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1. Introduction 

The geminiviruses are plant-infecting viruses with genomes consisting of circular, single-

stranded DNA (ssDNA) geminate particles [86]. Members of the family Geminiviridae have 

been grouped into four genera (Begomovirus, Curtovirus, Mastrevirus and Topocuvirus) based 

on genome organization, host range and insect vector [29, 87]. The majority of geminiviruses 

belong to the genus Begomovirus, are transmitted by whiteflies (Bemisia tabaci: Gennadius), 

and infect dicotyledonous plant species [85]. The monopartite begomovirus genome is ∼2.8 

kb nucleotides in length and encode genes both in complementary and virion sense from a 

non-coding intergenic region that contains promoter sequences and the origin (ori) of virion-

strand DNA replication. The ori consists of a predicted hairpin structure that contains the 

absolutely conserved (for geminiviruses) nonanucleotide (TAATATTAC) loop sequence and 

repeated motifs upstream known as iterons.  

2. Functions of effectors encoded by monopartite begomoviruses 

2.1. Complementary-sense  

The complementary-sense strand encodes the Rep proteins, also known as C1, AC1 and 

AL1, is a multifunctional protein and the only viral protein absolutely required for virus 

replication. Rep is encoded on the complementary sense strand (Fig. 1 DNA A). This protein 

is involved in several biological processes:  initiation and termination of rolling circle 

replication (RCR) by nicking and religating the replication origin of viral DNA [45] and 

repression of its own gene transcription [19]. The Rep proteins of geminiviruses are closely 

related and show substantial sequence conservation.  Four functional domains have been 

delineated for begomovirus Rep : the N-terminal domain (amino acids 1 to 120), which is 

involved in initiation by geminiviruses [63], AC1 protein initiates rolling circle replication 
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by a site-specific cleavage within the loop of the conserved nonamer sequence, 

TAATATTAC [30]. The AC1 protein binding site is located between the TATA box and the 

transcription start site for the Rep gene and acts as the origin recognition sequence and as a 

negatively regulatory element for AC1 gene transcription  [19], the oligomerization domain 

(121 to 180 aa), leading to interactions with itself and with host factors [28]. The AC1 protein 

alone can initiate RCR without requiring other accessory viral factors [34]. AC1 protein also 

has DNA helicase activity which depends upon the oligomeric state of the protein [14].  

The transcriptional activator protein (TrAP); is also known as AC2, C2 an AL2. AC2 is a 15-

KD a transcriptional activator protein unique to begomoviruses because it is absent in 

mastreviruses and a related protein in curtoviruses, AC2 protein, seems to play a different 

role. In mastreviruses, AC1 protein provide the functions of AC2 [51]. TrAP is necessary for 

transactivation of late genes [90]. Recently, several researchers have shown that the AC2 

gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to 

derepress the promoter in vascular tissue, similar to that observed for TGMV [44]. Further, 

since AC2 1-100 is as effective a suppressor as the full-length AC2 protein, activation and 

silencing suppression appear to be independent activities. For example Gopal et al. [26] 

showed that AC2 of Bhindi yellow vein mosaic virus (BYVMV) is involved in transactivation 

and only mildly in suppression of gene silencing of monopartite begomoviruses viruses and 

not in transmission. 

The replication enhancer protein (REn); also named as AC3/AL3. AC3 is a 16 KD a protein 

in curtoviruses and in begomoviruses. The AC3 protein greatly enhances viral DNA 

accumulation of curtoviruses and begomoviruses [22, 92] by interacting with Rep [81]. 

Experimental observations suggested that AC3 protein might increase the affinity of Rep for 

the origin. Complementation studies revealed that AC3 could act on heterologous viruses 

[93].  

The C4 protein, for which the function remains unclear but for some viruses is a 

pathogenicity determinant and a suppressor of PTGS [73]. AC4 is highly variable among 

begomoviruses, which is expressed from an open reading frame (ORF) embedded in the Rep 

ORF.  

2.2. Virion-sense 

The virion-sense strand encodes the genes required for insect transmission and movement 

in plants, coat protein (CP) and V2 protein. Monopartite begomovirus capsids are composed 

of a single CP, encoded by the V1 gene or (also known as AV1), depending on the 

geminivirus [107]. For monopartite geminiviruses, CP is essential for systemic spread 

through the plant [12]. Besides the encapsidation function, CP is also required for 

transmission of the virus between the plants. The CP of the monopartite begomoviruses 

facilitates the transfer of infecting viral DNA into the host cell nucleus and is essential for 

systemic virus movement [5, 46, 50, 104]. The CP also determines the vector specificity [10, 

32, 33] and protects the viral ssDNA from degradation during transmission by the insect 

vector [3], or mechanical inoculation [24].  
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In contrast to New World (NW) begomoviruses, Old World (OW) begomoviruses have 

AV2/V2 and this is involved in the movement of monopartite viruses. A recent report 

shown that the V2 (a homolog of AV2) of a monopartite begomovirus is involved in 

overcoming host defenses mediated by post-transcriptional gene silencing as well as in 

movement [114, 115]. V2 targets a step in the RNA silencing pathway which is subsequent to 

the Dicer-mediated cleavage of dsRNA [109, 70].  

3. Role of effectors encoded by satellites 

3.1. Betasatellite 

Recently, the majority of the begomoviruses originating from the OW have been shown to 

be monopartite and to associate with a class of ssDNA satellites known as betasatellites 

(earlier known as DNAβ) [9]. Betasatellites are approximately half the size of their helper 

begomoviruses (approx.1.4 kb) and are required by the helper virus to induce typical 

disease symptoms in their original hosts. The success of begomovirus-betasatellite disease 

complexes appears to be due to the promiscuous nature of betasatellites that allows them to 

be trans-replicated by several distinct begomoviruses [53, 59]. These begomovirus-

betasatellite disease complexes are widespread throughout OW and outnumber bipartite 

begomoviruses whereas in the NW only bipartite begomoviruses are native. There have 

been recent reports which showed that betasatellite can complement the function of DNA B, 

suggesting that the betasatellite may provide movement functions to its helper begomovirus 

[74]. Betasatellite can be associated with distinct begomoviruses and it can interact and 

make new complex with diverse monopartite begomoviruses [110-112]. 

Tomato leaf curl virus (ToLCV), originating from Australia, was shown to be associated with a 

single-stranded DNA satellite molecule [18]. The ToLCV satellite (ToLCV-sat) is 

approximately 682 nt in length and sequence unrelated to ToLCV and it depends on ToLCV 

for replication and encapsidation. It has no discernable effects on viral replication or 

symptoms caused by ToLCV. Betasatellites have three structural features: a approx.115 bp 

highly conserved region, βC1 gene and a region rich in adenine, [76, 108] (Fig. 1 

betasatellite). This gene has the capacity to encode a 13-14-kDa protein comprising 118 

amino acids, although some betasatellites have additional N-terminal amino acids [79, 108]. 

Recently it has been shown that betasatellite to be pathogenicity determinant and 

suppressor of RNA silencing [16, 66]. It also induced abnormal cell division in N. 

benthamiana [17]. Betasatellites do not contain the iterons of their helper begomoviruses, 

although betasatellite clearly must possess sequences that are recognized by the 

begomovirus-encoded Rep in order to allow transreplication of the betasatellite [76].  

All the reported betasatellites [54] or defective betasatellites (half size of wild type 

betasatellite) [7] contain the A-rich region, the A-rich region may play biological role in 

betasatellites [95]. A-rich region is not required for trans-replication of betasatellite and not 

related with encapsidation also. However, the A-rich region deleted mutant caused milder 

symptom [95]. The begomovirus accumulates to normal levels in Ageratum in the presence 
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of betasatellite suggesting that the satellite functions either by facilitating the replication or 

movement of the begomovirus or by suppressing a host defense mechanism such as gene 

silencing. Recently it has been shown that a betasatellite can override the AC4 pathogenicity 

phenotype of TLCV and it can complement the function of DNA B [73]. Despite its 

importance to the disease phenotype, there is still no information available concerning even 

the most fundamental properties of the satellite.  
 

 

Figure 1. Genome organization of monopartite begomoviruses-satellite complex. DNA-A (encoding 

replication-associated protein [Rep], coat protein [CP], replication enhancer protein [REn], 

transcriptional activator protein [TrAP] and proteins possibly involved in virus movement [AV2], 

pathogenicity determinant and a suppressor of RNA silencing [AC4], viral genome replication [AC5]) 

Alphasatellites are self-replicating molecules encoding their own Rep. Betasatellites are dependent on 

their helper viruses for their replication and encode a single protein, βC1, which upregulate replication 

of helper virus and suppress host defense. Both satellites have an A-rich region and in addition to this 

betasatellites have a region of sequence conserved between all examples known as the satellite 

conserved region (SCR). 

In Arabidopsis, these pathways are affected by the DICER- like proteins (DCL1, DCL2, and 

DCL3) that are nuclear localized and are required for miRNA and siRNA biogenesis. Thus, 

C1 protein may affect the activity of the DICER-like proteins in plants during nuclear 

activities that function in silencing suppression. The other possibilities are that C1 protein 

could down-regulate transcription of a host protein that acts in the PTGS pathway in the 

cytoplasm or that C1 protein could activate transcription of a host PTGS inhibitor [15]. 
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4. Alphasatellites  

Many begomovirus betasatellite complexes are also associated with a third ssDNA 

component for which the collective term alphasatellite (earlier known as DNA 1; R.W. 

Briddon, manuscript in preparation). However, alphasatellites are dispensable for virus 

infection and appear to play no significant role in the etiology of the diseases with which 

they are associated [56]. Alphasatellite components are satellite-like, circular ssDNA 

molecules approx.1375 nucleotides in length (Fig.1 alphasatellite). They encode a single 

gene, a rolling circle replication initiator protein (Rep), and are capable of autonomous 

replication in plant cells.  Closely related to the replication associated protein encoding 

components of nanoviruses (a second family of plant infecting ssDNA viruses), from which 

they are believed to have evolved, they require a helper begomovirus for movement within 

and between plants [56, 80].  

Several alphasatellites are capable of replicating and systemically infecting their plant host 

in the presence of a helper begomovirus without a visible effect on symptom development 

or virulence [6, 40]. However AYVSGA a different type of  ‘DNA-2’-class alphasatellite that 

ameliorates symptom severity in an infected host and also capable of reducing virulence 

and the relative accumulation of its associated Tomato leaf curl betasatellite (ToLCB) [1]. 

Alphasatellites have been acquired by helper begomoviruses to restrain virulence to achieve 

increased viral fitness [76, 105]. 

Recently, two ‘DNA-1-type’ alphasatellites Gossypium mustelinium symptomless 

alphasatellite (GMusSLA) and Gossypium darwinii symptomless alphasatellite (GDarSLA) 

phylogenetically divergent from the DNA-2-type alphasatellite have each been shown to 

attenuate symptoms caused by their helper begomovirus [60]. However [35] hypothesize 

that symptom attenuation and a relative reduction in betasatellite accumulation might result 

from DNA-2-mediated modulation of betasatellite activity. Possibly alphasatellite 

modulates begomovirus-betasatellite pathogenicity by interfering with βC1, a key virulence 

factor [8]. Also alphasatellite rep can interact with C4 of CLCuRaV that might be providing 

an additional possible mechanism for symptom amelioration by alphasatellites. 

Furthermore alpha-Rep down regulate betasatellite replication (In the field), and thus down- 

regulation of the manifestation of the pathogenicity determinant βC1 [60], moreover alpha-

Rep proteins GMusSLA and GDarSLA can act as a strong suppression of posttranscriptional 

gene silencing (PTGS) [60]. 

5. Post-transcriptional gene silencing (PTGS) 

Post-transcriptional gene silencing (PTGS) which is initiated by  double stranded RNA 

(dsRNA) is common in plant–virus interactions and is an evolutionarily conserved 

mechanism that protects  host cells against invasive nucleic acids, such as viruses, 

transposons and transgenes [100]. As a counter to this host defense, most plant viruses 

encode proteins which act as suppressors of PTGS [71]. Viral suppressors of PTGS interfere 

with various steps of this pathway including initiation, maintenance or systemic silencing  

which are mainly downstream of dsRNA production [52, 57].  
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RNA silencing in plants operates as an antiviral defense response; to establish infection, 

viruses must suppress RNA silencing by the host [100]. Begomoviruses have been shown to 

induce PTGS in infected plants by producing virus specific siRNAs (21, 22 and 24 nt) [97]. 

To counteract this host defence, geminiviruses encode RNA silencing suppressors [4]. 

However, depending on each intrinsic virus and its interaction with plant host factors, the 

efficacy of virus-induced PTGS may vary [99]. At least three RNA-silencing suppressors 

have been reported in TYLCD-associated or related begomoviruses. Thus, the V2 protein of 

TYLCV functions as an RNA-silencing suppressor; it counteracts the innate immune 

response of the host plant by interacting with SISGS3, the tomato homolog of the 

Arabidopsis SGS3 protein involved in the RNA-silencing pathway. The TrAP protein of the 

related monopartite begomovirus. Tomato yellow leaf curl China virus (TYLCCNV) is also 

involved in suppression of RNA silencing [98], probably by activating transcription of host 

genes that control silencing [97]. The C4 protein of the monopartite begomoviruses ToLCV, 

Ageratum yellow vein virus (AYVV), and Bhendi yellow vein mosaic virus (BiYVMV) also have 

the ability to suppress RNA silencing [26, 84].  

6. Mutagenesis of effectors encoded by monopartite begomoviruses  

Little is known about gene function in monopartite begomoviruses. However, gene function 

has been studied extensively in other types of geminiviruses which share organization and 

nucleotide sequence similarities with TYLCV. Mutational analysis of few monopartite 

begomoviruses like TYLCV define similarities and differences between this single 

component geminivirus and bipartite geminiviruses in functions essential for systemic 

spread and infectivity [103]. The CP appeared to be required for systemic movement of 

TYLCV in N. benthamiana and tomato, consistent with those of mutation analyses obtained 

with other monopartite geminiviruses such as MSV, BCTV, and TLCV [5, 12, 69, 61] have 

shown that Tomato yellow leaf curl virus-Sardinia (TYLCV-Sar) C2 can form stable complexes 

with ssDNA (and less preferably with dsDNA) and that the binding is sequence nonspecific. 

AC2 of TYLCV have also been involved in the activation of other viral genes and was 

considered as a transcriptional activator [91]. However, transcription factors usually show 

high sequence specificity. 

TYLCV ORF V1 truncated either 133 nt upstream or 19 nt downstream of the initiation 

codon of ORF V2 would altered the viral DNA forms, it suggested that the V1 protein may 

participate in the switch from dsDNA to ssDNA synthesis. Indeed, interaction between V1 

and the CP has already been proposed, in view of the concerted evolution of these two 

protein sequences following a geo-graphical gradient of similarity [39], and the synergistic 

reduction in ssDNA levels of a TYLCV V1-V2 double mutant compared to single mutants 

[69]. Although TYLCV V1 mutants did not greatly overproduce dsDNA, the similarity of 

phenotype between BCTV V2 and TYLCV V1 mutants may indicated that the two 

corresponding gene products serve a related function. It has shown [69] (Table 1) has shown 

that disruption of the V1 gene in the monopartite Australian isolate of TLCV did not affect 

its ability to spread in tomato, although the infection was asymptomatic and the DNA levels 

reduced. 
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Virus Accession

number 

 

Mutated 

ORF 

Mutation Position Type of

mutation 

References 

TLCV-[AU] AF084006 V1 N-terminal/ 

BamHI 

frameshift Rigden et al., 

1993 

  V2 N-terminal/ 

BglII 

frameshift  

  V/V2 N-terminal/BglII/ 

BamHI 

frameshift  

  V/V2 C-terminal/BglII/ 

BamHI 

deletion  

  V/V2 C-terminal/BamHI/ 

BglII 

inversion  

TLCV-[AU] AF084006 C4 N-terminal  

(at 2457&2463) 

deletion Rigden et al., 

1993 

  C4 N-terminal (at 

2457&2463) 

revertion  

TYLCV-

Sar[ES:Psp95:93] 

Z25751 C4 C>T at 2432 point Jupin et al., 

1994 

  C4 C>T at 2423  

TYLCV-

Sar[ES:Psp95:93] 

Z25751 C2 ∆CC2>31 deletion Noris et al., 

1996 

  C2 ∆NC2>33 deletion  

  C2 ∆C2>33-104 deletion  

TYLCV-Sar[FR:98] X61153 C2 1523+GATC frameshift Wartig et 

al.,1997 

  V1 156+GATC frameshift  

  V1 324C>T stop  

  V2 748>CTAG stop  

TYLCV-

Sic[IT:pSic36:95] 

Z28390 CP H134 substitution Noris et al., 

1998 

  RepC1 L198 substitution  

TYLCV-

Sar[ES:Psp95:93] 

Z25751 CP Q134H site-directedNoris et al., 

1998 

TYLCV-DO[DO:99] AF024715 CP ∆NCP>180 deletion Rojas et al., 

2001 

  CP ∆CCP>150 deletion  

  V1 ∆NV1>63 deletion  

  V1 ∆CV1>84 deletion  

  C4 ∆NC4>54 deletion  

  C4 ∆CC4>60 deletion  

AYVV-

[SG:pHN419:97] 

X74516 C4 A>T at 2419 C4mut substitution Saunders et 

al., 2004 
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Virus Accession

number 

 

Mutated 

ORF 

Mutation Position Type of

mutation 

References 

PaLCuV-[PK:02] AJ436992 V2 N-terminal (1-32) deletion Mubin et al., 

2010 

  V2 N-terminal (1-60) deletion  

  V2 C-terminal  

(130-149) 

deletion  

  V2 C-terminal (111-149) deletion  

  V2 C-terminal (101-149) deletion  

  V2 C-terminal (91-149) deletion  

  V2 C-terminal (71-149) deletion  

  V2 C-terminal (30-149) deletion  

TYLCV-IL[IL:89] X15656 CP Lys-Thr CPmut3 substitution Yaakov et al., 

2011 

  CP Arg-Pro CPmut4 substitution  

  CP Arg-Leu CPmut19 substitution  

TYLCV-

Mld[ES:72:97] 

AF071228 C4 C>G at 9 C4mut substitution Tomas et al., 

2011 

ToLCJV-A[ID] AB100304 CP CPΔ191-257 deletion Sharma et al., 

2009 

  CP CPΔ1-190 deletion  

  CP CPΔ31-257 deletion  

  CP CPΔ1-30/Δ50-257 deletion  

  CP CPΔ1-30/Δ191-257 deletion  

  CP CPΔ1-31 deletion  

  CP CPΔ16-20 deletion  

  CP CPΔ1-190/Δ245-250 deletion  

  CP CPΔ1-30/Δ62-257 deletion  

ToLCJV-A[ID] AB100304 V2 N-terminal (58aa)  Sharma et al., 

2010 

  V2 C-terminal (58aa)   

ToLCJV-A[ID] AB100304 V2 pGEMV2ΔC  Sharma et al., 

2011 
 

Table 1. List of published studies reporting deletion mutants of monopartite begomoviruses 

For example Noris et al. [62] suggested that the region of the CP between amino acids 129 

and 134 is essential for both the correct assembly of virions and transmission by the insect 

vector. The genome of the SicRcv (infectious) had the same size as the original Sic DNA 9 

(non-infectious) differed by only 2 nt. One change was at nt 2025 (A instead of T in the plus 

strand), determining a CAC-to-CUC codon change in the RepC1 mRNA and an H198L 
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replacement in the RepC1 protein. The other mutation located at nt 708 (C instead of G), 

determining a CAG-to-CAC codon change in the CP mRNA and a Q134H replacement in 

the CP. This indicated that the Q134H mutation changed a viral DNA, only capable of 

replicating in single cells (Sic), into one that was systemically infectious, but not insect 

transmissible (SicRcv). Comparative analysis of Sic, SicRcv, and the hybrid genomes and 

showed that the mutation in the CP gene, not in the Rep gene, was responsible for restoring 

infectivity in SicRcv; however, it still did not result in a whitefly-transmissible TYLCV. In 

TYLCV-Sar, the two capsid protein alterations resulted in the same either non-infectious or 

non-transmissible  phenotype. Mutants containing the combinations QQ, QH, and PH at 

positions 129 and 134 were infectious in plants, whereas those with PQ are not. The PQ 

mutants can replicate and accumulate CP and V2 protein in leaf discs, but appear unable to 

produce virus particles. Mutants having the PH combination at positions 129 and 134 infect 

plants and form apparently normal virions, but are not transmissible by whiteflies. 

Changing the amino acid at position 152 (D or E) does not influence the phenotype. 

Requirement of the CP for infection has been demonstrated previously [62] suggested that 

accurate particle assembly is also necessary. In fact, the PQ mutants, which are unable to 

assemble virions, accumulate CP in leaf discs, showing that its expression and stability were 

not altered. Another TYLCV protein, V2, for which a role in virus assembly has recently 

been, suggested [103]. 

For example Rojas et al. [70] has shown that C4, V1, and CP gene may function in TYLCV-

DO movement. The CP localized to nuclei and nucleoli and was found to act as a nuclear 

shuttle, mediating the import and export of DNA [70]. It was consistent with results 

obtained for the TYLCV CP in heterologous experimental systems [43, 68]. Recently, Liu et 

al [49] also showed the same behavior for the CP of the monopartite mastrevirus, MSV. 

TYLCV CP was found to accumulate in the nucleolus and the absence of the N-and C-

terminal CP mutants from the nucleolus implicates CP motifs in this localization. As the 

nucleolus is the site of rRNA synthesis and packaging of ribosomal proteins, it may also 

serve as the site of geminiviral replication/gene expression [70]. The TYLCV C4 targeted to 

the cell periphery and/or cell wall, consistent with a role in cell-to-cell movement of viral 

DNA [65, 75, 101].  

Disruption of the AYVV C4 ORF (A>T at position 2419nt) alters the phenotype in 

agroinoculated N. benthamiana from upward leaf roll and vein swelling to downward leaf 

curl [79] (Table 2). Previously,[88] also found the identical functions of BCTV C4 ORF 

mutant in this host. The AYVV C4 proteins may perform partially redundant functions 

involving convergent pathways and the behavior of ACMV AC4 and TYLCCNV C4 is 

consistent with such a function [98].  

For example Stanley and Latham [58] have shown that  V2 protein of Papaya leaf curl virus 

(PaLCuV) is potentially involved in the elicitation of cell death response. The deletion 

mutants (having deletions of 32 and 60 amino acids, respectively, at the N-terminal end of 

V2) exhibited a systemic HR in Nicotiana benthamiana plants. While C-terminal end deletions 

of 60 , 80 and 119 amino acids abolished the induction of HR, however 50 amino acids deletion  
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induced local necrosis, but not systemic. The mutants with 20 and 40 amino acids deletion 

produce HR both at the inoculated and in newly emerged leaves, although the systemic 

symptoms for the 40-amino-acid deletion mutant were delayed and were milder.  The amino 

acid sequences between positions 92 and 101 are essential for the elicitation of HR, whereas 

those between 102 and 115 affect the timing and severity of the response. V2 of PaLCuV at 

amino acid positions 116 and 118 contains a conserved CxC. Mutations of this motif have 

been shown to abolish both the pathogenicity and suppressor of RNA silencing activities  

of the protein [64, 109]. Phosphorylation of MPs may also play a role in controlling the 

switch from viral replication to translation [36, 37].  Few earlier studies showed that for 

PaLCuV V2, deletion of sequences encompassing this motif abrogates the ability to induce 

HR [58].  

The first 30 N-terminal  amino acids of the TYLCV-IL CP are needed for nuclear import of  

the protein into the plant cell, suggesting the CP’s involvement in  nuclear shuttling of the 

virus genome [43]. This was confirmed by the finding of a strong interaction between the CP 

and  the plant nuclear import receptor karyopherin α1 (Kap α1) [94]. The TYLCV CP has 

been found to inter act with itself (CP–CP or homotypic interaction) which may be 

important for capsule assembly as it is made up solely of CP units serving as building 

blocks. Mutations in the TYLCV-IL V1 gene  coding  for the TYLCV-IL CP by replacing Lys 

with Thr, Arg with Pro,  and Arg with Leu, according to the positions of amino acids 

mutated [31]. TYLCV CP mutated failed to interact with the w.t. CP, while the w.t. protein 

showed strong homo typic interaction. As the CP has been suggested to be a shuttle protein 

for the viral genome into the plant cell nucleus [43, 70], its interaction with the nuclear-

transport mediator Kap  α1 is an important step and has been shown to occur at high 

affinity [94]. A mutation in the NLS domain, in particular at Arg19, disrupts the CP’s 

interaction with proteins that are known to interact with the w.t. CP [106.]. Earlier Sharma et 

al. [113-115] demonstrated by the constructed a series of single and double deletions into the 

coding sequence of Tomato leaf curl Java virus ToLCJAV-A[ID] CP and found that, amino 

acids (aa)16KVRRR20 in the N-terminal region of CP functioned as nuclear/nucleolar 

localization signals (NLSs). Further, the region from aa 52RKPR55 contained basic amino 

acid cluster was capable to redirect the CP to the nucleus. Deletion mutant analysis revealed 

that this property was attributed to a nuclear export signal (NES) sequence consisted of aa 

(245LKIRIY250) reside at C-terminal part of CP. Additionally ToLCJV V2 is a target of host 

defense responses. Deletion of 58 amino acids (aa) from the N-terminus did not affect the 

HR, suggesting that this region has no role in the HR, while deletion of 58 aa from the C-

terminus of V2 abolished both the HR response and V2 silencing suppressor activity, 

suggesting that these sequences are required for the HR-like response and suppression of 

PTGS. He also demonstrated that ToLCJV V2 is a pathogenicity determinant that elicits an 

HR-like response. Further deletion analysis that fusion of Nterminal part of the V2, 

containing the nuclear export signals (NES), directed the accumulation of fluorescence 

towards the cell cytoplasm. Also V2 enhances the coat protein-mediated nuclear export of 

ToLCJV and is consistent with the model in which V2 mediates viral DNA export from the 

nucleus to the plasmodesmata. 
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Satellite Accession region (nt.) Type of References 

 number  mutation  
 

AYVB-[SG:pBS-beta:99] AJ252072 AT>TA at 547/ 

548 βC1mut1 

Saunders et al., 2004 

  G>T at 486 

βC1mut2 

  

TYLCCNB-[CN:Y10:01] AJ421621 ATG>ATC  

(CIM-F) 

site-derected Cui et al., 2004 

  ACT>TGA 

(ACIM-S) 

site-derected  

  ATG (2) >ATC (2) 

(CIM-B) 

site-derected  

  GAA>TAG  

(CIM-T) 

site-derected  

TYLCCNB-[CN:Y10:01] AJ421621 742-952 deletation Xiaorong et al., 2004 

TYLCCNB-[CN:Y10:01] AJ421621 ∆C1β truncation Qian and Zhou 2005 

CLCuVβ-[PK:00] AJ298903 195-484 site-derected Saeed et al., 2005 

  504-596 stop  

  586 frame-shift  

  ATG>ATA stop  

BYVMB-[IN:Muth:01] AJ308425 51-140 ∆NβC1 deletation Kumar et al., 2006 

  1-80 ∆CβC1 deletation  

TYLCV-satDNA-

[AU:96] 

U74627 ∆nt 35-146 (112nt) deletation Li et al., 2007 

  ∆nt 146-296 

(151nt) 

deletation  

  ∆nt 35-296 (262nt) deletation  

  ∆nt 296-420 

(1251nt) 

deletation  

  ∆nt 296-492 

(197nt) 

deletation  

  ∆nt 492-540 (49nt) deletation  

  ∆nt 540-641 

(105nt) 

deletation  

AYVJB-[ID:04] AB162142 4>ATGtga  stop Kont et al., 2007 

AYVB-[SG:pBS-beta:99] AJ252072 794-795 deletation Saunders et al., 2008 

  118-119 deletation  

  804-806 deletation  

  801-1047 deletation  

  1048-1051 deletation  

  1146-1147 deletation  

  1146-1150 deletation  

  1269-1271 deletation  

  1229-1234 deletation  

TbCSVB-[CN:Y35:01] AJ420318 DNA∆C1β  Qian et al., 2008 
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Satellite Accession region (nt.) Type of References 

 number  mutation  
 

CLCuMA-[PK:2:99] AJ132345 915-1117 deletation Shahid et al., 2009 

CLCuMuB-[PK:09] FJ607041 ∆150-840 deletation Nawaz-ul-Rehman et al., 

2009 

  ∆1130-116 deletation  

  ∆995-1095 deletation  

CLCuMB-[PK:00] AJ298903 ∆C1β deletation Kharazmi et al., 2012 

TYLCCNB-[CN:Y10:01] AJ421621 N-terminal (NTG) deletation Cheng et al., 2011 

  C-terminal (CTG) deletation  

  βC1-∆CTD deletation  

Table 2. List of published studies reporting deletion mutants of DNA Satellites 

7. Mutational analysis of effectors encoded by satellites 

Betasatellite molecules have been associated with numerous monopartite begomoviruses in 

China, including Tobacco curly shoot virus (TbCSV) and TYLCCNV that infect tomato and 

tobacco field plants [108, 47]. TbCSB is not essential for infection but increases symptoms in 

some hosts [17, 47]. However in case of TYLCCNB which is essential for symptom 

induction, The βC1 gene of TYLCCNB is required for symptom induction but not for the 

replication of betasatellite. Also a mutated βC1 deleted is stably maintained in few hosts by 

TYLCCNV [17, 67]. TbCSB with the complete βC1 deleted (∆βC1) returns to a size 

comparable to that of the intact betasatellite in few systemically infected N. glutinosa, N. 

tabacum Samsun and P. bybrida plants plants. The levels of accumulation of the size revertant 

betasatellite were similar to those of ∆βC1 in same hosts (N. benthamiana and N. glutinosa)  

plants showing size reversion of the betasatellite developed viral symptoms similar to those 

induced by TbCSV and DNA∆βC1 [67]. A βC1 gene frame-shift mutant of TYLCCNVB was 

unable to induce disease symptoms and consequently, did not play a role in silencing 

suppression [67]. The complete coding region of Y10βC1 (TYLCCNB), followed by N- and 

C-terminal deletion mutants showed multimerization mediated by amino acids between 

positions 60 and 100 [13]. Karyopherin-α, a transport receptor involved in nuclear import 

were reported to interact with the C-terminal sequences of BYVMB- βC1 [42]. A 

myristoylation-like motif (GMDVNE) positioned at the C-terminal of CLCuMB-βC1 (103 to 

108aa) interacted with a ubiquitin-conjugating enzyme involved in targeting proteins for 

degradation by the 26S proteasome [20, 78] identified sequences on AYVB by deletion 

mutagenesis required for trans-replication by AYVV. βC1 of Cotton leaf curl Multan 

betasatellite (CLCuMuB) has been shown to have possible virus movement function [74]. 

Generally, sequences between the βC1 gene and the A-rich region are not essential for trans-

replication by begomoviruses. Nevertheless, deletion of these sequences abolish the ability 

of the betasatellite to upregulate virus levels in plants and the symptoms expression [59]. 

For geminiviruses hairpin structure that contains the nonanucleotide sequence is an 

essential part of the virion sense origin of replication that is recognized and nicked (within 
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the nonanucleotide sequence) by Rep to initiate rolling-circle replication of the virion strand. 

Similarly, deletion of betasatellite sequences from 1130 to 116 that is conserved  (between all 

betasatellites) stopped the betasatellite’s ability to be trans-replicated and maintained by 

helper viruses both from OW (CLCuRaV) and New world and Cabbage leaf curl virus 

(CbLCuV). Trans-replication of CLCuMuB remained unaffected by deletion of the sequence 

between coordinates 995 and 1095 by CLCuRaV [59]. 

ToLCJAV alone can cause infection and displayed leaf curl symptoms. But, symptom 

expression of ToLCJAV in the presence of ToLCJAB is enhanced. In contrast, ToLCJAV and 

AYVB (mutated βC1) restored mild symptoms. It suggested that the βC1 protein was 

required for symptom induction and is a determinant of pathogenicity, βC1 protein 

expression in N. benthamiana plants and as a suppressor of PTGS [41]. 

For example Li et al. [47] have shown the deletion mutant of TYLCV sat-DNA (from 296-

641nt) lacked the ability to replicate or replicated poorly by deleting of (region nt 35-296). 

Also sequence from nt 296-35 is to be essential for sat-DNA replication. The deletion of a 112 

nt region downstream of the stem-loop from nt 35-146 and 151nt from 146-296 cannot effect 

on the replication of sat-DNA but reduced significantly. However, the deletion from nt 35-

296 regions diminished sat-DNA replication  these deletions loss of genomic sequences 

required for replication or due to changes in genome size. Heterologous non-viral DNA 

fragments can restore the wild-type 682 nt sat-DNA size and of replication when the 

replacement occurred in the region between nt 35 and 296. However, the sequence 

replacements in the region nt 35 to 296 of the sat-DNA improved the accumulation of sat-

DNA considerably relative to the deleted constructs in this region. The sequence elements 

distributed within the entire sat-DNA molecule contribute to replication activity, but that 

sequence elements within the region from nt 35 to 296 are dispensable for replication.  

For example Saeed et al. [72] used mutagenesis study of CLCuMB and tobacco was used as 

the host plant rather that cotton, the natural host of CLCuB. Few studies showed that it was 

symptomless when inoculated with Cotton leaf cur Multan virus (CLCuMV) alone but showed 

drastic symptoms when coinoculated with CLCuMB [9]. Nicotiana benthamiana showed a 

severe symptom on inoculated with CLCuMV with or without CLCuMB. Evidence for the 

involvement of the βC1 ORF in modulation of symptom expression also provided by [108] 

demonstrated few DNA β species associated with tomato and tobacco infecting 

begomoviruses and found that in-frame mutation of the βC1 initiation codon resulted in loss 

of symptom severity in N. benthamiana.  

In recent studies Saunders et al. [79] have proved that disruption of the βC1 ORF prevented 

infection of the AYVB complex in ageratum and altered their phenotype in N. benthamiana to 

that produced by AYVV alone. For example Kumar et al. [42] tested the infectivity of two 

βC1 mutant constructs, first carrying a stop codon at amino acid position 41 and second 

with two stop codons at positions 9 and 41, and both resulted in loss of pathogenicity in 

tobacco plants on coinoculated with TLCV as helper virus. These mutation studies indicated 

that the βC1 ORF is involved in pathogenicity and that the expression of its N terminal 40 

amino acids is not sufficient for its function.  
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Disruption of the βC1 ORF of AYVB by introducing an internal in-frame nonsense codon 

(G>T) did not prevent transreplication and systemic movement of the βC1 mutant by AYVV 

in lab host (N.benthamiana). The mutated βC1 removed the influence of the satellite on 

symptom development in this host and prevented symptomatic infection of ageratum. That 

suggested the βC1 protein is an important pathogenicity factor that plays an essential role in 

the proliferation of the AYVV-betasatellite complex in its real host. For example Saunders et 

al. [79] also shown that βC1 ORF initiation codon (AT) to a nonsense codon (TA) did not 

completely eliminate betasatellite activity. A similar mutation in the βC1 ORF of a satellite 

associated with TYLCCNB was shown previously [108]. The βC1 ORF encodes a 

pathogenicity determinant that suppressed a host defense mechanism [76]. 

For example [78] have demonstrated that the region of AYVB between the introduced nt 114 

and 1047 sites is not required for betasatellite replication. This region includes the βC1 open 

reading frame (ORF), which encodes a gene essential for pathogenicity [79] and an A-rich 

region that may serve to maintain the size integrity of the satellite [76]. For example [78]  

found that the entire ORF is dispensable  and is consistent with the findings of [67] for the 

betasatellite associated with TYLCCNV. In addition, removal of the A-rich region from 

TYLCCNB was tolerated, although the deletion mutant was associated with milder infection 

than those produced by the wild-type satellite [95]. In contrast, deletion of this region in 

AYVB did not affect the phenotype, at least in N. benthamiana. Maximum deletions within 

non coding regions of the begomovirus genome were not tolerated and the deletion mutants 

revert to wild type size by both intra-and intermolecular recombination during systemic 

movement [23, 25,]. For example Saunders et al. [78] also demonstrated removal of 361 nt of 

betasatellite representing 27% of the satellite and the region between nt 1047 and 1146 is 

important for betasatellite replication. It contained an inverted repeat flanking a sequence that 

is identical to the ToLCV iteron ToLCV sat-DNA [18]. Protein binding assays followed by 

mutagenesis have demonstrated that this motif in both ToLCV and sat-DNA represents a high 

affinity Rep binding site, although it is not required for replication of either the begomovirus 

or its satellite [48]. Saunders and associates [80] found that the region between nt 1146-1229 

and sequences across the nt 1268 of AYVB are also required for replication.  

SCR is highly conserved nature between distinct satellites [typically above 65% sequence 

identity with blocks of absolutely conserved sequence [7] strongly suggests that it also plays 

an important role in the virus replication cycle. In addition, the adjacent stem-loop and 

conserved nonanucleotide sequence would be expected to participate in replication. 

Approximately the 386 nt upstream of the stem–loop structure in ToLCV sat-DNA, as well 

as the stem–loop structure itself, are essential for replication [47].  

βC1 is a multi-functional protein encoded by betasatellites that are associated with the 

majority of monopartite begomoviruses [11]. For example Cheng et al. [13] proved by 

deletion mutants of Y10βC1 that multimerization was mediated by amino acids between 

positions 60 and 100. Previous studies say that the C-terminal sequences of BYVMB-βC1 

were interact with karyopherin α, a transport receptor involved in nuclear import [42]. A 

myristoylation-like motif (GMDVNE) located at the C-terminal of CLCuMB-βC1 (103-108aa) 
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interacted with a ubiquitin-conjugating enzyme involved in targeting proteins for 

degradation by the 26S proteasome [21]. It also seems to indicate interference with a 

functionality associated with the C terminus of Y10βC1. βC1 protein of AYVB, CLCuMB or 

BYVMB with GFP fused at the N-terminus also presented as granular spots in the cytoplasm 

and around the nucleus [42, 84]. 

TYLCCNB presumably has one or more cis-acting elements needed for replication and binds 

to TYLCCNV replication protein (Rep) for replication, and these elements are most probably 

located in the 115-nucleotide highly conserved region of betasatellite upstream of its stem-

loop structure. Recently, Astroga [2] showed that a 5-bp core sequence (GGN1N2N3) is a 

typical constituent of Rep-binding iterons. Conserved GG motifs occur upstream of the115-

nucleotide highly conserved region of betasatellite. One or more of these GG motifs, combined 

with the 115 nucleotide highly conserved region, possibley responsible for Rep binding to 

betasatellite. However, the Rep binding activity of the TLCV-sat from Australia seems much 

less specific: TLCV-sat contains an A-rich region but lacks a βC1 gene and is believed to be a 

defective betasatellite molecule [48]. The effect of mutation of the conserved βC1 gene of 

TYLCCNVB indicated that the βC1 protein plays a key role in symptom induction.  

The position and size of the βC1 gene of the betasatellite molecules are conserved in all 

betasatellite molecules, and the mutation of the start codon of C1 gene in TYLCCNB showed 

that it’s a pathogenicity determinant [108, 6]. Few studies has been also shown that the βC1 

protein of betasatellite associated with TYLCCNV or AYVV is an essential pathogenicity 

determinant [17, 79], it may act as suppressors of post-transcriptional gene silencing that 

interfering the host defense system, thus, the presence of C1 protein facilitates efficient 

infection of the virus in hosts [102]. For example Tau and Zhou [96] showed that βC1 gene 

was not required for the TYLCCNV and betasatellite replication and truncated betasatellite 

molecules with the deletion of the entire βC1 gene were stable in infected plants. Defective 

DNAs, betasatellite and alphasatellite associated with begomoviruses are maintained at 

approximately half the size of the genomic components [83, 89, 55, 80, 77]. Some proofs have 

been displayed that geminiviruses CP can encapsidate circular ssDNA molecules of about 

half or quarter the size of the genomic DNA [18, 51]. Immunocapture PCR indicated that the 

truncated TYLCCNB of about 1 kb in length may be encapsidated with TYLCCNV coat 

protein in vivo [67].  

βC1of BYVMB have a nuclear export or peripheral localization function and βC1 interacts 

with itself, also with CP and the tomato protein karyopherin α. Mutagenesis of βC1 protein 

showed that the domain of βC1 interacting with CP is at the N terminal half whereas the 

domain(s) of βC1interacting with itself and karyopherin α are at the C terminal half and the 

role of BYVMD βC1 as a suppressor of posttranscriptional gene silencing was explored [42]. 

Karyopherins are soluble transport receptors that interact with basic NLS sequences and 

help in nuclear import [27]. Full length betasatellite  of CLCuMB can substitute for the 

movement function of the DNA B of a bipartite begomovirus Tomato leaf cur New Dehli virus 

DNA-B (ToLCNDV DNA-B). However, the betasatellite containing a disrupted βC1 ORF did 

not mobilize the DNA A for systemic infection, suggested that the βC1 protein was required 

for movement [74]. 
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8. Potential of mutated satellites using a virus induced gene silencing 

vectors 

8.1. Betasatellite 

Betasatellites have about 200nt sequences (known as a-Rich region) conserved among all 

that indicating may be these sequences have some biological roles in satellites. The role of A-

Rich sequence may be to increase the required size of the molecule that is essential for 

encapsidation or systemic movement by the coat protein or movement protein encoded by 

begomovirus. TYLCCNB-Y10 could be infectious and mutant betasatellite (deleted a-rich 

region) could be encapsidated in the coat protein encoded by DNA-A that suggested may be 

A-Rich region is not required for trans-replication of TYLCCNB but only for size 

maintaining [95]. For example [20] reported that only a small region of the nucleotide 

sequence of CLCuMB upstream of the start codon of βC1 (a 68-nt fragment), which contains 

a G-box, was important for βC1 promoter activity. In addition to βC1 ORF of CLCuMB 

delete a larger region (complete βC1) to make it a gene delivery vector for plants. It can 

potentially tolerate the insertion of larger foreign sequences without affecting promoter 

activity [38]. Putative promoter and TATA box are located upstream of the βC1 gene. Thus, 

the βC1 gene of betasatellite could be replaced by a foreign gene and be modified to convert 

it into an expression vector [17]. The modified betasatellite might be an candidate gene 

silencing vector to study functional genomics in plants [54]. Also leaf curl symptoms in 

Nicotiana species can be brought by transgenic expression of the βC1 gene of TYLCCNB that 

the severity of the symptoms parallels the level of βC1 transcript in the transgenic plants 

and their ability to induce symptoms is abolished by mutation of the βC1 gene. Possibly βC1 

gene of betasatellite may be replaced with a foreign gene and used as an expression vector 

for gene function analysis in plants [20].  

Evidence has been shown that TYLCCNB modified by deletion of its βC1 gene but retaining 

the βC1 promoter and terminator, can be turned into a gene silencing vector. Also, insertion 

in the vector with fragments of endogenous plant genes or a transgene, in either the sense or 

antisense direction, can result in effective silencing of the cognate gene in plants [95]. The 

size of the mutated satellite DNA molecule significantly influences replication efficiency. 

TLCV sat-DNA can be used as a potential gene expression/silencing vector [47]. 

8.2. Alphasatellite  

Also alphasatellite is a small molecule and easy to manipulate and have a wide host range 

and can apparently be maintained by a large number of distinct Begomovirus species. It has 

some sequences (A-rich approx.200 nt.), similar to betasatellite which can, potentially, be 

removed and still it can replicate autonomous. The A-rich deleted sequences of CLCuMA 

can not affect its ability to replicate autonomously and move, in trans, by a helper 

begomovirus that provide a space suitable for insertion of foreign sequences to increase its 

capacity to accept and maintain foreign gene sequences [82] (Table 2). This ability to amplify 

itself is useful for construction of VIGS vectors it will increase the copy number (and thus 
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also expression) of inserted sequences [82]. Rolling-circle replication initiator protein of  

GmusSA and GDarSLA act as a strong suppressor of PTGS. 

9. Conclusions 

The monopartite begomovirus associated with DNA-satellites (Betasatellite and 

Alphasatellite ) complex is in the norm throughout the Old World, particularly in South 

Asian countries. The epidemiology and evolution of this complex has been extensively 

analyzed since its first description. Monopartite begomovirus encoded all the genes needed 

to cause a successful infection. Many of these genes are coding for multifunctional proteins, 

adding another level of complexity in their interaction with host proteins, and their de novo 

creation. This shows the ability of begomoviruses and their associated satellites to rapidly 

evolve in response to selection pressures such as host plant resistance.  
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