvalues Skk

2  fulfill the requirement of being positive. This is required to

directly obtain a real-valued matrix square root Δ =U T SUV .

The ensemble may now be reduced by elimination of singular values (ESV). Choose a threshold
α and remove row r  and column r  from S  and row r  from U  for all r  such that,

max , 1.rr kkk
S Sa a< × << (20)

Proceeding as in many applications of SVD, this reduction (indicated by tilde below) will not
change the result significantly, if α is small enough. Accordingly, samples are eliminated using
the alternative decomposition of the square root of cov(q),

( ) ( ) .T T
n m n n n m r r r nn n n r

U S V U S V m m´ ´ ´ ´ ´ ´´ ´
D = » = D%% % % (21)

Unfortunately, the less distorting transformation U T SU S −1 of SV̂  advocated in section 3.2 do
not allow for r <n rows of the matrix V . The increase in distortion of M (k >2) indicated by
Ψ(U T SU S −1)→Ψ(U T ) is less important for the intended use though. Signal processing
models with large numbers of parameters are typically non-parametric and usually describe
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samples of signals like impulse responses, or noise signals. The required LR property of the
system then implies LP. The propagation of covariance is then linear and only the undistorted
first and second moments need to be encoded.

5.4. Correlated sampling of non-parametric models

A major difference between parametric and non-parametric models is the dimensionality. A
conceptual dissimilarity is that non-parametric models usually refer to correlated signals,
rather than abstract model structures. The parameters may describe discrete samples of input
noise [7], or an impulse response [6]. A common parametric pole-zero model may contain 20
parameters, while a non-parametric model can be expressed in perhaps 1000 parameters. The
ensembles of non-parametric models often need to be reduced drastically.

Due to limited resolution, the correlation times of any signal or impulse response is finite. Their
‘memory’ is thus finite so sample variations may be regenerated or repeated, as long as the
time between repetitions exceeds the correlation time. This correlated sampling (CRS) provides
efficient and accurate reduction of the ensembles. The minimal number of parameters n is then
set by the correlation time of the model. Most importantly, the size of the ensemble becomes
independent of the size of the model (the length of the signal).

A finite correlation length τ∈N  of any model δx(t) is normally inferred from the decay of its
autocorrelation functionC(t , T ), where t  denotes the lag and T  refers to a non-stationary
variation. Here, a global τ will be defined through its l 2-norm and determined for a relative
truncation threshold β (argmin returns the minimizing argument),

( ) ( ) ( )2 22

1 0
max arg min , , , , , 1.

2 2T t t

t tC t T C t T C t T x T x T
t t

t b d d b
¥ ¥

= + =

é ù æ ö æ ö
= - º + - <<ê ú ç ÷ ç ÷

è ø è øê úë û
å å (22)

If the model is expressed as a convolution δx(t)=h (t)∗w(t) of an impulse response h (t) and
time-dependent white noise w(t) as in section 6.2,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

0 0
, , var , 0.

2u u

tC t T T u h u h u t T h u h u t t w wh h h
¥ ¥
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æ öæ ö
= - + + » + = =ç ÷ç ÷
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By padding the model to an integer multiple of γ ≥2τ samples, it is always possible to choose
an excitation matrix partitioned to block-diagonal form,
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where Ṽ γ×γ is any allowed deterministic sub-ensemble. The factor c accounts for the change

from γ samples of Ṽ γ×γ to the m >γ samples of V̂ n×m. By violating the normalization constraint

V̂ n×mV̂ n×m
T =m, the size of the ensemble can be ‘compressed’ from m to γ samples by moving

all sub-matrices cṼ γ×γ to the first block-column and skipping all zeros. The introduced constant

c drops out as m →γ,
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Accordingly,

( ) ( )
( )

( ) ,
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The consequence of violating the normalization constraint is that only a limited diagonal band
of cov(x) is correctly reproduced. If a non-parametric model of a signal is propagated through
a system model with impulse response h  of correlation length σ ≤γ / 2 this will nevertheless
not result in any error of var(h ), as it is independent of all faulty elements cov(ν) jk ,
| j −k | >γ / 2≥σ. To correctly evaluate cov(h )uv though, the size of the sub-ensembles Ṽ γ×γ of

correlated sampling must fulfill the stronger size constraint γ ≥2(max(τ, σ) + |u −v |). The
symmetry of convolutions implies a corresponding result when the non-parametric model
describes the impulse response h  of the system, rather than a signal.

5.5. Combining covariance

A signal processing model generally includes both parametric and non-parametric sources of
uncertainty. For instance, a device (parametric system model) may be fed with a signal
corrupted with noise (non-parametric noise model). The question then arises how the two
sources qk , xk  of uncertainty can be combined. For propagation of uncertainty through LP

models, the combined covariance is given by the Gauss approximation formula [16],

( ) ( )( )LP
cov cov ,k

k
y y=å (27)
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where cov(y (k )) is the propagated covariance of qk , xk . This will seize to apply for non-LP
models. There exists no general non-linear summation rule for propagated covariance. A
method of summation can be given though, if different ensembles are combined as in RS.

To combine ensembles of parametric (q) and non-parametric models (x), collect all parameters,

q → (q T xT )T , and diagonalize the enlarged covariance matrix, cov(q)=U T S 2U . Build V̂  with
two blocks and use CRS (section 5.4) for the non-parametric model,
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The scaling 1 + c ±1 may cause a similar scaling problem as the factor n in the UKF (section
4.2). Using extended excitation matrices these factors can be eliminated,
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A disadvantage of this summation is that the same type of ensemble must be used for all
parameters. Both alternatives combine the statistics of the two models non-linearly. The
uncertainties are propagated and combined by evaluating the model for all samples and
calculating the desired statistics, just as if the combined ensemble described one model.

5.6. Selected ensembles

The standard (STD) ensemble employed in the UKF (as defined in section 4.2) utilizes the
perhaps simplest possible excitation matrix,

( )STD
ˆ , 2 .n n n nV n I I m n´ ´= × - = (30)

While the ultimate simplicity is its main advantage, the long maximal(!) range M (∞) is its main
disadvantage.
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How far the reduction of samples might be driven is illustrated by the minimal simplex (SPX)
ensemble,

( ){ }SPX 1
ˆ 1 1 , 1,n n nV n I m n´ ´= + × ^ - = + (31)

where the operator ⊥  performs classical Gram-Schmidt orthogonalization [11] and normali‐
zation of rows. The ensemble is constructed from half the STD ensemble, complemented with
one sample 1n×1 to cancel the first moments. Since that violates the orthogonality of the rows

of V , ⊥  must be applied to satisfy V V T = I . The high efficiency of the SPX ensemble is tarnished

by its large skewness, or M (3). This may give considerable bias of propagated covariance for
non-LP models, but is irrelevant for LP models.

The binary (BIN) ensemble has minimal range to guarantee allowed samples. By varying all
parameters with an equal magnitude of one standard deviation in all samples, the diverging

factor n of the STD is eliminated. Its excitation matrix V̂ BIN  is fundamentally constructed

from a standard binary array, with the difference that the allowed levels are ±1 instead of 0, 1
(see rows 1-3 in Eq. 32). It is then complemented with supplementary rows obtained in two
ways, by cyclic shifting and mirror imaging,
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Cyclic shifts are applied to all original rows except the first, by a quarter of their periodicity.
Mirror imaging of a row is defined to change the sign of its second half and is applied to all
original rows except the last two, and all shifted rows except the last. For instance, in Eq. 32
row 4 and 5 are shifted versions of row 2 and 3, while rows 6 and 7 are the mirror images of
rows 1 and the shifted row 4. The supplementary rows reduce the size of the ensemble
drastically with a corresponding improvement of the efficiency. For n =20 parameters, the size

drops from roughly 106 to 128 samples. That size is acceptable in perspective of the n + 1=21
samples of the most efficient SPX. Eventually though, the number of samples will grow too
large. The BIN can thus only be applied to moderately sized models.
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By no means, this brief survey exhausts all possible ensembles. Many criteria for selecting the
most appropriate ensemble can be formulated. Here, the first and second moments, parameter
ranges and efficiency were in focus.

6. Application — Modeling uncertainty of a dynamic device

The task is to simulate the response of an electrical device such as an amplifier or oscilloscope,
in the presence of non-stationary correlated noise on its input. An uncertain LR CT model of
the device and its parametric covariance is usually found by applying system identification
techniques [4] on calibration measurements [6]. Such a model of the system can be sampled
into a digital filter and be described in the pole-zero form in Eq. 2. These standard steps will
here be omitted. The system model will instead be assigned to a digital low-pass Butterworth
filter, of order 10 and cross-over frequency f C =0.1 f N , f N  being the Nyquist frequency and
described by parameters K , p1, p2, … p10, z1, z2, z10. The complete correlations of complex-
conjugated pole (p) and zero (z) pairs are eliminated by a transformation from q = z, p to
Re(q), Im(q)≥0, giving n =21 system model parameters,

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 10 10Re Im 0 Re Im 0 Re Im 0 .
T

q K z z p p p pº ³ ³ ³L L (33)

To be most general, the non-parametric input noise model is chosen to be correlated/colored
and non-stationary. The noise parameter δxk  represents the noise level at time sample k . Its
generating signal [7] is a Dirac delta function δ jk , centered at time k . The response of a system

with impulse response h  will be δ yj =δxk ⋅ (h j∗δ jk )=h j−k ⋅δxk . In matrix notation, δ y = h̄ T δx,
where h̄ kj =h j−k . Hence,

( ) ( )cov covT T T Ty y y h x x h h x hd d d d= = = (34)

Since the response is linear in noise parameters, it is sufficient to only capture cov(x).

6.1. Reference ensembles

Traditionally, any method for uncertainty propagation is evaluated by comparisons with the
default method of linearization [10,16], and brute-force random sampling (MC) [9] as state-of-
the-art. There are several drawbacks of this approach. Linearization is a coarse approximation
for LP models and MC suffer from the difficulty of modeling dependencies and low efficiency.
An alternative is to construct finite reference ensembles (REF) and by definition let them
describe the truth. Their primary advantage is that the finite size of the REF makes it possible
to propagate the uncertainty exactly, using all REF samples. A more or less arbitrary REF may
be generated randomly, like any MC ensemble. All requirements are also automatically
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fulfilled since the REF is built of possible realizations. Also, the REF closes the loop as it makes
it possible to compare ‘true’ and approximate samples directly on an equal footing (see Fig.
8). Even though the samples differ substantially, the resulting modeling uncertainties can be
similar.

A plausible REF δqj for the system model realized as a digital filter is created by randomly
generating m samples of n parameters qk  from uniform distributionsUNI(0, σk ), with σk  listed
in Fig. 3, top left. The joint pdf will have compact support [11], as required to guarantee
stability. The mean is subtracted from all samples to remove the bias of the finite random
ensemble, δqj E = δqj =0, ∀ j. The covariance of the REF will have a desirable more or less
random variation for small values of m. If the REF samples are arranged in columns of a matrix
Λ̂n×m, (as V̂ ) cov(q)REF =1 / m ⋅ Λ̂Λ̂T . For m =31>n =21, the strong correlations will expose the
methods to severe tests with significant transformations U , S . The mixing Ψ (Eq. 13) using
transformation U T SU S −1 was considerable, but less than for U T , see caption Fig. 3. For the
chosen REF, the resulting variations of poles and zeros are displayed in Fig. 3. The obtained
variation of the parameters defined in Eq. 33 can be quantified with an averaged correlation
index and standard deviation (Fig. 3, bottom left),
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A REF signal δxj for non-stationary correlated noise may conveniently be generated from an

autoregressive process (AR) acting on time-dependent zero mean white noise δw, δx = ḡT δw,
where ḡ kj = g j−k  is the matrix of translated impulse responses g  for the AR process defined by
parameters αk . Assigning a square wave time-dependence,
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The exact REF result of modelling covariance of noise is given by combining Eqs. 34 and 36,

( )( ) ( )2Tr cov Tr diag .T T
N y h g ghs hé ùº = ë û (37)

An explicit realization of the REF for the noise model is hence not needed. Specifically, a second
order system α = 1 −0.4 0.6  with time parameters {Ν, ψ, T , φ}= {0.05, 0.3, 2 f C

−1, π / 8} was

Deterministic Sampling for Quantification of Modeling Uncertainty of Signals
http://dx.doi.org/10.5772/52193

71



chosen. The impulse responses of the AR noise system and the system model, and the variation
of the noise model are illustrated in Fig. 3, bottom right.

The ‘true’ result given by the response for the REFs for the different test signals is shown in
Fig. 4. The propagated noise variation σN  differs substantially from the input square wave η

(top left) and is almost opposite in phase, due to the response time of about f C
−1, see delay of

μS  (top, right and bottom). The signal distortion (μS ) is strongly dependent on the input signal
and decreases with increased regularity / differentiability. The propagated covariance σS  has
a more complex variation (top, right and bottom), as it is larger for the more regular Gaussian
(bottom, right) than for the triangular pulse (bottom, left).

6.2. Deterministic sampling

The error of the scent and the standard deviation for the STD, SPX and BIN ensembles of the
system model is displayed in Fig. 5, for all test signals. The low scent of the REF (left: thin,
dotted) suggests the model is close to LP. Despite the relative errors are large they are quite
small on an absolute scale. The SPX has the largest errors, for the scent as well as the variance.
That is likely caused by its skewness being much larger than that of the REF. The BIN has the
lowest errors and is thus the best approximate representation of the REF.
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Figure 3. Top: Assigned variations (left) and resulting (zk  middle, pk  right) samples of the REF of the system model.
Label P  indicates the pole explored in Fig. 8. Bottom, left: Obtained variations σk  (dots) and correlations ξk  (bars) of

parameters q (Eq. 33), with mixing (Eq. 11) Ψ(U T SUS −1) = 0.22 (adopted) and Ψ(U T ) = 0.39. Bottom, right: Impulse re‐
sponses h ( q , t) and g(t) and time-dependence η(t) (Eq. 36) of noise intensity. The correlation lengths λh , λg  were
determined according to Eqs. 22-23, for β= 0.05.
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Figure 4. The mean μS  (dashed), the standard deviations σS ,N  (solid) and the scent ζ (thin, solid) for the REFs, for the
different test signals (thin, dashed). The subscripts refer to the system (S ) and noise (N ) models. The variation of noise
intensity is given by η(t) (top, left).
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Figure 5. The errors of the scent ζ− ζREF (left) and the standard deviation σS−σS,REF (right) of the system model (solid)
for the STD (top), SPX (middle) and BIN (bottom) and the three test signals (thin, dashed). The correct ζREF (left) and
σS,REF (right) are included for comparison (thin, dotted). The triangular and Gaussian signals are displaced for clarity.

The errors might appear large, considering all ensembles are ‘correct’, i.e. correctly represent
(typically) available accurate information (mean and covariance of parameters). The errors
reflect ambiguities caused by the ubiquitous lack of information in signal processing, rather
than inadequacies of DS. RS can only produce better results by making further assumptions.

The result of applying the ESV and the CRS methods to reduce the SPX ensemble for propagat‐
ing the noise is displayed in Fig. 6. By choosing sufficiently low thresholds α for elimination of
singular values (ESV) and β for truncation of the correlation lengths (see Eqs. 20,22), the errors
can be made arbitrarily low. As the reduction will decrease accordingly, there is a trade-off
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between accuracy and efficiency. For the chosen values, CRS is about twice as accurate and twice
as efficient as ESV. In contrast to ESV, the number of samples for the CRS method is independ‐
ent of the number of noise samples. The computational cost thus increases linearly with the
length of the noise signal for CRS but quadratically (approximately) for ESV. For ESV to be most
efficient, the model covariance needs to be strongly rank deficient. That is not as unlikely as it
might appear, since the model usually is derived from a limited amount of experimental results.


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 

 
  

 


 

Figure 6. The error σN−σN,REF of propagated noise, for the ESV (section 5.3) and CRS (section 5.4) ensemble reduction
methods, and the correct σN,REF (thin, × 1 / 10). The thresholds were α= 0.1 (Eq. 20) for ESV, and β= 0.05 (Eq. 22) for
CRS. That resulted in m= 142 samples for ESV and m= 75 for CRS, compared to m= 402 of the original SPX.

The summation of the noise and the model covariance is illustrated in Fig. 7. The propagation
of the covariance of the system model (q) is not LP. The quadratic summation rule (Eq. 27), or
Gauss approximation formula [16], is therefore not applicable. Nevertheless, the low scent ζ
(Fig. 5, left) suggests that both propagations are close to LP. The summation error (ε) is hence
finite, but quite small. It differs qualitatively from both contributions, indicating that the
summation is non-trivial.

Finally, the samples of one pole of the derived ensembles are compared to the reference
samples of the REF in Fig. 8. The limit (| z | =1) of stability is included to illustrate how close
the samples are to be physically forbidden. The construction of the different ensembles is
apparent, even though the transformation T =U T SU S −1 distorts the scatter plots (sections 3.2,
5.2), and tilts the principal axes (lines). The samples of the REF are almost evenly distributed.
Only four samples of the STD, labelled p1, p2, p3, p4, deviate significantly from a dense central
cluster, as described by the excitation matrix V̂ STD (Eq. 30). It also is evident that SPX originates
from half the STD. A small translation required to achieve the correct mean is discernible, while
the Gram-Schmidt orthogonalization renders a minor rotation and distortion. The BIN
contains comparable variations in all samples and thus has no central cluster and its samples
are repelled from the principal directions (lines). The statistical differences to the REF refer to
the shape of the joint pdf. Choosing the best ensemble is thus equivalent of selecting the most
appropriate pdf in RS. The BIN seems to resemble the REF scatter plot the most, as verified by
its low errors in Fig. 5.
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Figure 8. The different samples (dots) of the pole marked ‘P’ in Fig. 3, of the reference (REF), standard (STD), simplex
(SPX) and binary (BIN) ensembles. The limit | z | = 1 of stability (solid, thick) and lines connecting the primary variations
p1, p2, p3, p4 of the STD as well as lines (dashed) to combined excitations of the BIN are included for reference.
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Figure 7. Summation of covariance: Total (solid), system (dashed) and noise (dotted), for the three test signals (thin,
dashed), with the error (ε) of square summation ( × 10) (Eq. 27).
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7. Conclusions

Deterministic sampling remains controversial [27] while random sampling has qualified as a
preferred state-of-the-art method for propagating uncertainty. Both result in finite statistical
[17] ensembles, which are approximate finite representations of the primary statistical models.
Their sampling strategies and convergence rates are dramatically different. While determin‐
istic sampling humbly aims at representing the most relevant and best known statistical
information, random sampling targets complete control of all features of the ensemble. Such
detailed information is rarely known and must instead be more or less blindly assigned. The
inevitable consequence is that critical computational resources are spent on propagating, at
best, vaguely known details. The numerical power of modern computers is better spent on
refinements of the signal processing model (longer time series, higher sampling rates, larger
systems etc.). Refined methods of random sampling have therefore been proposed which either
simplifies the model, or improve the sampling distributions. Compared to deterministic
sampling though, their convergence rates remain low.

It is easy to confuse deterministic sampling with experimental design and optimization [28].
Even though any sample could be a possible outcome of an experiment, deterministic ensem‐
bles represent rather than realize (as random ensembles) statistical distributions. Instead of
associating a joint distribution to the parameters of an uncertain model, it is possible to directly
represent their statistics with a deterministic ensemble. That would eliminate the need of
interpreting abstract distributions and result in complete reproducibility. The critical choice
of ensemble would be assigned once and for all in the calibration experiment, with no further
need of approximation.

The use of excitation matrices made it possible to construct universal generic ensembles. The
efficiency of the minimal SPX ensemble is indeed high but so is also its third moment. While
the STD maximizes the range of each parameter, the BIN minimizes it by varying all parameters
in all samples. The STD is the simplest while the SPX is the most efficient ensemble. In the
example, the BIN was most accurate. For non-parametric models with many parameters,
reduction of samples may be required. Elimination of singular values (ESV) and correlated
sampling (CRS) were two such techniques. The presented ensembles are not to be associated
to random sampling as a method. They are nothing but a few examples of deterministic
sampling, likely the best ensembles are yet to be discovered.

It is indeed challenging but also rewarding to find novel deterministic sampling strategies.
Once the sampling rules are found, the application is just as simple as random sampling, but
usually much more efficient. Deterministic sampling is one of very few methods capable of
non-linear propagation of uncertainty through large signal processing models.
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