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1. Introduction

It is extremely important to reduce the action of man-made factors on the environment
and vegetables and crops grown in greenhouses. On the one hand, the whole year round,
greenhouse technologies provide the production of vegetables and other crops, which contain
micro- and macroelements necessary for the vital activity of human being. On the other hand,
the use of the technologies implies the use of mineral fertilizers for extra root and foliar
nutrition in order to intensify the production. However, despite the use of drop irrigation
and small doses of mineral feeding, the concentrations of various heavy metal compounds,
radioactive and poisonous substances in the soil of greenhouses reach the limit values after
2–3 years of its service. Then the exhausted soil should be disposed and replaced by new soil,
and this is hundreds and thousands of tons.

At the same time, the problem of the neutralization of the used soil arises, since it cannot
simply be stored in the open air due to the formation of the dust fractions of the above
compounds. In the rain and during snow melting, water-soluble substances penetrate into soil
and water sources together with run-off water. From the aforesaid it follows that searching
new ways for the nutrition of plants, which allow reducing soil contamination, is urgent. In
this regard, the technologies for plant nutrition from the gas phase are quite promising, since
the plants receive significant portion of nutrients (up to 80%) through their foliage and stems.
It should be noted that controlled gas media have already been used for quite a long time for
storing vegetables and fruit. The method is based on the formation of special concentrations
of nitrogen, oxygen, carbon dioxide and water vapours in order to reduce the intensity of
respiration and metabolism.

Join Stocks Company Nord, (Perm, Russia) has developed a new nanobiotechnology

involving nanoparticles for the production of ecologically pure vegetables in greenhouses.
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The main feature of the method is the generation of a special controlled gas medium

containing nanoparticles of the main macro- and microelements, which freely penetrate into

the foliage and stems of crops providing their metabolic activity. The source of the gas

medium is the products of self-spreading high-temperature synthesis [1–5].

Figure 1. The diagram of the use of gas-generator (1): a) the general view of an industrial greenhouse; b)
nanoaerosol gas medium (2) surrounding greenhouse plants (3).

Figure 1 demonstrates the use of a large-size gas-generator for the special controlled gas media

(CGM) formation in an industrial greenhouse. CGM is complex media with specially selected

concentrations of inorganic compounds in the form of nanoparticles for protecting living

systems. They are used for the foliar nutrition of plants with macro- and microelements, the

control of living system diseases, the protection of plants against frosts, the seed treatment,

etc. The method comprises the creation of a controlled gas medium containing nanoparticles

(Figure 2) which can easily penetrate into foliage and stems of plants providing their

metabolic activity. The results of the application of the above technology show the absence

of carcinogens, heavy metals and other dangerous substances both in foliage and fruits.

The use of this technology for growing various vegetables and crops in greenhouses of Russia,

Byelorussia, the Ukraine, China and another countries shows that the controlled gas medium

positively influences the metabolism of crops. It increases their productivity, improves their

taste properties, reduces the content of harmful substances in them (for example, the content

of nitrates is reduced by a factor of ten) and extends the vegetation period, etc. In addition, the

use of such a technology cuts the amount of mineral fertilizers applied for the root systems in

half. The experimental investigations show that the concentrations of useful substances in a

crop leaf increase in two or more times after two-hour exposure to the "nutrient" gas medium.
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It should be noted that the high efficiency of the technology of the plant nutrition from the

gas medium determines a pressing need to establish certain theoretical aspects and kinetics of

the processes taking place when a plant interacts with the substances of the gas medium. It

is also necessary to establish the mechanisms of the nanoparticle formation and the evolution

regularities for the dynamic interaction processes of condensed nanosystems and plants. In

this connection, the experimental investigations and mathematical modeling of the above

processes is rather urgent since it allows efficient and many-sided studying the behavior

of nanosystems. The analyses of these problems were the purposes of this investigation.

Research of processes of occurrence and movement of nanoparticles, being a base element

of technology is especially important.

Figure 2. Main steps of biological processes of plant nutrition from controlled gas medium containing
nanoparticles: 1 – generation sources, 2 – burning generation sources, 3 – the gas mixture movement
from its generation source over the space where the plants are 4 – plant nutrition from gas medium.

2. The task definition. Theoretical base of multilevel simulation and

experimental investigations

There are 8 main stages of the processes of the plant nutrition from the gas medium, which

follow each other in time (Figure 3):

1. Combustion of a highly condensed system and gas mixture motion from a source, that

generates it, in space where the plants are situated.

2. The building-up of molecular formations containing the above elements.

3. Merging atoms and molecules into nanoparticles at cooling the gas mixture to normal

temperature.

4. The movement of the nanoparticles formed in the gas medium.

5. The sedimentation of the nanoparticles on the plants.

6. The penetration of the nanoparticles inside the plant from its surface.
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7. The movement of the nanoparticles inside the plant along its microchannels and through

its pores, and through its cellular and intercellular spaces.

8. The decomposition of the nanoparticles inside the plant into the component molecules and

atoms.

Figure 3. The main steps of the processes of the plant nutrition from the gas phase.

It should be noted that the tasks of modelling the processes of the plant nutrition from the

gas phase are multilevel tasks, and each level requires special physical and mathematical

approaches. Let us consider the methods for modelling the above successive processes. The

calculation of the configuration of the molecular formations containing nitrogen, potassium

and phosphorus (step 2) and the decomposition of the nanoparticles into component

molecules and atoms inside the plant (step 8) require "ab initio" calculations. The simulation

of the process of the molecule joining-up in nanoparticles at cooling the gas mixture to normal

temperature (step 3) can be carried out with the help of the molecular dynamics methods.

The calculation of the processes of the nanoparticle movement in the gas mixture, the

sedimentation of the nanoparticles on the plant surface, the penetration of the nanoparticles

inside the plant from its surface and the movement of the nanoparticles inside the plant

along its microchannels, through its pores, cellular and intercellular spaces (steps 4–7) requires

mesodynamics.

It is important that some of the processes could be considered within the framework of

the continuum mechanics. They are the processes of the gas mixture movement over the

space where the plants are (step 1) and steps 4 and 5 of the model under discussion as well.

The theoretical base of multilevel simulation of the formation, movement, integration and

disintegration of nanoparticles’ systems in gas medium depending on the thermodynamic

conditions of the medium are presented. The modelling is performed with the use of the

methods of quantum mechanics, molecular dynamics and mesodynamics. As follows from

the above-described process of application of nanoaerosols, nanoparticles are formed in a

complex gas medium. Usually such problems are modeled by the molecular dynamics

tools [6, 7]. However, their solution only within the framework of molecular dynamics

requires much time and computational power. So, for example, due to a small mass of

interacting atoms in order the integration scheme is stable the integration step should be taken

of about 10−15 s, which leads to slow integration of the equations of molecular dynamics.

Moreover, a collective behavior of atoms, molecules, and nanoparticles is observed at different
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stages of application of nanoaerosols. This causes a multilevel character of the simulation

problems to which there correspond different physical and mathematical approaches [8, 9].

The main problems of such simulation are:

• multilevel related problems;

• large number of variables;

• change of scales both in space and time;

• characteristic times of the processes at different levels differ by orders of magnitude;

• change of problem variables at different levels of simulation;

• coordination of the boundary conditions in transition from one level of simulation to

another with change in the problem variables;

• stochastic behavior of nanosystems.

This leads to the necessity of using different mathematical approaches and models at

different levels of formation and application of nanoaerosols. Calculation of the configuration

of molecular formations that constitute nanoparticles requires "ab initio" calculations, i.e.,

quantum-mechanical methods of simulation [10]. These methods model nanoobjects most

fully and accurately, with account for quantum effects. However, they require huge

computational resources. At present the application of quantum-mechanical methods of

calculation to nanosystems is limited by a number of atoms that enter the nanosystem not

higher than 1000–2000 atoms. The process of aggregation of molecules to nanoparticles can

be calculated by the methods of molecular dynamics [11–13]. These methods allow one to

consider the systems that involve 10 and more millions of atoms but they do not take into

account quantum phenomena.

Calculation of the motion processes of nanoparticles in a gas mixture and their aggregation

is the problem of mesodynamics [14, 15]. A characteristic feature of mesodynamics is

simultaneous use of the methods of molecular and classical dynamics. One should also

mention that a number of processes, especially those occurring at the completing stages of

nanoaerosol technologies, can be considered within the framework of continuum mechanics.

Each method mentioned has its advantages and limitations. The use of one or another method

of simulation or their combination as applied to specific problems of aerosol nanotechnology

depends on the required accuracy of calculations. The main reasons and aims of transition

from one method of simulation to another at different stages of nanoaerosol technologies are:

1. Decrease of the number of nanosystem variables due to transition from calculation of

motion of separate atoms to the analysis of motion of nanoparticles or groups of them.

2. Decrease of the number of bonds between different elements of the nanosystem due to

a decrease of the number of "nearest neighbors" occurring in the region of interaction of

elementary cells of the nanosystem.

3. Increase of the computational size of the nanosystem due to enlargement of the elementary

reference cell.

4. Broadening of the scale of nanosystem calculation in time due to an increase of the time

step of integration of the nanosystem equations.
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We consider the above-presented methods of simulation step by step and indicate the

methods of the correlated application of them to different stages of the problems of aerosol

nanotechnologies.

2.1. Quantum-chemical methods of simulation

Quantum-chemical methods of simulation use the quantum mechanics tools and are based

on the solution of the Schrödinger equation [16]. In using this method one considers a

full electronic and atomic structure of objects (atoms, molecules, ions), takes into account

a detailed configuration of all electron clouds. In this case, complete information on the

behavior of the considered system of N particles (nuclei of atoms and electrons) in the system

of coordinates x1, x2, x3 is determined by the wave function Ψ that depends on 3N coordinates

of all particles of the atomic system, projections of their spines on the axis and time t

Ψ = Ψ (x11, x21, x31, sx31 , x12, x22, x32, sx32 ; ...; , x1N , x2N , x3N , sx3N , t) . (1)

Variation of the wave function Ψ in space and time is determined by the Schrödinger wave

equation

i h
∂Ψ

∂t
=

⌢

HΨ, (2)

where h is the Planck constant; i =
√
−1;

⌢

H =
N

∑
k=1

{

− h2

2mk
∇2

k + Uk (x1k, x2k, x3k, sx3k
, t)

}

+

+
N

∑
k=1

N

∑
j �=k=1

Ukj

(

x1k, x2k, x3k, sx3k
x1j, x2j, x3j, sx3j , t

)

(3)

where
⌢

H is the Hamilton operator (an analogue of the classical Hamilton function) for the

considered atomic system, Uk (x1k, x2k, x3k, sx3k
, t) is the potential of the external field that acts

on the kth particle, and Ukj

(

x1k, x2k, x3k, sx3k
x1j, x2j, x3j, sx3j , t

)

is the potential of interaction

between the particles j and k.

Equation (3) holds when two conditions are met: elementary particles do not disappear and

no new elementary particles appear in the evolution process of the nanosystem; the velocity of

elementary particles is small compared with the velocity of light. For an aerosol nanosystem

containing Na atomic nuclei and Nel electrons the Hamilton operator (in the stationary case

without account for spines of electrons) has the form

⌢

H = −
⌢

KNa −
⌢

KNel + UNa Na + UNa Nel + UNel Nel , (4)

where
⌢

KNa = − h2

2mi

Na

∑
i=1

∇2
k (5)
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is the operator of the kinetic energy of atomic nuclei,

⌢

KNel = − h2

2mel

Nel

∑
i=1

∇2
k (6)

is the operator of the kinetic energy of electrons,

UNa Na = e2

(

Na

∑
l=1

Na

∑
k=1,k �=l

ZkZl

rkl

)

(7)

is the potential energy of interaction of atomic nuclei,

UNa Nel = e2

(

Na

∑
k=1

Nel

∑
i=1

Zk

rik

)

(8)

is the potential energy of interaction between the nuclei of atoms and electrons,

UNel Nel = e2

(

Nel

∑
i=1

1

rij

)

(9)

is the potential energy of interaction of electrons; e is the electron charge, mel is the electron

mass, Zk, Zl is the number of protons in the atomic nucleus, rkl , rik, rij are the distances

between the atomic nuclei, between the nuclei of atoms and electrons, and between the

electrons, respectively. With account for (5)–(9) the Hamilton operator (3) takes the form

⌢

H = − h2

8πmel

Nel

∑
i=1

∇2
k −

h2

8πmi

Na

∑
i=1

∇2
k − e2(

Na

∑
k=1

Nel

∑
i=1

Zk

rik
−

Nel

∑
i=1

1

rij
−

Na

∑
l=1

Na

∑
k=1,k �=l

ZkZl

rkl
). (10)

In the general case, the Schrödinger equation does not have an analytical solution and is

usually solved by numerical methods. Here, the main specific feature of the Schrödinger

equation is that the function exists only for the entire system as a whole. An individual particle

(atomic nucleus or electron) cannot be in the state which can be described by the wave function

for a separate particle and the common wave function cannot be presented as a product of

wave functions of separate particles. Therefore, direct solution of the Schrödinger equation

requires huge computational capacities of computers. For the considered nanosystem

consisting of atomic nuclei Na and Nel electrons, the Schrödinger function should be

determined in the configuration space 3Na Nel dimensions. With a number of integration

points over each dimension equal to 10n, summation should be made by 10 f elements of the

volume of the configuration space, where f = 3nNa Nel . It is obvious that this is a very large

number even for a small object. For example, for a nanoparticle containing 100 atoms and

100 electrons for 100 integration points over each coordinate the number of elements of the

volume of the configuration space is 1060000. At present the main efforts of researches are

directed to the development of approximate calculation methods which will be considered

during calculation of specific nanosystems.
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2.2. Methods of molecular dynamics

Molecular dynamics, as applied to nanoaerosol technologies, can be successfully used for

formation of the spatial structure and molecular atomic composition of nanoparticles which

condense in gas mixture cooling. The molecular dynamics method was developed in the

works by Hill, Dostovsky, Hughes, Ingold, Westheimer, Meyer, Alter, Older Vineyard, and

other scientists in the period from 1946 to 1960 [17], and was intensely developed by the efforts

of many scientists applied to different problems of simulating the processes in condensed,

liquid, and gas media at the atomic level. This method is based on the concept of the

Born-Oppenheimer force surface that is a multidimensional space describing the system

energy as a function of the position of nuclei and atoms that form the system [17]. Thus, in

the molecular dynamics method motion only of atomic nuclei of the nanosystem, but not the

motion of electrons, is considered. The motion of atomic nuclei is determined by the Hamilton

equations
dx̄i

dt
=

∂H

∂p̄i
, (11)

dp̄i

dt
= − ∂H

∂x̄i
, (12)

where

H =
N

∑
k=1

{

p2
k

2mk
+ Uk (x1k, x2k, x3k, t)

}

+

+
N

∑
k=1

N

∑
j �=k=1

Ukj

(

x1k, x2k, x3k, x1j,2j , x3j, t
)

−
N

∑
k=1

αkp̄k x̄k

(13)

is the Hamilton function, x̄i is the vector of the coordinates (x1i, x2i, x3i), and p̄i is the vector

of moment
(

mi
dx1i
dt , mi

dx2i
dt , mi

dx3i
dt

)

.

Having substituted (13) into Eqs. (11) and (12), we obtain the equations of the motion of

nanosystem atoms in the form of the Newton equations

mi
dV̄i

dt
=

Na

∑
j=1

F̄ij + F̄
g
i (t)− αimiV̄i, i = 1, 2, .., Na,

dx̄i

dt
= V̄i, (14)

where mi is the mass of the ith atom, F̄ij are the forces of interatomic interaction, αi is the

coefficient of "friction" in the atomic system, F̄
g
i (t) are the external forces, and t is the time.

As a rule, a random force F̄
g
i (t) that affects the ith atom and is specified by the Gauss

distribution. The Gauss distribution is the δ-correlated in time Gaussian random process with

the following properties:

a mean value of the random force is 0
〈

F̄
g
i (t)
〉

= 0; (15)
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F̄
g
i (t) does not correlate with the velocity dx̄i

dt of the atom under consideration, thus

〈

F̄
g
i (t)

dx̄i

dt

〉

= 0; (16)

〈

F̄
g
i (t) F̄

g
i (0)

〉

= 2kBT0αimiδ (t) , (17)

where kB is the Boltzmann constant, δ (t) is the Dirac delta function, and T0 is the temperature.

Thus, the interaction of the atomic molecular system with the external medium (the heat

reservoir), which consists of the following two parts: the systematic friction force

Na

∑
j=1

F̄
f
i (t) = −αimiV̄i, (18)

and the random force F̄
g
i (t) (noise) is described. In this case, the equations of motion are

called the Langevin equations and the molecular dynamics method of calculation by these

equations is given the name of the Langevin dynamics method.

Nanoparticles start formation from the gas medium that at the initial instant consists of the

atoms of different materials and molecules. In cooling, due to condensation the gas medium is

supplemented with time by nanoparticles. This process occurs in a macro-volume including a

large number of atoms and molecules. Simulation of such system by the methods of molecular

dynamics is impossible due a large number of variables, therefore simulation occurs in a

calculated cell occupying nano- or microvolume with the specific boundary conditions of

the Born-Karman surface of the cell [7, 17]. In this case, the molecular dynamics tools allow

obtaining of not only general characteristics of the system, but also make it possible to follow

the trajectories of each atom and nanoparticle. The essence of these boundary conditions is

explained in Figure 4. The space modeled is divided to 27 equal cells. The central cell is the

calculated cell, other cells are the "images" of it. In this case, simulation is made in the central

cell only. All other cells-images contain the same set of atoms, molecules and nanoparticles

as the calculated cell has. The total number of the images of the calculated cell is 26. The

molecular dynamics equations (14) are written only in the calculated cell. The trajectories of

motion of atoms, molecules, and nanoparticles in the images of the calculated cell are specified

by absolutely similar trajectories of their motion in the calculated cell according to Eqs. (14).

When any atom, molecule, or nanoparticle from the inner space crosses any boundary, a

similar atom, molecule, or nanoparticle with the same properties and velocity appears in

the calculated cell from the opposite boundary. When an atom, molecule, or nanoparticle

approaches the inner boundary of the cell the atoms, molecules, and nanoparticles of the

images begin to affect them. Thus, the entire calculated space is presented in the form of the

set of equal calculated volumes and motion of microobjects and occurrence of any processes

in them are taken to be identical and the effect of the calculated cell edges is eliminated.

Thanks to the hypothesis on the periodicity of the modeled region, the periodic boundary

conditions allow a decrease of the calculated volume and, thus, a considerable decrease

of the computation expenses in simulation. We consider a mathematical formulation of

the Born-Karman periodic boundary conditions. A set of images of the ith atom with the
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Figure 4. Periodic boundary conditions.

coordinate r̄i is specified as follows:

r̄i,image(k1,k2,k3) = r̄i + Lj · īj, k1, k2, k3 = 1, 2, 3, (19)

where Lj is the length of the calculated cell along the corresponding coordinate, k1, k2, k3 are

the numbers of cells-images in all directions, r̄i,image(k1,k2,k3) is the radius-vector of the image

of ith atom, and īj is the transfer vector;

īj =

⎛

⎜

⎝

i1

i2

i3

⎞

⎟

⎠
, i1, i2, i3 = - 1,0,1, i1 �= i2 �= i3 = 0, (20)

In such a manner we create all 26 images of the ith atom. As the atom reaches the boundary of

the calculated cell it enters the cell from the opposite side with the coordinates r̄i = r̄∗i + Lj · l̄j,

where

l̄j =

⎛

⎜

⎝

l1

l2

l3

⎞

⎟

⎠
, l1, l2, l3 = - 1,0,1, l1 �= l2 = ±1, l2 �= l3 = ±1, l1 �= l3 = ±1, (21)

r̄∗i is the radius-vector of the ith atom at the boundary of the calculated cell and l̄j is the transfer

vector. The atom preserves the motion parameters:

V̄(r̄i) = V̄(r̄∗i + Lj · l̄j). (22)

The presented mathematical formulation of the periodic boundary conditions eliminates the

effect of edges and allows one to accurately describe interactions occurring in the calculated

region. To calculate the problem of nanoparticles formation in the calculated cell by the

molecular dynamics method we use the structure of molecules constituting the gas mixture,

which is obtained at the first stage of simulation, and specify the coordinates and velocities of

atoms of all molecules at the time instant t = 0

x̄i = x̄i0,
dx̄i

dt
= V̄i = V̄i0, t = 0, x̄i ⊂ Ω, (23)
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where Ω is the volume of the calculated cell. The initial coordinates of atoms and molecules x̄i0

are specified proceeding from the uniform distribution of them in the gas mixture and random

mixing within the calculated cell. Modules of the initial velocities of atoms and molecules are

calculated according to the Maxwell distribution [17] proceeding from the initial temperature

of the gas mixture T0. The relation between the initial temperature T0 and initial velocities V̄i0

is determined by the expression

T0 =
1

3NkB

Na

∑
i=1

mi (V̄i0)
2
, (24)

where N is the total number of the degrees of freedom of the atoms in the gas mixture and Na

is the number of atoms in the gas mixture. The Maxwell distribution for the velocity vector

V̄0 =
(

V̄x0, V̄y0, V̄z0

)

is the product of the distributions for each of three directions:

fV

(

V̄x0, V̄y0, V̄z0

)

= fV (V̄x0) fV

(

V̄y0

)

fV (V̄z0) , (25)

where the distribution along one direction is determined by the normal distribution:

fV (V̄x0) =

√

m

2πkbT0
exp

(

−m(V̄x0)
2

2kbT0

)

. (26)

Integrating the system of equations (14) with respect for time using the presented initial

conditions, at the time instant t we obtain the main parameters of nanoaerosol:

a mean kinetic energy of the system

E(t) =

N
∑

i=1
mi (V̄i(t))

2

2
, (27)

an instantaneous value of temperature

T(t) =
1

3NkB

N

∑
i=1

mi (V̄i(t))
2
. (28)

The temperature is obtained by averaging of the instantaneous values T(t) over some time

range

T(t) =
1

3NkBτ

t0+τ
∫

t0

n

∑
i=1

mi (V̄i(t))
2

dt. (29)

Under real conditions the molecular system usually exchanges energy with the surrounding.

Special algorithms - thermostats - are used to take into account such energy interactions. The

use of the thermostat allows one to calculate molecular dynamics at a constant temperature

of the medium or, on the contrary, to change the medium temperature according to a certain

law.

In the general case, the thermostat temperature does not coincide with the temperature of the

molecular system. At a fixed temperature of the thermostat the molecular system temperature
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can change due to different reasons. In the case of the established equilibrium, the thermostat

temperature and the mean temperature of the molecular system should coincide. The simplest

way to maintain a constant temperature of the thermostat is scaling of velocities. Scaling is

done using the expression

V̄new
j (t) = V̄old

j (t) ·

√

√

√

√3NkBTt

/〈

N

∑
i=1

mi

(

V̄old
i (t)

)2
〉

, (30)

where Tt is the thermostat temperature. Averaging of a value of the total moment within the

time interval between scaling of velocities is denoted in angular brackets. Another important

factor is the effect of the initial temperature on the distribution of molecule velocities. As is

shown above, in the molecular dynamics problem the velocity field at the initial instant of

time is usually selected according to the Maxwell distribution. This distribution has a form of

normal distribution. As should be expected, for gas at rest a mean velocity in any direction is

zero. It is of interest to know the distribution of the velocities of molecules or atoms not over

the projections but over the absolute value of velocities. The velocity modulus V is determined

as

V =
√

V2
x1
+ V2

x2
+ V2

x3
. (31)

Therefore, the velocity modulus will always be larger than or equal to zero. Since all Vj are

distributed normally, V2 will have the f (V) distribution with three degrees of freedom. If

f (V) is the probability density function for the velocity modulus, then it has the form:

f (V) dV = 4πV2

(

mi

2πkBT

)3/2

exp

(−miV
2

2kBT

)

dV. (32)

The following expression is used for calculation of the nanosystem pressure:

P(t) =
1

3W

⎡

⎣

N

∑
i=1

mi (V̄i(t))
2 − ∑

i,j;i<i

(r̄ j̃(t)− r̄i(t))F̄i j̃(t)

⎤

⎦ , (33)

where W is the volume occupied by the nanosystem. The first term in (33) depends on the

energy of motion of atoms or molecules and the second term is determined by pairwise

interaction of atoms. Along with the pair of ith and jth atoms, all images of the jth atom

are considered and interaction between the closest image j̃ and the ith atom is calculated. The

function F̄i j̃(t) characterizes a value of interaction between the atoms. The use of the barostat

algorithms allows simulation of the behavior of the system at constant pressure. The simplest

of them is the Berendsen barostat where a value of pressure is maintained constant by scaling

the calculated cell. The position of the particles in the system at each time step is modified

according to the scaling coefficient of the Berendsen barostat μ:

r̄i(t) → μr̄i(t), i = 1, 2, ..., N. (34)
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The scaling coefficient is determined by the expression

μ = 3

√

1 − Δt

τP
(P − Pb), (35)

where Δt is the integration step, τP is the time of barostat implementation, P is the current

pressure, and Pb is the barostat pressure. Transformation of the position of particles by

formula (34) leads to the change of the calculated cell size and volume and thus to the change

of pressure. The primary problem of the molecular dynamics method is calculation of the

forces of interaction between atoms (molecules). Forces of this interaction are potential and

are determined from the expression

F̄ij = −
N

∑
i=1

∂U(r̄)

∂r̄i
, (36)

where r̄ = {r̄1, r̄2, ..., r̄N }; r̄i is the radius vector of the ith atom, is the potential of

intramolecular interaction that depends on the mutual position of all atoms. This method is

based on the concept the Born-Oppenheimer force surface that is the multidimensional space

describing the system energy as a function of the position of the nuclei of atoms that form

it [17]. The potential U(r̄), in the general case, is specified in the sum of several components

that correspond to different types of interaction:

U(r̄) = Ub + Uθ + Uϕ + Uej + ULJ + Ues + Uhb, (37)

where the terms correspond to the following types of interactions: the change of the bond

length Ub, the change of bond angle Uθ , the torsion angles Uϕ, the plane groups Uej, the

van-der-waals interactions ULJ , the electrostatic interactions Ues, and the hydrogen bonds

Uhb. The indicated terms have different functional forms [11].

2.3. Simulation of nanosystems by mesodynamics methods

Calculations of controlled gas media by the molecular dynamics method are effective at the

initial stage of formation of nanoparticles. However, simulation of processes that occur in the

gas medium by molecular dynamics at the atomic level requires huge computer resources and

time. This stipulates the topicality of the development of economic methods of calculation.

In this section, we suggest a technique that is based on the mesodynamics methods [18].

We note that mesodynamics is the development of method of particles. The essence of the

method is as follows. As atoms and molecules merge to nanoparticles, the larger number them

manifest a collective behavior. Atoms and molecules making the nanoparticle move together

with small oscillation near the equilibrium position within the nanoparticle structure. This

allows one to decrease a number of simulated objects and to use another simulation method –

mesodynamics. Mesodynamics is based on a collective behavior of atoms and uses force

parameters that are calculated by the molecular dynamics methods. In this case, motion of

nanoparticles is studied by the methods of classical mechanics. We consider main stages of

application of mesodynamics.
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The first stage is the calculation of interaction of the pair of nanoparticles. We give the problem

formulation for symmetric nanoparticles and then for nanoparticles of an arbitrary shape.

With this in mind, we consider a nanoparticle that consists of Na atoms occupying the region

Ω at the time instant t = 0 (Figure 5). The position of each ith atom of the nanoelement

is specified by the coordinates xi1, xi2, xi3. Atoms interact with each other. Figure 6 shows

the interaction forces F̄ik (the force of interaction between atoms i and k) and F̄ij (the force of

interaction between atoms i and j). The force of interaction between two atoms is directed

along the line that connects their centers. Moreover, each ith atom of the nanoelement is

affected by the external force F̄b
i . The direction and value of this force is determined by

the type of interaction between the nanoelement and the surrounding medium. Atoms of

a nanoparticle move under the action of the system of these forces.

Figure 5. Nanoparticle: A) Magnified image of the part of a nanoparticle.

The motion of atoms that form a nanoparticle is determined, according to the molecular

dynamics method, by the system of differential equations (14) which is supplemented with

forces caused by interactions of atoms with the surrounding medium

F̄bi = −
N

∑
1

∂Ub(ρbi)

∂ρbi
ēib, (38)

where ρbi is the distance between atom i and atom b from the surrounding medium, ēib is the

unit vector directed from atom i to atom b, and Ub(ρbi) is the potential of interaction between

nanoparticle atoms and atoms from the surrounding medium. We consider two symmetric

nanoparticles lying at a distance S from each other (Fig. 4). In this case, Eq. (14) takes the

form

mi
d2x̄i

dt2
=

N1+N2

∑
j=1

F̄ij + F̄i (t)− αimi
dx̄i

dt
, i = 1, 2, .., (N1 + N2), (39)

at the boundary conditions

x̄i = x̄i0,V̄i = V̄i0, t = 0, x̄i ⊂ Ω1

⋃

Ω2, (40)
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where N1 and N2 is the number of atoms in the first and second nanoparticles, respectively, Ω1

and Ω2 are the regions occupied by the first and second nanoparticles, respectively. Solution of

(39) at the boundary conditions (40) allows calculation of the trajectories of motion of atoms of

each nanoparticle and, consequently, of nanoparticles as a whole. In this case, the total forces

of interaction between the particles will be determined by the relation

F̄b1 = −F̄b2 =
N1

∑
i=1

N2

∑
j=1

F̄ij, (41)

where i and j are the atoms of the first and second nanoparticles, respectively.

Figure 6. Schematic of interaction of nanoparticles: A) Magnified image of the part of a nanoparticle.

In the general case, the force of interaction of nanoparticles F̄bi can be written as the product

of functions dependent on the size of nanoparticles and the distance between them:

|F̄bi| = Φ11(Sc) · Φ12 (D) . (42)

The direction of the vector F̄bi is determined by the director cones of the vector that connects

the centers of masses of nanoparticles. Of course, the forces of interaction between the

particles change in time with small oscillations about a mean value. Therefore, Eq. (42)

determines a mean value of the interaction force of nanoparticles. We consider two interacting

nonsymmetric nanoparticles lying from one another at a distance Sc between their centers of

masses and oriented at certain specified angles relative to one another (Figure 7). In contrast

to the previous problem interaction of atoms entering into nanoparticles leads not only to

relative displacement, but to rotation of the latter. Thus, in the general case, the sum of all

forces of interaction of atoms of the nanoelements is reduced to the resultant vector of forces
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F and the principal moment M

F = Fb1 = −Fb2 =
N1

∑
i=1

N2

∑
j=1

Fij, (43)

M = Mb1 = −Mb2, (44)

where i and j are the atoms of the first and second nanoparticles, respectively.

Figure 7. Interacting nanoparticles: M, F are the principal moment and resultant vector of forces.

The main aim of this stage of calculation is the construction of the dependences of forces and

momenta of interaction of nanoparticles on the distance between their centers of masses Sc,

angles of mutual orientation of nanoparticles Θ1, Θ2, Θ3 (shape of a nanoelement), and their

characteristic dimension D. In the general case, these dependences can be presented in the

form

F̄bi = Φ̄1(Sc, Θ1, Θ2, Θ3, D), (45)

M̄bi = Φ̄2(Sc, Θ1, Θ2, Θ3, D). (46)

For spherical nanoparticles the angles of mutual orientation do not influence the force of their

interaction, therefore the moment in Eq. (39) is identically equal to zero. In the general

case, functions (45) and (46) can be approximated, by analogy with (42), as a product of

the functions of Sc, Θ1, Θ2, Θ3, D, respectively. In the study of the evolution of the system

of interacting nanoparticles we consider motion of each nanoparticle as a comprehensive

whole. In this case the translatory motion of the center of masses of each nanoparticle is

specified in the system of X1, X2, X3, and rotation of a nanoparticle is described in the system

of coordinates Z1, Z2, Z3 related to its center of masses (Figure 8).

This transition allows one to pass to other variables (from the coordinates and velocities

of atoms to the coordinates and velocities of the center of masses of nanoparticles) and to

decrease the number of them. For a nanosystem consisting of Nnp nanoparticles each of

which contains Na atoms the number of mesodynamics variables, compared to the molecular

dynamics method, decrease kx times, which is calculated by the formula [15]

kx = ξx
Na Nnp

Nnp = ξx Na, (47)
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Figure 8. System of interacting particles.

where ξx = 1 for force interaction of nanoparticles, ξx = 0.5 when both forces and momenta

of interaction of nanoparticles are taken into account. The system of equations that describes

motion of interacting nanoparticles has the form
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d2Xk

1
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Ne

∑
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F
kj
X1

+ Fke
X1

,

Mk
d2Xk

2

d t2 =
Ne

∑
j=1

F
kj
X2

+ Fke
X2

,

Mk
d2Xk

3

d t2 =
Ne

∑
j=1

F
kj
X3

+ Fke
X3

,

Jk
Z1

d2Θk
1

dt2 +
dΘk

2
dt · dΘk

3
dt (Jk

Z3
− Jk

Z2
) =

Ne

∑
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M
kj
Z1

+ Mke
Z1

,

Jk
Z2
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2

dt2 +
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1
dt · dΘk

3
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Z1
− Jk
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Ne

∑
j=1

M
kj
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+ Mke
Z2

,
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d2Θk
3

dt2 +
dΘk

2
dt · dΘk

1
dt (Jk

Z2
− Jk

Z1
) =

Ne

∑
j=1

M
kj
Z3

+ Mke
Z3

,

(48)

where Xk
i , Θi are the coordinates of the centers of masses and the orientation angles

of the principle axes Z1, Z2, Z3 of nanaoparticles; F
kj
X1

, F
kj
X2

, F
kj
X3

are the interaction forces

of nanoparticles calculated by formulas (42) or (43); Fke
X1

, Fke
X2

, Fke
X3

are the external forces

acting on nanoparticles; Nk is the number of nanoparticles; Mk is the nanoparticle;

M
kj
Z1

, M
kj
Z2

, M
kj
Z3

are the momenta of interaction forces of nanoparticles calculated by formulas

(46); Mke
Z1

, Mke
Z2

, Mke
Z3

are external momenta acting on nanoparticles; JZ1
, JZ2

, JZ3
are inertia

momenta of nanoparticles. The initial conditions for the system of equations (48) have the

form

X̄k = X̄k
0, Θk = Θk

0, V̄k = V̄k
0,

dΘk

dt
=

dΘk
0

dt
. (49)
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During the motion of nanoparticles a pair of nanoparticles can merge. In this case, a number of

nanoparticles in the system decreases by unity and, correspondingly, the number of equations

in the system (48) decreases by six. Thus, the parameters of a new, merged, nanoparticle is

calculated and a new reduced system of equations is integrated. It should be noted that if the

momenta of interaction of nanoparticles with each other and with the surrounding medium

are zero, only the first three equations remain in the system of equations (48). Equations

of the motion of nanoparticles (48) allow for all interactions between nanoparticles and their

interactions with the surrounding medium. However, in the gas medium where nanoparticles

are formed the distance between nanoparticles is large and interaction between nanoparticles

is short-range. For this case, the system of equations (48) can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎩
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2
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3
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X3

,

Jk
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1

dt2 +
dΘk

2
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3
dt (Jk
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Z1
,
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1
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3
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,
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3

dt2 +
dΘk

2
dt · dΘk

1
dt (Jk

Z2
− Jk

Z1
) = Mke

Z3
.

(50)

If the moment and rotation of nanoparticles is disregarded, the system of equations (50) takes

the form
⎧
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⎪
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⎪

⎪

⎩
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1

dt2
= Fke

X1
,

Mk
d2Xk

2

dt2
= Fke

X2
,

Mk
d2Xk

3

dt2
= Fke

X3
.

(51)

The forces of interaction of nanoparticles with the gas medium can be presented as

F̄ke
Xi
(t, r̄(t)) = −Mig + f̄i(t)− mibi

dX̄i(t)

dt
, i = 1,2, ..., n, (52)

where f̄i(t) is the random force acting on the ith nanoparticle from the side of the gas medium,

bi is the coefficient of "friction" in the nanoparticles-gas medium system. The random force

f̄i(t) is similar to the random force in the Langevin dynamics. We note that the random

force f̄i(t) reflects the effect of the gas phase molecules on nanoparticles moving in it. It

is determined from the Gauss distribution with the following properties: a mean value of

the random force f̄i(t) is zero and it correlates with the velocity V̄i(t) of the considered

nanoparticle such that

〈

fi(t)V̄i(t)
〉

= 0,
〈

fi (t) fi (0)
〉

= 2kBT0bimiδ (t) . (53)

In order to model the random force fthe Box-Müller transformation is used in Eq. (52). Let

x and y be independent random quantities uniformly distributed on the section [−1, 1]. We

determine R = x2 + y2. In the case when R > 1 or R = 0, the values of x and y should be
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generated anew. As soon as the condition 0 < R � 1 is met, z0 and z1 are calculated. z0 and

z1 are independent random quantities satisfying the standard normal distribution

z0 = x

√

−2 ln R

R
, z1 = y

√

−2 ln R

R
. (54)

Figure 9. Mutual position of the ith and jth particles.

On obtaining the standard normal random quantity z, we can easily pass to the quantity

ξ
(

μ, σ2
)

distributed normally with the mathematic expectation μ and the standard deviation

σ by the formula ξ = μ + σz. According to the data on the random force f̄i(t) in Eq. (52), it

has the mathematical expectation μ = 0 and standard deviation

σ =
√

2kBT0bimiδ (t). (55)

The processes of condensation of nanoparticles in the gas medium are stipulated by the

presence of potentials of interaction between the atoms. In the gas medium with nanoparticles

two main factors affect the processes of their merging: the distance between the interacting

particles and the direction and value of velocities. We consider two nanoparticles that are at a

distance Rij from each other at an arbitrary instant of time (Figure 9). When Rij is small, the

condition of "sticking" of nanoparticles is met. The second factor that affects condensation of

nanoparticles is determined by the value and direction of velocities. It is obvious that very

"fast" particles can overshoot one another even in contact. The angle α between the velocity

vectors (Figure 10) that determines the direction of the motion of particles also substantially

affects merging of particles.

The choice of an adequate condition of sticking of nanoparticles determines the processes of

formation of new nanoparticles and the dynamics of their motion. The sticking criterion of

nanoparticles can be presented in the form

Φ(|R| − Rij; V̄i − V̄j) = 0. (56)

In the problem of merging of non-interacting nanoparticles of great importance is the choice

of the correct time step of integration of Eqs. (51) in both analytical and numerical solution

of them. The choice of a small time step increases the time of problem calculation. A very
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Figure 10. Velocity vectors of the ith and jth particles.

large integration step can lead to "overshoot" of nanoparticles despite condition (54). Thus,

the problem of selecting an optimum time step arises. Solution of this problem in the present

paper is based on the position of nanoparticles and values of their velocities. Figure 11 shows a

pair of nanoparticles at some instant of time. Nanoparticles have the velocities V̄i and V̄j and

their position is determined by the current radius vectors r̄i and r̄j respectively. The projections

of the velocities of the ith and jth particles are determined according to the formulas

prRij
V̄i = V̄i · R̄ij/Rij, prRij

V̄j = V̄j · R̄ji/Rij. (57)

Figure 11. Two nanoparticles moving at the velocities V̄i and V̄j .

The vectors R̄ij, R̄ji and the distance between the particles Rij are calculated from the relations

R̄ij = r̄j − r̄i, R̄ji = r̄i − r̄j, Rij =
∣

∣

∣
R̄ij

∣

∣

∣ =
∣

∣

∣
R̄ji

∣

∣

∣ =
∣

∣

∣
r̄j − r̄i

∣

∣

∣
. (58)

The time interval in which collision of the ith and jth particles becomes possible is directly

proportional to the distance between the particles and inversely proportional to the velocity

projections:

Δtij =
Rij

prRij
V̄i + prRij

V̄j
. (59)

Using formula (59), by selection of all possible pairs of particles, one finds the smallest positive

value Δtij and the integration step is calculated

Δt =
1

m
· min

i,j, dt>0

(

Δtij

)

; i = 1, 2, . . . . , n; j = i, i + 1, . . . . , n, (60)
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where m is the integer number that determined which part of the period of the fastest particles

is the time step. Thus, the choice of the integration step is, first of all, affected by motion of

the fastest particles. For the problem solution not to be delayed by additional calculations,

it is more reasonable to select the integration step not in each iteration, but in a certain

number of them. An important issue of multilevel simulation of the problems of aerosol

nanotechnologies is gradual increase of the space scale during calculation. This possibility

is stipulated by the fact that during formation of nanoparticles in a gas mixture the number

of atoms and molecules decreases. They combine to nanoparticles and then demonstrate a

collective behavior. Thus, the number of variables of the simulation problem becomes smaller.

This process occurs at the stage of gas system simulation by the molecular dynamics

method. As nanoparticles become larger, their concentration in the calculated cell under

consideration decreases rapidly. Then the gas phase is no longer the source of nanoparticles

and nanoparticles enlarge only due to sticking of smaller nanoparticles. Therefore, from now

on it is not expedient to calculate the nanosystem by the molecular dynamics method, it is

necessary to use methods of mesodynamics. Further enlargement of nanoparticles can lead

to the situation when particles within the calculated cell virtually do not interact and their

trajectories do not intersect. However, if we take into account the effect of nanoparticles

from neighboring cells, the condensation process will continue. Thus, adequate investigation

of the condensation problem of nanoparticles requires timely increase of the space scale of

the cell by uniting several calculated cells into one. Since the problem is solved using the

periodic boundary conditions, the space scale can be increased by symmetric mapping of

atoms, molecules, and nanoparticles on the neighboring calculated cells. This problem was

considered in detail in [19].

2.4. The software package

In conclusion we consider the common algorithm of simulation of the problems of aerosol

nanotechnologies and indicate in which way the solutions at different structural levels agree.

The methods of solution of aerosol nanotechnologies presented above allow simulation of

the proceses of formation and motion of n anoparticles in different space and time scales.

Each method makes it possible to simulated the system at different structural levels and

demonstrates an increase of computational capacities when mathematical description of the

nanosystem changes. The general scheme of calculation by different methods is presented in

Figure 12.

Quantum-chemical methods of simulation allow construction of the wave function Ψ. This

function is used for calculation of the structure and dimensions of molecules entering

into the gas mixture. Molecular dynamics, using this information, makes it possible to

calculate velocities and coordinates of atoms (both free and joined into molecules) V̄i, x̄i, and

variation of these quantities with time. The result of calculation is the shape and structure

of nanoparticles formed by molecules and atoms and the forces of interaction between the

atoms. Simulation by the mesodynamics methods on the basis of the calculated data by the

molecular dynamics method allows one to calculated linear and angular velocities of motion

of nanoparticles, coordinates of the center of masses of nanoparticles V̄i, Θk
3, x̄i, and variation

of these parameters with time. The shape and spatial structure of nanostructures formed from

nanoparticles is calculated based on these data.

85
The Plant Nutrition from the Gas Medium in Greenhouses: 

Multilevel Simulation and Experimental Investigation



22 Will-be-set-by-IN-TECH

Figure 12. General scheme of the solution of problems of aerosol nanotechnologies.

It should be noted that the presented methods of calculation are not isolated from each

other. In solving a number of problems they may be used simultaneously. For example, the

trajectories of motion of atoms and molecules can be calculated by the molecular dynamics

methods and the forces of interaction between the atoms and molecules at each calculated time

step by the methods of quantum mechanics. Motion of nanoparticles in the gas phase can be

treated as motion of supermolecules the trajectory of which is calculated by the mesodynamics

methods and the motion of atoms and molecules of the gas mixture is calculated by the

molecular dynamics methods.

The software package was created for the calculation of the above methodology (Figure 13),

designed for the study of the formation of heterogeneous nanoparticles. The software package

allows to multi-level mathematical simulation of the formation of nanoparticles. It consists of

the initial data preparation section, the computational unit, data analysis and visualization

unit and the section of data reconciliation. The initial data preparation section determines the

initial conditions for simulation and generates input files for the computer unit. Computing

init includes sections for quantum-mechanical calculations, molecular dynamics simulation

program, and calculate the motion of nanoparticles mesodynamics methods. The simulation

analysis of the system is performed in the unit of analysis and visualization. The unit

solves the problem of analyzing the structure, properties and characteristics of the formed

nanochatits, as well as visualization of the results. This unit supports the output files for

quantum mechanics calculations, molecular dynamics and mezodinamike, and is able to

reproduce both static and dynamic state of the system being modeled. Algorithms constitute

unit structure, such as the establishment of the atoms are grouped in the nanoparticles,

the definition of uniform composition formed from a mixture of atoms, molecules and

nanoparticles, and nanoparticle properties: radius, shape, volume, bulk quantities of the
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Figure 13. The structure of the software system, where 1 – compute unit 2 – unit of analysis and
visualization.

surface. In addition, this module allows to determine the chemical composition and ratios of

the source of the chemical elements contained in the nanoparticles, to calculate the fraction

of atoms and molecules condensed into nanoparticles, to build the internal structure of

nanoparticles. A detailed description of the software system is presented in the paper [20].

2.5. Technique of experimental research

Experimental investigations were carried out on two main areas:

• The study of the formation of nanoparticles in the gas phase.

• Investigation of the effect of the gas phase with nanoparticles on plants.

The experimental investigations were carried out according to the following technique.

1. The laboratory glass was prepared: it was washed, dried and degreased.

2. The glass was fixed on a holder at the distance of 150 mm from a solid-fuel grain in the

laboratory cabinet.

3. The grain was ignited.

4. The laboratory cabinet was sealed.

5. The sample was held in the gas atmosphere for 5 minutes.
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6. The laboratory cabinet was unsealed.

7. The sample was unfixed from the holder.

8. The sample was placed in the microscope Bikmed-1.

9. With the use of the digital camera Canon Power Shot A95, the sample was photographed

at different magnifications.

10. The digital information obtained was entered into the computer Samsung Q30 and

processed.

11. Then the sample was placed in the atom force microscope NTEGRA Maximus.

12. The optical image of the sample surface was built up.

13. An area on the sample surface, which was free from microparticles, was selected.

14. The above area was scanned.

15. The information in the digital form was entered into the computer and processed.

3. Results of simulation and experimental research

3.1. The analysis of the calculation results

Modelling is carried out in three steps (Figure 14). At the first step, the structures and

shapes of the initial molecules are calculated using the method of quantum mechanics.

In this case, the basic data are the chemical formula of the molecule, the number of

bonds between the atoms and their lengths, the electrostatic charge of the atoms in the

molecule, the angles between the bonds in the molecule (for molecules containing no

less than 3 atoms) and some other information related to the spatial arrangement of the

molecule atoms relative to each other. The second step of the calculation of the processes

in the gas mixture is realized by the molecular dynamics method. The third step of the

calculation is realized by the mesodynamics. The calculation of the structures and shapes

of nanoparticles is carried out. The stability of nanoparticles and nanoparticles’ systems in

the process of their static or dynamic interaction is analyzed. The effect of the composition,

shape and size of nanoparticles on their movement processes in gas medium (Brownian

movement, agglomeration, sedimentation) is studied. The processes of spatial sedimentation

of nanoparticles on plants are analyzed.

The second step of the calculation of the processes in the gas mixture is realized by the

molecular dynamics method. The investigated gas mixture 1 is admitted inside a cylindrical

calculation cell C1 of length L = 220 nm (nanometres) and radius R = 32 nm. The gas

mixture consists of 18 molecules of different types with a certain ratio of mass portions. For

the calculations it is sufficient to take into account only six components of the gas mixture,

since their mass makes 99 percent of the total mass of the system. They are the following

molecules: O2, CO2, K2CO3, H2O, N2, MgO. The system under study contains 8850 atoms

joined into 3500 molecules. The number of molecules of different types in the gas composition

is determined in proportion to their mass portion in the gas mixture.

To start the calculation by the molecular dynamics method at the moment t = 0, we use the

structures of the gas mixture molecules, which were obtained at the first step and then specify
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Figure 14. The settlement circuit: 1 – calculation cell C1: 2 – molecules; 3 – calculation cell C2; 4 – the
nanoparticles.

Figure 15. The calculation scheme for modeling the process of the nanoparticle formation and
movement: 1 – gas mixture containing nanoparticles; 2 – cylindrical calculation cell (the sizes are in
nanometers).

Molecular formula The number of molecules

O2 1600

CO2 800

H2O 600

N2 200

MgO 150

K2CO3 150

Table 1. The molecular composition of the gas mixture.

the coordinates and velocities of the atoms of all the molecules (23). The initial coordinates of

the molecules x̄i0 are given based on the uniform distribution of the gas mixture molecules and

their random intermixing within the calculation cell. The modules of the molecule velocities

are calculated in accordance with Maxwell distribution and at an initial temperature T0 =
600K. The initial temperature and the initial velocities of the molecules are determined by the

relation (24).

For the velocity vector, Maxwell distribution is the product of the distributions for each of the

three directions (25)–(26). Then the gas mixture is gradually cooled down to the temperature
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Figure 16. Mass portions of the molecules of the calculated gas mixture.

Tp = 300K for 1.1 ns (nanosecond). The system temperature is further kept constant at the

above level. The calculations are carried out based on Verlet scheme, with a step of integration

with respect to the time 10−15 s. Thus, the period of 1 ns is calculated over one million steps

of integration with respect to the time, which is quite sufficient for a detailed calculation of

the main parameters of the molecular dynamic processes in the calculated gas mixture. For

the interaction of the molecules with each other, the main types of forces between atoms and

molecules are taken into account.

The calculation shows that nanoparticles form in the gas mixture at cooling. The analysis of

the qualitative composition of the condensed nanoparticles shows that their main component

is potassium. As it follows from Figure 17, the main mass of potassium (95%) transits in the

condensed phase and only 5% of this element remains in gas phase.

Figure 17. The variation of the condensed potassium mass and the mass of potassium in the gas phase.
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Figure 18 shows the variation of volumetric density of the nanoparticles in unit of volume

Nr = Nnp/Ω with time, which form during the cooling process of the initial gas mixture.

From the plot, one can see that at the initial period (about 3 ns), an intensive formation

of nanoparticle takes place in the gas mixture. Their maximal density of the nanoparticles

observed at t = 4.3 ns. It is necessary to note that during this period a noticeable variation of

the number of nanoparticles is taking place. This is indicative of the presence of simultaneous

and competing processes of the formation and decomposition of nanoparticles. By the 55th

nanosecond, these processes subside; new particles do not form, and previously formed

nanoparticles consolidate. Therefore, the density of the nanoparticles gradually reduces to

1022,5 with time. However, despite the decrease in the quantity of the nanoparticles, their

total volume ΩS is increasing with the time (Figure 19). From this figure, it follows that the

volume of the nanoparticles is actively increasing during the initial period, and then the rate

of the nanoparticle volume growth is decreasing. This also indicates that the formation of

new nanoparticles is subsiding. By the 75th nanosecond, the nanoparticle volume growth

practically stops.

Figure 18. The variation of the number of nanoparticles in the unit of volume with time.

Similar dependences are observed when the mass components of the system calculated are

considered. The content of the gas phase is decreasing, and the content of the condensed

phase is increasing; further the ratio of the phases remains constant. Hence, only about 15%

of the system substance turns into condensate and 85% remains in the gas phase. Then the gas

phase is not the nanoparticle source any more and the nanoparticle enlargement takes place

solely due to the reason that small nanoparticles stick together. From this moment, therefore,

it is expedient to calculate a nanosystem with the use of the mesodynamics methods rather

than the molecular dynamics method. This is the last stage of the simulation.

The presence of the nanoparticle consolidating process is confirmed by an increase in the

number of coarse nanoparticles with time. Figure 20 shows histograms of the distribution

of the nanoparticles by sizes at different moments: t = 1.3; 30.3; 75.3 ns. The maximum of

this distribution does not practically shift with time relatively to the size of the nanoparticles;

with a decrease in the number of the nanoparticles, the quantity of the coarser nanoparticles

is growing.

91
The Plant Nutrition from the Gas Medium in Greenhouses: 

Multilevel Simulation and Experimental Investigation



28 Will-be-set-by-IN-TECH

Figure 19. The variation of the total nanoparticle volume ΩS with time.

Figure 20. The variation of the distribution of nanoparticles by sizes with time.

For the simulation, a calculation cell C2 is used (Figure 14-3), and the nanoparticle movement

(Figure 14-4) is calculated without taking into consideration the movement of the gas phase

molecules. The calculation cell C2 is five times larger than a cell C1. Consequently, the volume

of the calculation cell C2 is 125 times larger than the volume of the cell C1 and, hence, the

number of particles in it is 125 times larger than that in the cell C1. For this calculation stage,

the initial conditions are determined in accordance with the relations

t0
2 = t∗1 , X̄i ⊂ Ω2, V̄i =

1

Mi

Ni

∑
j=1

mjV̄j, (61)
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where X̄i are coordinates of the nanoparticle centre of mass; mj and V̄j are masses and

velocities of atoms contained in a nanoparticle, respectively; Mi and mj and V̄i are masses

of nanoparticles and velocities of the nanoparticles’ centres of mass, respectively; t∗1 and t0
2

are the time of the completion of the second stage and the time of the beginning of the third

stage of the calculations, respectively. The mesodynamics calculations show that with time

nanoparticles combine into larger ones. Their number decreases down to 16, and their average

size increases fivefold approximately. This allows a sevenfold increase of the calculation cell.

In this case, in comparison with the calculation cell C2, its volume increases by 343 times and

the number of nanoparticles in it reaches 5488. The step of integration with respect to the time

is 10−13 s.

Thus, in the example considered, the use of the mesodynamics method allowed increasing

the calculation cell volume and the volume of the modelled space by 42875 times. The

integration step increased hundredfold, and at the same time, the number of the variables

remains almost unchanged. The structures and compositions of the formed nanoparticles are

shown in Figure 21. The calculations show that the nanoparticles mainly consist of the K2CO3

molecules with small inclusions of the molecules of water, carbon dioxide and oxygen.

Figure 21. The structures and compositions of the nanoparticles.

The investigation of the movement of nanoparticles is important since it determines the

character of the interaction of the nanoparticles and the surface. Below, the calculated

movement paths for a massive nanoparticle (Figure 22-a) and a particle of a smaller size

(Figure 22-b) are given.

From the figures, it is clear that the nanoparticles are moving in a random and complex way.

Moreover, a massive nanoparticle passes a shorter path than a particle with a smaller mass. Its

path is "smoother". Judging by the shapes of the paths, one can assume that the particles are in

Brownian motion, moving in different directions in space. Consequently, it can be suggested

that the process of their sedimentation occurs on the surfaces that are randomly oriented in

space, in other words, on all the surfaces of a plant.
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Figure 22. Brownian motion path of a massive nanoparticle (a) and Brownian motion path of a
nanoparticle with a smaller mass (b).

3.2. The analysis of the experimental results of nanoparticle formation

The maximal size of the optically-investigated sample area was 7125x5400 μm and the

minimal size was 95x72 μm. The accuracy of the determination of the microparticle boundary

was 0.2 μm in this case. The size of the area scanned with the use of the power atomic

microscope was 1.5x1.5 μm. The accuracy of the determination of the nanoparticle boundary

was 2 nm.

Figure 23. Optical image of particles deposited on the glass (75x magnification).

Let consider the experimental investigation results on the forms and distribution of the sizes of

particles deposited on a glass surface from the gas phase. The investigations conducted show

that the sizes of the particles deposited on the glass in accordance with the above technique

lie in a wide range: from tens of microns to tens of nanometers. In Figure 23, a 75x enlarged

view of the sample is presented. It is seen from the figure that there are particles of 100 μm

in size on the glass. However, the smaller particles are seen as well. A more enlarged image

presented in Figure 24 (187.5x magnification) allows a reliable identification of a particle with

the size of about 10 μm.

In Figure 25 an optical-digital image of the particles deposited on the glass (5375x

magnification) shows that the particles with smaller sizes (1 micron and less than 1 micron)
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Figure 24. Optical image of particles deposited on the glass (185.5x magnification).

are also observed. It should be noted that further digital magnification leads to a no distinct

image and does not allow establishing the sizes of particles reliably.

Figure 25. Optical-digital image of particles (5375x magnification, image size: 95 μm x 72 μm).

Figure 26. Image of nanoparticles deposited on the glass, which was obtained using the power atomic
microscope (image size: 1000 nm x 1000 nm).

In Figure 25, one also can see an area of 1000 nm (1 μm) that was investigated with the use

of the atomic-force microscope. The pattern of scanning is presented on an enlarged scale in
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The fruits of the plant The control plants Plants treated with aerosol

Cucumbers 1.00 1.80

Beet 3.07 3.45

Radish 0.73 2.10

Table 2. The content of potassium in vegetables in milligrams.

Figure 26. The pattern of scanning shows that nanoparticles have precipitated on the glass.

The size distribution histogram for nanoparticles is displayed in Figure 27. It follows from the

plot that most nanoparticles lie in the range from 15 nm to 45 nm.

Figure 27. Size distribution histogram for nanoparticles.

3.3. Research of influence of the gas phase with nanoparticles on plants

Experimental researches included: structural botany researches, studying of activity of

the photosynthetic processes, the biochemical analysis of ferment activity. Also studying

of nanoaerosol action on regulation of a potato growth and dynamics of growth and

development of salad cultures were carried out.

Let’s compare amount of mineral fertilizers traditionally used at cultivation of plants in

hothouses with amount of fertilizers at aerosol nutrition of plants. In the closed soil need

of plants for nitric fertilizers (urea, ammoniac saltpeter) is 1.1 kg/m2, and need for potash

fertilizers is 1.4 of kg/m2 [21]. As mineral fertilizers are brought in the form of water solution

with concentration from 0.5% to 0.8%, the total amount of solution brought in the soil is 80

80 liters per m2. The amount of mineral fertilizers thus is 6.97 kg/m2. Processing by means

of nanoaerosols is carried out one time in 5–7 days. For all period of growth of plants the

fertilizer expense is only 8–14 g/m2. On the average, it approximately in 500 times is lower

than amount of the mineral fertilizers brought in the traditional way in the soil. Respectively

and harmful substances it is brought less. First of all change of the maintenance of various

elements (bohrium, manganese, zinc, cobalt, magnesium, potassium, calcium and iron) in

samples of plants after processing by an aerosol was investigated. Experiments confirmed

increase of the maintenance of elements of a nutripion in various parts of plants (Table 2–3).

Let’s consider the results of studies on the effects of nanoparticles regenerants of potato. The

work was carried out jointly with the Institute of Experimental Botany, National Academy of
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Plant Number of samples Type of treatment
The content of elements, %

B Cu Mn Mo K

Tomatoes
1

Control 37.5 12.4 43.2 0.8 6.8
Aerosol 74.0 43.0 60.0 11.9 7.5

2
Control 33.3 11.5 35.5 0.6 8.8
Aerosol 72.6 50.8 45.9 11.9 7.5

Cucumbers
1

Control 45.0 9.3 17.5 4.7 5.2
Aerosol 67.2 29.1 14.3 14.0 4.0

2
Control 30.0 8.3 15.9 0.8 3.2
Aerosol 70.5 24.0 27.0 4.3 3.8

Table 3. The content of elements in the leaves of plants.

Belarus. The dynamics of growth in regenerants of potato micropropagation in the prolonged

culture of morphometric characteristics was considered. Before each aerosol treatment were

measured morphometric parameters and monitoring of rooting cuttings explants. The data

showing a clear lead in the growth processes of regenerants of potato varieties Dolphin

processed aerosol to 12 days of observation was obtained (Figure 28).

Figure 28. Growth dynamics of potato varieties Dolphin from the experimental data.

As can be seen from Figure 29 experimental plants are actively developing, exceeding the

height of control plants at 1.22 and 1.19 times (treatment 1 and 2, respectively). A similar plant

development was supported by Figure 29, which displays the daily activity of the growth of

plants as they develop.

For plants, left for further growth and development in plastic containers, we observed for

42 days. In Table 4 was shown that lead to the growth of experimental plants and stored at

the age of 42 days: plants with processing options 1 and 2 at 1.45 and 1.44 times higher than

controls at the same height on the formation of leaves and internodes.
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Figure 29. The growth rate of potato varieties Dolphin for the period of observation from the
experimental data.

Version Height, cm
Number of Number of Wet weight, g

leaves, items internodes, items leaves stems roots

Control 22.47±1.04 11.06±0.66 15.75±0.75 2.69±0.50 1.77±0.22 0.47±0.13

Treatment 1 32.69±1.45 10.87±0.59 16.12±0.39 2.78±0.51 2.76±0.37 0.94±0.23

Treatment 2 32.44±4.43 11.44±0.76 16.69±0.81 2.68±0.53 2.59±0.32 0.72±0.14

Table 4. Morphological characteristics of potato cultivar Dolphin at harvest at age 42 days.

The development of potato varieties Lazurit is slightly different from class Dolphin on the

dynamics of growth. As follows from Figure 30 plants in a series of treatment 2 exceed

the height of the control and experimental plants (treatment 1) to 28 days by 38% and 32%

respectively. The plants left in the plastic containers for further growth and development, as

well as in the case of grade Dolphin, were conducted further follow-up.

As shown in Table 5 advantage of the growth experienced in the plant varieties Lazurit age of

42 days over the control is saved. Plants with treatment 1 and 2 were of 1.87 and 1.96 times

higher than the control plants in height and 1.13 and 1.17 times the number of internodes.

The mass of the leaves advantage of control plants, with an equal number of it’s with the

experimental data shows about the formation of a dense leaf. At a height equal to the control

plants and the option of processing 1 plants have experienced a significant differences in the

accumulation of fresh weight of leaves and roots of 2.2 and 3.4 times. At the age of 42 days in

40% of plant varieties Lazurit (treatment 2) were formed side shoots on the average length of

4.5 cm. In control plants and the processing 1plants the side shoots are not detected. We can

assume that a often treatment of options 1 and 2 (one day) was contributed to the formation

of young growing aerial parts of plants, thus extending the growing season.

Results of studies of dry matter content in some parts of potato plants Lazurit (Table 6) showed

that frequent drug treatment "Greenhouse" leads to a "rejuvenation" of plants, reducing the

synthesis of organic matter, such as starch.
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Figure 30. Growth dynamics of potato varieties Lazurit for different conditions experience.

Version Height, cm
Number of Number of Wet weight, g

leaves, items internodes, items leaves stems roots

Control 18.17±2.17 10.83±1.18 11.83±0.60 4.93±0.78 2.48±0.20 1.15±0.16

Treatment 1 34.03±1.25 9.00±0.59 13.37±0.56 2.21±0.50 2.53±0.34 0.34±0.09

Treatment 2 35.63±1.01 10.87±0.54 13.80±0.39 3.15±0.70 3.11±0.70 1.01±0.29

Table 5. Morphological characteristics of potato varieties Lazurit at the age of 42 days.

Version
Part of absolutely dry mass, % The absolutely dry mass, g
leaves stems roots leaves stems roots

Control 22.47±1.04 11.06±0.66 15.75±0.75 2.69±0.50 1.77±0.22 0.47±0.13

Treatment 1 32.69±1.45 10.87±0.59 16.12±0.39 2.78±0.51 2.76±0.37 0.94±0.23

Treatment 2 32.44±4.43 11.44±0.76 16.69±0.81 2.68±0.53 2.59±0.32 0.72±0.14

Table 6. Characterization of potato varieties Lazurit at the age of 42 days.

Consider the results of a study of the photosynthetic activity of the processes of

photosynthesis. About the functioning of the photosynthetic transport chain in plants can talk

on the basis of photoinduced changes in absorption or fluorescence. As is known, light green

plants is accompanied by increased fluorescence yield. Fluorescence undergoes complex

transient phenomena before reaching a constant level. It is assumed that the induction of

fluorescence due to the variable part of fluorescence of chlorophyll a, the output of which

depends on the state of the active center of photosystem and the rate of electron transfer.

The accurate registration of the fluorescence changes for small periods of time is required

to obtain a complete picture of fluorescence induction. To characterize the photosynthetic
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processes determine the rate of decay of variable chlorophyll fluorescence was used, reflecting

the photochemical activity (FHA).

The systematic study of the change dynamics in the decay rate of variable fluorescence

of chlorophyll per day processing plants nanoaerosol was carried out (after 2, 4, and 6

hours after treatment). Analyzing the results, you may notice that the substance treatment

of "Greenhouse" vegetative regenerants causes changes in the studied parameters as the

Dolphin class and a grade Lasurit. Changes in the direction of activation of photosynthetic

activity strongly manifested at the Dolphin class. The second version of the experience

with pre-treatment plants before meristem cuttings was more sensitive to changes in

photosynthetic activity of plants. The additional introduction of CO2 in the nanoaerosol

processing, gives rise to a new round of metabolic processes, especially evident after 16–19

treatments when the plants are in the process of budding and early flowering. The relative

values of the parameter Ft/Fm, reflecting the velocity of the electron transport chain of

chloroplast membranes is in the range 0.3–0.4, which corresponds to the high photosynthetic

activity. In the leaf tissue homogenates regenerantnyh plants varieties Lasurit and Dolphin

processed aerosol "Greenhouse", and in the control group the content of peroxidase have been

studied, which is an indicator of physiological stress of plants. With an increase in enzyme

activity can be stated that the action of a factor caused a chain of physiological and biochemical

processes that lead to the response to stress.

Such a reaction may have immune activating effect. As a result of the immune enzyme

analysis with antibodies to the enzyme peroxidase, it was found that the drug "Greenhouse"

causes a change in the activity of this enzyme. Moreover, there are reliable changes in

activity (significance level 0.01), depending on the multiplicity of processing. The results of

determination of peroxidase activity are shown in Figure 31.

Figure 31. Peroxidase activity in membrane fractions of regenerated potato varieties Dolphin and
Lazurit.

As a result of the experiments, significant differences in the value of this indicator depending

on the variety were observed. In the variety Dolphin pretreatment before the cuttings a similar

reaction regenerates the stress was caused that was manifested in an increase in peroxidase

activity. In the grade Lazurit option 3, on the contrary, was the stress is not sensitive (Table 7).
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# Version Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5

Grade Dolphin – medium early

1 Control 0.776 0.806 0.854 0.760 0.836

2 Variant 2 0.846 0.906 0.917 0.940 0.909

3 Variant 3 1.351 1.390 1.441 1.387 1.366

Grade Lazurit – early

4 Control 1.358 1.433 1.488 1.505 1.554

5 Variant 2 1.981 2.031 2.097 2.121 2.073

6 Variant 3 0.949 0.979 1.003 0.996 0.979

Table 7. Change in optical density at λ = 492 under the action of peroxidase enzyme spray
"Greenhouse" in regenerant leaves of potato varieties Dolphin and Lazurit.

We studied the effects on the biological properties of nanoaerosol seeds: vegetables – carrots,

beets, kale, forage grasses – goat grass, clover, plants in greenhouses: cucumber, sweet pepper,

tomato, parsley, lettuce. Work was carried out with seeds of varying quality. Germination of

control samples in different batches ranged from 27% to 99%. Some of the seeds before the

experiments were struck by bacterial diseases. The results of the studies have shown high

efficiency of this method of improving the biological properties of the seeds. In all cultures

were obtained by increasing the energy of germination up to 18% and 20% germination. For

control group of seed germination was 67% and 71% germination, and in an experimental

batch exposed to a special gas environment, these figures were 87% and 93%, respectively.

The study of the nanoaerosol treatment on growth and development of salads also confirmed

the high efficiency of the proposed technology. Comparison of germination of lettuce seeds

"Gribovsky curly" grade is shown in Figure 32.

Figure 32. Germination of lettuce seeds "Gribovsky curly" grade (treatment of "Greenhouse" - a,
control - b).

It is evident that the seeds after nanoaerosol treatment developed intensively. In addition –

treated seeds during storage, preparation for the planting and growing season were

significantly more resistant to various fungal diseases. Observations over three years for

the treated seeds showed that the rate of germination and vigor are in time at a high

level. Reducing of germination does not exceed 1–1.5% per year. Pilot studies according

to productivity of potatoes, carrots, a tomato and cucumbers showed that the crop increases

on the average by 20–30% [5].
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4. Conclusion

1. In the present paper, the multilevel mathematical model is developed for solving the

problem of formation, movement, hashing, and condensation of nanoparticles by methods

of quantum mechanics, molecular dynamics and mesodynamics, describing the behavior

of nanoaerosols for studying the processes of condensation of nanoaerosols for the

nutrition of plants.

2. The numerical calculations have showed:

• the growth of nanoparticles and their interactions depend on time and on the number

of free molecules that actively form nanoparticles;

• the speed of association of molecules into nanoparticles depends on temperature and

pressure and molecules concentration in the gas medium;

• the molecules of potassium carbonate and water are into nanoparticles and therefore

they can be used for the nutrition of plants.

3. Experiments have confirmed that in aerosols nanoparticles are formed.

4. In experimental studies influence nano- and the microparticles generated by specially solid

propellant composition, on biological objects (plants, fruits and seeds) is established. A

number of positive effects which are widely used already today hothouse and the farms

working with plants in hothouses were received.

• Productivity increase to 30%, increase in ovaries of fruits, development of more

powerful stalk and leaves and uniformity of maturing of fruits was established.

• Plants become more resistant to diseases.

• Early fructification and increase in term of vegetation is observed.

• Germination of various plants seeds increases to 100%.

• From treated seeds produced high-quality embryos, superior on all counts of untreated

seed embryos.

• Stability of sprouts to fungous diseases raised.

5. Method of foliar spray fertilizer plant almost does not require any material costs and

specialized equipment. This method significantly reduced the complexity of foliar

feedings. On average, holding a spray fertilizer on the area of 1000 m2 spent 0.3

person/hour, and overall costs are reduced by 40% in recalculation per m2, while

increasing the productivity of more than 20%.

6. Technology makes it possible to make fertilizer to the requirements of the manufacturer, to

add or to remove from it those nutrients that are necessary to use soil or certain climatic

regions.

7. The executed theoretical and experimental studies allowed use this technology for growing

various vegetables and crops in greenhouses of Russia, Byelorussia, the Ukraine and

China. Practical value of the received results is very good.
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