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1. Introduction

The field of two-dimensional filters and their design methods has known a large development
due to itsimportance in image processing (Lim, 1990; Lu & Antoniou, 1992). There are methods
based on numerical optimization and also analytical methods relying on 1D prototypes. A
commonly-used design technique for 2D filters is to start from a specified 1D prototype filter
and transform its transfer function using various frequency mappings in order to obtain a 2D
filter with a desired frequency response. These are essentially spectral transformations from s
tozplane, followed by z to (z;, z,) mappings, approached in early papers (Chakrabarti & Mitra,

1977; Hirano & Aggarwal, 1978; Harn & Shenoi, 1986; Nie & Unbehauen, 1989). Generally these
transformations conserve stability, so from 1D prototypes various stable recursive 2D filters
can be obtained. The most common types are directional, fan-shaped, diamond-shaped and
circular filters. Diamond filters are commonly used as anti-aliasing filters in the conversion
between signals sampled on the rectangular sampling grid and the quincunx sampling grid.
Various design methods for diamond-shaped filters were studied in (Tosic, 1997; Lim & Low,
1997; Low & Lim, 1998; Ito, 2010; Matei, 2010).

There are several classes of filters with orientation-selective frequency response, useful in tasks
like edge detection, motion analysis, texture segmentation etc. Some relevant papers on
directional filters and their applications are (Danielsson, 1980; Paplinski, 1998; Austvoll,
2000). An important class of orientation-selective filters are steerable filters, synthesized as a
linear combination of a set of basis filters (Freeman & Adelson, 1991) and steerable wedge
tilters (Simoncelli & Farid, 1996). A directional filter bank (DFB) for image decomposition in
the frequency domain was proposed in (Bamberger, 1992). In (Qunshan & Swamy, 1994)
various 2D recursive filters are approached. Fan-shaped, also known as wedge-shaped filters
find interesting applications. Design methods for IIR and FIR fan filters are presented in some
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early papers (Kayran & King, 1983; Ansari, 1987). An efficient design method for recursive fan
tilters is presented in (Zhu & Zhenya, 1990). An implementation of recursive fan filters using
all-pass sections is given in (Zhu & Nakamura, 1996). In (Mollova, 1997), an analytical least-
squares technique for FIR filters, in particular fan-type, is proposed. Design methods for
efficient 2D FIR filters were treated in papers like (Zhu et al., 1999; Zhu et al., 2006). Zero-phase
tilters were studied as well (Psarakis, 1990). Different types of 2D filters derived from 1D
prototypes through spectral transformations were treated in (Matei, 2011a).

We propose in this chapter some new design procedures for particular classes of 2D filters; the
described methods are mainly analytical but also include numerical approximations. Various
types of 2D filters will be approached, both recursive (IIR) and non-recursive (FIR). The design
methods will focus however on recursive filters, since they are the most efficient.

The proposed design methods start from either digital or analog 1D prototypes with a desired
characteristic. In this chapter we will mainly use analog prototypes, since the design turns out
to be simpler and the 2D filters result of lower complexity. This analog prototype filter is
described by a transfer function in the complex variable s, which can be factorized as a product
of elementary functions of first or second order. The prototype transfer function results from
an usual approximation (Butterworth, Chebyshev, elliptic) and the shape of the frequency
response corresponds to the desired characteristic of the 2D filter.

The next design stage consists in finding the specific complex frequency transformation from
the axis s to the complex plane (z;, z,), of the general form F:C— C? s— F(z,, z,). This

mapping will be determined for each type of 2D filter separately, starting from the geometrical
specification of its shape in the frequency plane. Once found this particular mapping, the 2D
filter function results directly by applying this transformation to each factor function of the
prototype. Thus, the 2D filter transfer function H (z,, z,) results directly factorized, which is a

major advantage in its implementation. The proposed design method applies the bilinear
transform as an intermediate step in determining the 1D to 2D frequency mapping. All the
proposed design techniques are mainly analytical but also involve numerical optimization, in
particular rational approximations (e.g. Chebyshev-Padé). Some of the designed 2D filters
result with complex coefficients. This should not be a serious shortcoming, since such IIR filters
are also used (Nikolova et al., 2011).

In this chapter we will approach two main classes of 2D filters. The first one comprises three
types of orientation-selective filters, as follows: square-shaped (diamond-type) IIR filters, with
arbitrary orientation in the frequency plane; fan-type IIR filters with specified orientation and
aperture angles; and very selective IIR multi-directional filters (in particular two-directional
and three-directional), which are useful in detecting and extracting simultaneously lines with
different orientations from an image.

The other class discussed here refers to FIR filters. From this category we will approach zero-
phase filters with circular frequency response. Zero-phase filters, with real transfer functions,
are often used in image processing since they do not introduce any phase distortions. All these
types of 2D filters are analyzed in detail in the following sections.
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Stability of the two-dimensional recursive filters is also an important issue and is much more
complicated than for 1D filters. For 2D filters, in general, it is quite difficult to take stability
constraints into account during approximation stage (O’Connor & Huang, 1978). Therefore,
various techniques were developed to separate stability from approximation. If the designed
filter becomes unstable, some stabilization procedures are needed (Jury et al., 1977). Various
stability conditions for 2D filters have been found (Mastorakis, 2000).

The medical image processing field has known a rapid development due to imaging value in
assisting and assessing clinical diagnosis (Semmlow, 2004; Berry, 2007; Dougherty, 2011). In
particular, the currently used vascular imaging technique is x-ray angiography, mainly in
diagnosing cardio-vascular pathologies. A frequent application of cardiac imaging is the
localization of narrowed or blocked coronary arteries. Fluorescein angiography is the best
technique to view the retinal circulation and is useful for diagnosing retinal or optic nerve
condition and assessing disorders like diabetic retinopathy, macular degeneration, retinal vein
occlusions etc. There are many papers approaching various methods and techniques aiming
at improving angiogram images. In papers like (Frangi et al., 1998) the multiscale analysis is
used, with the purpose of vessel enhancement and detection. Usual approaches include
Hessian-based filtering, based on the multiscale local structure of an image and directional
features of vessels (Truc et al., 2007). In cardio-vascular imaging, an essential pre-processing
task is the enhancement of coronary arterial tree, commonly using gradient or other local
operators. In (Khan et al., 2004) a decimation-free directional filter bank is used. An adaptive
vessel detection scheme is proposed in (Wu et al., 2006) based on Gabor filter response.
Filtering is an elementary operation in low level computer vision and a pre-processing stage
in many biomedical image processing applications. Some edge-preserving filtering techniques
for biomedical image smoothing have been proposed (Rydell et al., 2008; Wong et al., 2004).
At the end of this chapter some simulation results are given for biomedical image filtering
using some of the proposed 2D filters, namely the directional narrow fan-filter with specified
orientation and the zero-phase circular filter.

2. Analog and digital 1D prototype filters used in 2D filter design

This section presents the types of analog and digital 1D recursive prototype filters which will
be further used to derive the desired 2D filter characteristics. An analog IIR prototype filter of
order N has a transfer function in variable s of the general form:

PO S i /S
Hp(9)= 50 = 2P s ]_Zoqjs (1)

This general transfer function can be factorized into simpler rational functions of first and
second order. Such a second-order rational function (biquad) can be written:



278 Digital Filters and Signal Processing

Hb(s)zk(sz+bls+b0)/(52+als+a0) 2)

where generally the second-order polynomials at numerator and denominator have complex-
conjugated roots, and k is a constant. For typical approximations — Chebyshev or elliptic —
usually b; =0, therefore the numerator has imaginary zeros. For odd-order filters, the denom-
inator contains at least a first-order factor (s + ). An elliptic approximation with very low
ripple can be used for an almost maximally-flat low-order filter. Next we consider two such
low-pass (LP) prototypes with imposed specifications. The first is an elliptic LP analog filter
of order N =6, cutoff frequency w,=0.47, peak-to-peak ripple R,=0.04dB, stop-band attenua-

tion R ,=38dB. Its transfer function can be factorized into three biquad functions like (2):
Hp(s)=k - Hyy(s) - Hyy(s) - Hys(s) where k=2.375 and:

H,,(s) = (s* +39.195)/(s? +0.22215 + 2.8797) (3)
H,,(s) = (s> +6.5057)/(s? +0.9172s + 2.4291) (4)
Hyy(s) = (5% + 4.2217)/(s? + 2.04485 + 1.5454) (5)

The frequency response magnitude of this LP filter for w €[ -7, 7] is shown in Fig. 1(a).

The second prototype is an elliptic LP analog filter with parameters: N =4, w,=0.47, R,=0.05
db,R,=36db. Its transfer function is written as a product of two biquad functions like (2):
Hp(s)=k - Hyy(s) - Hyy(s), where k =0.01 and

H,,(s) = (s> +33.385)/(s? +0.5894s + 2.2398) (6)

H,,(s) = (s> +6.4226)/(s* +1.9691s +1.5266) 7)

The frequency response magnitude of this LP filter for w €[ -7, 7t] is shown in Fig.1 (b). The
simplest analog LP filter has a transfer function H ]-(s)=a / (s + @), where the value a gives the

selectivity (Fig.1(c)). If the filter characteristic is shifted to a given frequency wy, €[ -7, 7], the

transfer function becomes:

H].S(s)za/(s+a+j-a)m) (8)
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In Fig.1 (d) the shifted filter response magnitude for w,;=0.4167 is shown. Another useful

analog prototype is the selective second-order (resonant) filter with central frequency w:

Hr(s)=ozs/(s2 +as+a)§) )

The transfer function magnitude for such a filter with =0.1 and w,=1.3 is shown in Fig. 1

(e). This will be further used as a prototype for two-directional filters.

09 /( \

08

o7

0e

04

03

|
|
}J
l
i
|

i |

i
5
~ — .
I e 0
[ 2

(cD:) 1 3 : (d) 1 3 (e)

Figure 1. Frequency response magnitudes of: (a) LP elliptic prototype of order 6; (b) LP elliptic prototype of order 4;
very selective first-order filter with central frequencies wy=0 (c) and wy=0.4167 (d); (e) selective band-pass filter with
wy=1.3

A useful zero-phase prototype can be obtained from the general function (1) by preserving
only the magnitude characteristics of the 1D filter; this prototype will be further used to design
2D zero-phase FIR filters of different types, specifically circular filters, with real-valued
transfer functions. In order to obtain a zero-phase filter, we consider the magnitude charac-
teristics of H,(jw), defined by the absolute value | Hp(jw) | =1 P(jw)! /1 Q(jw) . We look
for a series expansion of the magnitude | H,(jw) | that has to be an approximation as accurate

as possible on the frequency domain [ -7, 7t]. The most convenient for our purpose is the
Chebyshev series expansion, because it yields an efficient approximation of a given function,
which is uniform along the desired interval. The Chebyshev series in powers of the frequency
variable w for a given function on a specified interval can be easily found using a symbolic
computation software like MAPLE. However, we will finally need a trigonometric expansion
of |Hp(jw) |, namely in cos(nw), rather than a polynomial expansion in powers of .

Therefore, prior to Chebyshev series calculation, we apply the change of variable:

279
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@ = arccos(x) < x = cos(w) (10)

and so we get the polynomial expansion in variable x:

N
|HP (arccos(x))| = Z a, X" =ay+ayx+ azxz + a3x3 +.o+ aNxN

n=0

(11)

where the number of terms N is chosen large enough to ensure the desired precision. The next
step is to substitute back x=cosw in the polynomial expression (11), therefore we obtain the
factorized function in cosw, with n + 2m=N:

N n m
|Hp(a))| = z a,-cos"(w)=k- H(Cosa) +a;)- H(C052 ®+ay;COS M+ ”z]‘) (12)
n=0 i=1 j=1

Next let us consider a recursive digital filter of order N with the transfer function:

_P@ S, L /Sy
Hp(z)—Q(z)—l;pi z ]Zz(:)qj z (13)

This general transfer function with M =N can be factorized into first and second order rational
functions. For an odd order filter, H(z) has at least one first-order factor:

Hl(z):(blz+b0)/(z+a0) (14)

The transfer function also contains second-order (biquad) functions, where in general the
numerator and denominator polynomials have complex-conjugated roots:

Hz(z)z(bzz2 +blz+bo)/(z2 +alz+ao) (15)

We will further use the term template, common in the field of cellular neural networks, for the
coefficient matrices of the numerator and denominator of a 2D transfer function H (z,, z,).
3. Diamond-type recursive filters

In this section a design method is proposed for 2D square-shaped (diamond-type) IIR filters.
The design relies on an analog 1D maximally-flat low-pass prototype filter. To this filter a



Analytical Design of Two-Dimensional Filters and Applications in Biomedical Image Processing 281
http://dx.doi.org/10.5772/52195

frequency transformation is applied, which yields a 2D filter with the desired square shape in
the frequency plane. The proposed method combines the analytical approach with numerical
approximations.

3.1. Specification of diamond-type filters in the frequency plane

The standard diamond filter has the shape in the frequency plane as shown in Fig.2 (a). Itis a
square with a side length of 7142, while its axis is tilted by an angle of ¢ =7 /4 radians about
the two frequency axes. Next we will consider the orientation angle ¢ about the w,— (vertical)
axis. In this chapter a more general case is approached, i.e. a 2D diamond-type filter with a
square shape in the frequency plane, but with arbitrary axis orientation angle, as shown in
Fig. 2(e). Next we refer to them as diamond-type filters, since they are more general than the
diamond filter from Fig. 2 (a).

The diamond-type filter in Fig.2 (e) is derived as the intersection of two oriented low-pass
filters whose axes are perpendicular to each other, for which the shape in the frequency plane
is given in Fig.2 (c), (d). Correspondingly, the diamond-type filter transfer function H,(z;, z,)

results as a product of two partial transfer functions:

Hp(z,2,) = H(z,2,) - Hy(2,2,) (16)

R

(d) () (f)

Figure 2. (a) diamond filter; (b) wide-band oriented filter; (c), (d) wide-band oriented filters with orientations forming
anangle o=/ 2; (e) square-shaped filter resulted as product of the above oriented filters; (f) rhomboidal filter

The frequency characteristic of H,(z,, z,) is ideally identical to the frequency characteristic of
H,(z,, z,) rotated by an angle of ¢=7t/2. Since this rotation of axes implies the frequency
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variable change: w, — w,, w,— —w,, the transfer function H,(z;, z,) can be derived from

H(zy, z,) as Hy(z, z,)=H{(z,, zl_l). A more general filter belonging to this class is a rhomboi-

dal filter, as shown in Fig.2 (f). In this case the two oriented LP filters may have different
bandwidths and their axes are no longer perpendicular to each other.

3.2. Design method for diamond-type filters

The issue of this section is to find the transfer function H,(z,, z,) of the desired 2D filter using
a complex frequency transformation s — F(z;, z,). From a prototype H,(s)=Hp(jw) (which
varies on one axis only), a 2D oriented filter is obtained by rotating the axes of the plane (w;, w,)
by an angle ¢. The rotation is defined by the following linear transformation, where w;, w, are

the original frequency variables and w,, w, the rotated ones:

@ | | cosp sing ' @,
L}j [—sin(p cosq)} L_)j (17)

The spatial orientation is specified by an angle ¢ with respect to w, —axis, defined by the 1D
to 2D frequency mapping w — w,cos@ + w,sing. By substitution, we obtain the oriented filter
transfer function H,(w;, @,)=Hp(w,c08¢ + w,sing). In the complex plane (s, s,) the above

frequency transformation becomes:
§—>8,COSQ +8,sing (18)

The oriented filter H (w;, w,) has the frequency response magnitude section along the line
@w,CcosQ + w,sing =0, identical with prototype H ,(w), and constant along the perpendicular line
(filter longitudinal axis) w;sing —w,cosp =0. The usual method to obtain a discrete filter from

an analog prototype is the bilinear transform. If the sample interval takes the value T =1, the
bilinear transform for s; and s, in the complex plane (s, s,) has the form:

5;=2(z,-1)/(z,+1) 5, =2(z, - 1)/(z, +1) (19)

This method is straightforward, still the resulted 2D filter will present linearity distortions in
its shape, which increase towards the limits of the frequency plane as compared to the ideal
frequency response. This is mainly due to the so-called frequency warping effect of the bilinear
transform, expressed by the continuous to discrete frequency mapping:

®=(2/T)-arctg(a,T/2) (20)
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where w is a frequency of the discrete filter and w, is the corresponding frequency of the analog

tilter. This error can be corrected by applying a pre-warping. Taking T =1 in (20), we substitute
the mappings:

o, > 2-arctg(w, /2) w, —>2-arctg(m,/2) (21)

In order to include the nonlinear mappings (21) into the frequency transformation, a rational
approximation is needed. One of the most efficient is Chebyshev-Padé, which gives uniform
approximation over a specified range. We get the accurate approximation for w €[ -, 7]:

arctg(w/2) = 04751 a)/ (1+0.05-07) (22)

Substituting the nonlinear mappings (21) with approximate expression (22) into (18) we get
the 1D to 2D mapping which includes the pre-warping along both frequency axes:

S, COS @ s, sing
2" 2
1-0.05-s; 1-0.05-s;

5 F,(5,,5,) =0.95 (23)

Applying the bilinear transform (19) along the two axes we obtain the mapping s — F o(Z1 )

in matrix form, where z,;=[1 z, 212] and z,=[1 z, 222]:

s F (z,,2)) =k M,(2,,2,) /N, (2,,2,) =k (2, xM, x 2}) [ (2, xN,, x z}) (24)

Here k=1.5233 and the matrices M, and N, of size 3x3 are given by:

-1 -3 -1 -1 0 1 1 3 1
M(p=cos¢>- 0 0 Of+sineg-|-3 0 3 N(p= 3 9 3 (25)
1 3 1 -1 0 1 1 3 1

Substituting the mapping (24) into the expression (2) of the biquad transfer function H(s) with

b, =0, we get the 2D transfer function Hy(z;, z,) in the matrix form:

HB(zl,zz)z(zlxlezg)/(zlelng) (26)

where z; and z, are the vectors:
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z=[1 2 7 2 7] =[1 2z 3 3 2] (27)
and the 5x5 templates B,, A, are given by the expressions:
2 ) _ 2
B, =k"M,*M_, +b,-N,*N_; A, =k"-M *M_ +a,-k-M,*N_ +a, N, *N_ (28)

For instance, corresponding to the third biquad function H ;(s) given by (5), the following 5x5

templates result according to the expressions (28):

r0.2464 0.9407 1.1418 0.4027 0.0671
0.9407 3.2233 3.8917 1.6092 0.4027
B,=|1.1418 3.8917 6.1484 3.8917 1.1418
0.4027 1.6092 3.8917 3.2233 0.9407
0.0671 0.4027 1.1418 0.9407 0.2464
- 0.0947  0.1941 0.0732 -0.0163 0.0245
0.1941 -0.2738 -0.7181 0.0774 0.3112
A= 00732 -0.7181 1.0000  2.8851 1.2743
-0.0163 0.0774 2.8851 3.6570 1.1768
- 0.0245 03112 1.2743 1.1768 0.3131

. i , /
-\' nmn ’
SUNEER] M :
e L Wl \
LT | /
©

(d) (e)

Figure 3. (a) LP correction filter characteristic; frequency response magnitudes and contour plots of: (b), (c) uncorrect-
ed diamond-type filter; (d), (e) corrected diamond-type filter
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The characteristics of a diamond-type filter with orientation angle ¢ =7t /4 and based on the
prototype filter of order 6 given by the factors (3)-(5) is shown in Fig.3 (b), (c). As can be noticed,
the filter characteristic corrected by pre-warping has a good linearity, however it still twists
towards the margins of the frequency plane. These marginal linearity distortions can be
corrected using an additional LP filter. For instance, we can choose as prototype an 1D elliptic
digital filter of order N =3, pass-band ripple Rp=0.1dB, stop-band attenuation R,=40 dB and

cutoff frequency w.=0.6, which has the coefficients given by the vectors:
B, =[0.3513 1.01 1.01 0.3513] A-, =[1 0.9644 0.6701 0.088] (29)

The 2D low-pass filter is separable and results by applying successively the 1D filter along the
two frequency axes; the 4x4 matrices of the correction filter result as: B-=B/, ® B,
A-=A/l, ® A, where the symbol ® denotes outer product of vectors. The correction filter has

the following transfer function, where z,=[1 z; z{ z’], z,=[1 z, z} 2zl

Hc(zl,zz)z(zlxBszg)/(zleszg) (30)

(d)
Figure 4. Diamond-type filters with orientation angle: (a), (b) p=7/12; (c), (d) o= /6

The resulted 2D square-shaped correction filter characteristic is shown in Fig.3 (a) and is al-
most maximally-flat, as required. The corrected version of the diamond-type filter from Fig.
3 (b), (c) has the magnitude and the contour plot shown in Fig. 3 (d), (e). It can be easily no-

285
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ticed that the initial distortions have been eliminated. Another two diamond-type filters
with orientation angles ¢ =7t /12 and ¢ =7t/ 6 are shown in Fig. 4 (a)-(d).

4. Fan-type recursive filters

In this section an analytical design method in the frequency domain for 2D fan-type filters is
proposed, starting from an 1D analog prototype filter, with a transfer function decomposed
as a product of elementary functions. Since we envisage designing efficient 2D filters, of
minimum order, recursive filters are used as prototypes, and the 2D fan-type filters will result
recursive as well.

In Fig.5 (a) a general fan-type filter is shown, with an aperture angle < BOD =0, oriented along
an axis CC " and its longitudinal axis forming an angle < AOC =¢ with frequency axis Ow,. A
particular case is the two-quadrant fan filter, shown in Fig.5 (b). Fig.5 (c) shows a DFB with 8-
band frequency partition (Bamberger, 1992), an angularly-oriented image decomposition
which splits the frequency plane into fan-shaped sub-bands (channels).

wy

@ (b) ©

Figure 5. (a) Ideal fan filter with given aperture, oriented at an angle ¢; (b) Ideal two-quadrant fan filter (c) 8-band
partitions of the frequency plane

The 1D analog filter discussed in section 2 is used as prototype. The general fan-type filter can
be derived from a LP prototype using the frequency mapping (Matei & Matei, 2012):

o f,(0,0,)= a-(a)l COSQP— @, -sinqo)/(ao1 -sing + o, -cosqo) (31)

In (31), a=1/tg(0 /2) is the aperture coefficient, where O is the aperture angle of the fan-type
filter. This frequency mapping in the complex variables s, = jw,, 5,= jw, is:

s f,(51,8,) :j-a-(s1 *CosQp—s, -sin(p)/(s1 -sing +s, -cosgo) (32)
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(d) 0

Figure 6. Frequency response magnitudes and contour plots for: (a) fan-type filter with aperture 6=0.1 7t and orienta-
tion @ =1/ 7; corrected filters with 6=0.17, o=t/ 7 (b) and ¢ =0(c)

Applying the same steps as in Section 3.2 in order to obtain a discrete form of the above

frequency mapping, using relations (21), (22) and (32) we obtain the 1D to 2D mapping which
includes pre-warping along both axes of the frequency plane:

(51(1 - 0.055§)cosg0 —s,(1- 0.05512)sin go)

s—>F,(s,8,)=7]-a (33)

(sl(l - 0.0Ssg)sin(p +5,(1- 0.05512)cos gp)

We now apply the bilinear transform (19) along the two axes and obtain the mapping

s—F (P(zl, z,) in matrix form, where z,=[1 z, 212] and z,=[1 2z, 222]:

S F,(27) = - Py(3,2)/Qp(21,2) = -0+ (2, xP x73 ) [/(2,xQ x| (34)
and the 3x3 matrices P, and Q,, are given by:
-1 3 -1 -1 01 -1 3 -1 -1 0 1
P(p =cosp-| 0 O O|-sing-|-3 0 3 ;Q(P =singp-| 0 O O|+cosep-|-3 0 3 (35)
1 3 1 -1 0 1 1 3 1 -1 0 1

Substituting the mapping (34) into the biquad expression (2) with b; =0, we get the 2D transfer
function in matrix form Hy;(z;, z,)= (21 x B, x zzT) / (z1 x Ay 2 ), similar to (26), where the

vectors z,, z, are given by (27). The 5x5 templates B, and A, are given by:

287
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2 2 .
BzzbO'Q(p*Q(p_a 'P(p*P(p; Azzgo.Q(ﬂ*Qq)—g 'P¢*P¢+]'”'“1'P¢;*Q<p (36)

The 2D transfer function for each biquad is complex. The characteristics of a fan-type filter
designed with this method and based on the prototype filter of order 4 given by (6)-(7) is shown
in Fig.6 (a), for the indicated parameters. As with the diamond-type filter analyzed in the
previous section, the fan-type filter characteristic features marginal linearity distortions which
can be corrected using a LP filter, similar with the correction filter used in Section 3.2 and
having the frequency characteristic shown in Fig. 3 (a).

s

| i‘l“‘“"“"*\“ll\\\\\ i
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Figure 7. (a) Frequency response magnitude and (b) contour plot for the 2-quadrant fan filter

Two corrected fan-type filters with specified parameters have the magnitudes and contour
plots shown in Fig.6 (b), (c). The initial distortions have been eliminated. With the same
correction filter, we obtain the two-quadrant fan filter, shown in Fig. 7, by setting the aperture
angle 0=m /2 and orientation angle ¢ =7 /4.

5. Very selective multidirectional IIR Filters

In this section a design method based on spectral transformations is proposed for another class
of 2D IIR filters, namely multi-directional filters. The design starts from an analog prototype
with specified parameters. Applying an appropriate frequency transformation to the 1D
transfer function, the desired 2D filter is directly obtained in a factorized form, like the filters
designed in the previous sections. For two-directional filters, an example is given of extracting
lines with two different orientations from a test image. The spectral transformation used in the
case of multi-directional filters is similar to the one presented in the previous section, derived
for fan-type filters and given by (34), (35). In this section the design of two-directional and
three-directional filters with specified orientation is detailed. The method can be easily
generalized to arbitrary multi-directional filters.
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Figure 8. Ideal shapes of some directional filters in the frequency plane: (a) two-directional filter; (b) three-directional
filter; (c) three-band selective filter with wy, =0.597, wy,=—-0.36m

5.1. Two-directional fan-type filters

A two-directional 2D filter is orientation-selective along two directions in the frequency plane.
It is based on a selective resonant IIR prototype as given in section 2. Applying the same
frequency transformation s — F (z;, z,) derived for fan-type filters and given by (33) to the

prototype filter (9) we get the 2D two-directional transfer function H,(z;, z,) in matrix form
H,(z;, z,)= (zl x B x zzT) / (z1 x Ayxz, ), similar to (26), but the 5x5 matrices B;, A;now have the

form:

B3=a.a.P¢*Q¢ A3:a.a~P{p*Q(p+]'(a2.P¢*P(p—a)02~Q(p*Q(p) (37)

The denominator matrix A, has complex elements. In Fig.9 (a), the contour plot of the frequency

response magnitude is shown for a two-directional filter with aperture O = 7 / 6 and orientation
@=m/5. As with the previous types of filters, the marginal linearity distortions can be corrected
using an additional LP square-shaped filter.

The templates B;~- and A;- of the corrected filter result by convolution: B,-=B;* B and
Ay-=As% A-. In Fig9 (b), (c) the frequency response magnitudes and contour plots are

displayed for the corrected two-directional filter with specified aperture and orientation. The
initial distortions have been eliminated.

The second two-directional filter in Fig.9 (d), (e) is a particular case, being oriented along the
two frequency axes (0= /2, p=mt/4), therefore can be used to detect simultaneously hori-
zontal and vertical lines from an image, as shown in the next section.

5.2. Three-directional fan-type filters

In order to design a three-directional filter like the one depicted in Fig. 8 (b), we must start
from an analog three-band selective filter, like the one with frequency response shown in Fig.
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Figure 9. (a) Contour plot of a two-directional filter with 6= /6, o=/ 5; frequency response magnitudes and con-
tour plots of two corrected two-directional filters with parameters: 0= /6, p=r /5 (b), (c)and 6= /2, p=m /4 (d),

(e)

8 (c). For a three directional filter, the middle peak frequency can always be taken w,=0, and
the other two on each side at specified values. The prototype transfer function H ,(s) in variable

s will be in this case the sum of three elementary functions:

B,(s) a a o
= = . + ; (38)
Ap(s) s+a sta+j-wy sta+j-ay

The frequency response of a filter of this kind with parameter values a=0.03, wy;=0.597 and
wy,=—0.367 is shown in Fig. 8 (c). Substituting the mapping (34) into the expression (8) of the
elementary function H j5(s), we get the 2D transfer function H,(z;, z,) in matrix form:
H(z, zz)=(zl>< B, x ZZT)/(leAbXZZT), where z;=[1 z, z2], z,=[1 z, z7] and the 3x3

templates B, A, are given by:
B,=a-Q, A, =a-Q,+j(a-P,+a,Q,) (39)

Each of the three elementary terms in (38) corresponds to a pair of 3x3 templates B, and A,

given by (39). If the three elementary filters are given by the pairs of templates (B,;, A,;), (B,
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A,,) and (B, A,;), the templates of size 7x7 of the entire three-directional filter will result by

summing up the convolutions of elementary templates:
By =B, * Ay, * Ay + Ay *By # A+ Ay 2 A kB s A=A x A, x Ay, (40)

The numerator B, (s) of Hp(s) from (38) has the general form:
Bp(s)za-(a2-52+al-s+a0) (41)

where 1,=3, a,=6a + j - 2(wy; + Wy,) and ay=3a*-wy, - Wy + j - 2a(wy; + Wy)-

We see that g, is real and a,, 4, are generally complex. The coefficients 4,, a4, are real only when
Wy, = — Wy, i.e. for symmetric frequency values around the origin. Finally, for any specified set

of values a, wy;, wy, the denominator factorizes as B;(s)=3a - (s +7_)(s +7,), wherer andr are

complex roots. Therefore the factorized prototype transfer function is:
Bi(s) 3a-(s+r;)(s+7,)

Hi(s) = Aj(s) :(s+a)(s+p1)(s+p2) (42)

(b)

Figure 10. Frequency response magnitude (a) and contour plot (b) of a corrected three-directional filter with parame-
ters:6=0.23m, ¢=0.271, wy,=0.5971, wy,=—-0.361

At the denominator, we denoted p;=a + j-wy, p,=a + j-wy,. Applying to each factor the
frequency transformation s — F o(Z1, 7)) given by (34), after some algebraic manipulations, we

finally obtain the templates of the three-directional filter as discrete convolutions:
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B, =3a-Q, *(rQ, + jaP, ) *(r,Q, + jaP, ) (43)

Ay =(aQ, +jaP,)*(p,Q, + jaP, ) *(p,Q, + jaP,) (44)

This implies the fact that the transfer function H,(z,, z,) of the 2D three-directional filter with
templates B, and A; of size 7x7 results directly in a factorized form, which is an important

advantage in implementation. As a general remark on the method, using an analog prototype
instead of a digital one, as is currently done, simplifies the design in this case, as the frequency
mapping results simpler and leads to a 2D filter of lower complexity. The designed filters result
withcomplexcoefficients,howeversuchlIRfilterscanalsobeimplemented (Nikolovaetal.,2011).

6. Directional IIR filters designed in polar coordinates

We approach here a particular class of 2D filters, namely filters whose frequency response is
symmetric about the origin and has at the same time an angular periodicity. The contour plots
of their frequency response, resulted as sections with planes parallel with the frequency plane,
can be defined as closed curves which can be described in terms of a variable radius which is
a periodic function of the current angle formed with one of the axes.

It can be described in polar coordinates by p=p(¢), where ¢ is the angle formed by the radius
op with w;-axis, as shown in Fig.8(a) for a four-lobe filter. Therefore p(¢) is a periodic function

of the angle ¢ in the range ¢ €[0, 2n].

6.1. Spectral transformation for filters designed in polar coordinates

The main issue approached here is to find the transfer function of the desired 2D filter
H,p(z;, z,) using appropriate frequency transformations of the form w — F(w;, w,). The

elementary transfer functions (14) and (15) have the complex frequency responses:

H,(jo) = (bo +b, cosw+ jb, sinw)/(ao +cosa)+jsina)) (45)

) b, + (b, +by)cosw + j(b, —b,)sinow P(w
H,(jo) = L2720 JY ~ b _ P(w)

a, +(1+ay)cosw+ j(1-a,)sinw - Q(w) (46)

The proposed design method for these 2D filters is based on the frequency transformation:

F:R—C?0® > F(z,2,) = Bi(2,2,) [ As(2,,2,) (47)
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which maps the real frequency axis w onto the complex plane (z;, z,), defined by the real

frequency mapping:
X 2 2 _ 2 2
F:R->R% 0 —>F(a)1,a)2)—(a)1 + )/,0(601,602) (48)

In (48) p(w;, w,) is initially determined in the angle variable ¢ as p(¢) and can be referred to

as a radial compressing function. In the frequency plane (v, w,) we have:

cosp =,/ \o? + @2 (49)

[N

: P ) Hiw)

@) (b) ©
Figure 11. (a) contour plot of a four-lobe filter; (b) periodic function p(¢p); (c) LP prototype

If the radial function p(¢) can be expressed in the variable cosp, using (49) we obtain by
substitution the function p(w,, w,). The function p(¢) will result as a polynomial or a ratio of

polynomials in cosg. For instance, the four-lobe filter with the contour plot given in Fig.11
(a) corresponds to a function:

p(p)=a+bcosdp=a+b—8bcos? p+8bcos? (50)

plotted in Fig.11 (b) on the range ¢ €[0, 27t]. More generally, the 2D filter can be rotated in the
frequency plane with a specified angle ¢, about one of the frequency axes, e.g. O —w,. For

instance, in a four-lobe filter, two opposite lobes are oriented along a direction at an angle
@, and the other two at ¢, + 71 /2, as shown in Fig.12 (b). It can be shown that the cosine of the

current angle ¢ with initial phase ¢, can be expressed as:

cos* (¢ + ®y) = (cos2 ?p - colz +5sin® ®y - a)§ +0.5sin2¢, - 0,0, )/(‘012 + 0)22) (51)

For filters with an even number of lobes, the radial function p(¢) is expressed in even powers
of cosg or cos(p + ¢,). The frequency transformation (48) can be also expressed as:
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a)—>\/(a)12+a)12)/p(a)1,a)2) = JF (o, ®,) (52)

In order to obtain a rational expression for the frequency response of the 2D filter from an
elementary 1D prototype of the form (45) or (46) by applying the frequency mapping (52), we

need to derive rational expressions for the functions cosyw and sinyw. Using the Chebyshev-
Padé method in a symbolic computation software, the following second-order rational
approximations were found:

cosvw = (1.0559 —0.086514 - —0.1304 - ) / (1 +0.75- w—0.110583 - a)2) =Cy(w)/Ag(®)  (53)

sinvo = (0.167 +1.46287 - @ — 0.259815 - »* ) /(1+0.75- &~ 0.110583 - 0* | = S. (0) / Ac(®) (54
s s (54)

which are sufficiently accurate on the range w € [0,7t]. Since these functions are developed on
the range [0,7], their approximations result neither odd nor even. However, using the above
approximations will lead to relatively complex 2D filters, described by templates of size at
least 9x9. For the type of filters approached, namely selective two-directional (four-lobe)

filters, the approximations for cosyw and sinyw need not necessarily hold throughout the
range [0,7t], but only on a smaller range near the origin, corresponding to filter pass-band.
Using now the Padé method we get the first-order approximations:

sinvo = (sp +5,0)/(1+rw) cosvo = (cg +,@)/(1+ rw) (55)

with 5,=0.0928, 5,=2.5218, ¢,=1.0104, ¢,;=1.2193, r=1.979, which hold only on a

narrower range around zero of the interval w € [0,7]. Using (55) instead of (53), (54) will result
in much more efficient 2D filters, which fully satisfy the imposed specifications.

We will use here a Chebyshev low-pass second-order filter of the general form (15). For this
type of filter we have the coefficient symmetry b,=b,. According to (46) we can write:

(56)

' b, +2b, coso P(o)
- _ 1125 _
2(]\/5) a, +(1+ay)cosNo + j(1-ay)sinVo  QWw)

The numerator results real because the imaginary part is cancelled. Substituting the expres-
sions (55) into this complex frequency response we get the rational approximation:

b,(1+rw)+2by(c, + c,0)

H, (Vo) (57)

a1+ 1)+ (1+a,)(cy + @) + - (1—a)(5, + 5,0)
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which can be also written as:

b,(1+r0*) +2b,(c, + ;)

H,(jw)=

- a,(1+ ra)z) +(1+ay)(c, + cla)z) +7-(1—ay)(s, + sla)z) (58)

The function (58) has even parity, since it is expressed as a rational function in w2

6.2. Two-directional filter design

We approach now the design of a particular filter type designed in polar coordinates, namely
two-directional (selective four-lobe) filters along the two plane axes or with a specified
orientation angle. Let us consider the radial function given by:

H,(9)=1/(p-Blp)-p+1) (59)

where B(¢) is a periodic function; let B(p)=cos(4¢p). We use it to design a 2D filter with four
narrow lobes in the plane (w;, w,). Using trigonometric identities, (59) becomes:

H,(p)= 1/(1+8p-(cosgo)2 —8p~(cosgo)4) (60)

and is plotted for ¢ €[ -7, 1] in Fig.12(a). This is a periodic function with period ®=m /4 and
has the shape of a multi-band (“comb”) filter. In order to control the amplitude of this function,
we introduce another parameter k, such that the radial function p(¢p) takes the form
p(p)=k - H,(¢). We get using (49):

@ - Flo,,0,)= (a){L +(2+ 8p)a)12w22 + a);1 )/(k(col2 + co%)) (61)
and the function F,(s;, s,) of the form:
F,(s,8,) = —(S;1 +(2+ 8p)slzs§ + s§ )/(k(sl2 + sg)) (62)

Finally we derive a transfer function of the 2D filter H (z;, z,) in the complex plane (z;, z,). This
can be achieved if we find a discrete counterpart of the function p(w,, w,), denoted R(z,, z,).
A possible method is to express the function p(w,, w,) in the complex plane (s, s,) and then
find the appropriate mapping to (z;, z,) using the bilinear transform or the Euler approxima-

tion. Even if generally the bilinear transform is more often used, being a more accurate
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mapping, especially if a frequency pre-warping is applied to compensate for distortions, for
the particular type of 2D filter approached here the Euler formula leads to more efficient filters
and with better characteristics, at the same filter order. We will use the backward Euler method,

which approximates the spatial derivative 0X /0x by X[n]-X[n-1], replacing s by

s=1-z"1. On the two directions of the plane we have: s,=1-z;", s,=1-z,". The operators 52,

sf and s;s, correspond to second-order partial derivatives: 0*/dx%«—s2=z, +z;1-2,
% [dy?—sf=z,+2,'-2,0* /dxdy — s,5,. For the mixed operator s,s,, using repeatedly the
Euler formula, we get the expression (Matei, 2011 a): 25,5,=z, + 2, + 2, + 2z, ' —2-2,2; ' =2 '2,.

Substituting the above relations into (62) we obtain a frequency mapping similar to (47), with
the templates:

K 0 1 0 0]
0 2+8p -8-16p 2+8p O 0 1 0]fo 10
B,=|1 -8-16p 20+32p —8-16p 1|A =k:[1 —4 1[%|1 —4 1|=k-Aj*A (63)
0 2+8y -8-16p 2+8p 0 0 10/|0 10
0 0 1 0 0]

The template A, results as a convolution of two 3x3 matrices. The last step in the design of

this 2D filter is to apply the frequency transformation (61) to the frequency response (58) and
we find the filter templates B and A as linear combinations of B, and A:

B=(b, +2boco)-Af +(rb, +2boC1)'Bf (64)

A =(a,+(1+ay)cy + j(1-ag)sy)- Ay +(ayr +(L+ag)e, + j(1-ay)s, ) B (65)

where b,, b,, by, 4,, 4, are the coefficients of prototype (15). Finally the 2D filter transfer function

in z; and z, has the following expression, with z; and z, given by (27):

Hyp(21,2) = B(2,2,)/ A(z,,2,) = (2, xBx 2] ) /2, x Ax 2] (66)

Let us design a two-directional filter following this procedure. As 1D prototype let us consider
a type-2 low-pass Chebyshev digital filter with the parameter values: orderN =2, stop-band
attenuation R, =40db and passband-edge frequency w,=0.5 (1.0 is half the sampling frequen-

cy). The transfer function in z is:

H,(2) = (0012277 - 2% - 0012525 2 + 0012277 ) /(2> ~1.850147 - 2 + 0.862316 | (67)
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For a good directional selectivity we also choose p=30 and k=10. The 2D filter frequency
response magnitude is displayed in Fig.12 (c) and shows a very good linearity along the two
directions and practically no distortions in the stop band. The constant level contour in the
plane (w,, w,) is given in Fig.12 (d). Calculating the singular values of filter templates for the

above parameters we find the vectors S ,, S for the templates A, B:
S, =[2.09347 0.00225 0.0005 0 0] Sp=[214297 0.01939 0.00387 0 0]  (68)

Taking into account the fact that the first singular value of the templates A and B is much larger
than the other four, the filter designed above can be approximated by a separable filter.

The singular value decomposition of a matrix M is written as M =U xS xV where U and V are
unitary matrices and S is a diagonal matrix containing the singular values. Thus we can

write for the filter templates A and B:
A=U, xS, xV, B=UgxSyxVy (69)

IfU, and V, are the first columns of the matrices U ,, V 4, then A can be approximated by

a matrix A;=s,, - U, ® V 1, where s, is the largest singular value of A, U A and V A, are the
corresponding columns of U, and V,, ® stands for outer product, T for transposition.
Similarly for B we find B;=sp, - Uy, ® V4,. For the specified filter parameters we obtain
sg;=2.14297 and for template B the column vectors Ugz, and Vg, result identical:
Uy, =Vp,=[-0.00424 03971 -0.82743 0.3971 -0.00424]".

For the template A we get 5,,=2.09347 and the vectors U, ,V, have complex elements. The

frequency response of the resulted filter is given in Fig.12 (e). As can be noticed, the effect of
the above approximation is an “overshoot” at zero frequency. This should not affect the filter
functionality in detecting lines parallel with the two axes. Moreover, since the marginal
elements of the 5x1 vectors U 4;, V 4;, Up,, V 5, have negligible values, by discarding them we

obtain the 3x1 vectors: U g,=V 5,=[0.3971 -0.8274 0.3971]"
u,,=[-0.315 0.6334 -0.315]7 + j-[0.2573 -0.5175 0.2573]7

V 4,=[0.4067 -0.818 O.4O67]T—]'-[0.0024 -0.0048 0.0024]7

We finally obtain a very selective two-directional 2D filter implemented with two minimum
size (3x3) templates. The template B is real while A is complex. The frequency response
magnitude of this filter is shown in Fig.12 (f) and is practically similar to the one in Fig.12 (e).
Similarly we can design a two-directional (four-lobe) filter with a specified orientation ang]le.
Using the previously described method and based on the Euler approximation, the expression
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(10) of cos*(¢ + ¢p,) corresponds to a frequency transformation in the complex variables z; and

z,, written in matrix form as:

Hl“’

2LQ) ———

a "N W"w
UU [ w[l ,pl:f!

'MH}{ J

Figure 12. (a) Periodic radial function; (b) contour plot of a two-directional filter with orientation gy=m/12; (c) fre-

quency response and (d) contour plot of the two-directional filter with 5x5 templates; frequency response of the filter
with separable 5x5 (e) and 3x 3 templates (f)

cos’ (¢ +¢) = F(z1,2,) = B(/)O(Zl’ZZ)/A(pO(Zl’ZZ) :(Zl B, x z, )/(21 XA yo X Zg) (70)
0 10 0 0 0 0 1 -1
B, = cos? 0|0 -2 0+ sin? 0|1 -2 1]+025sin(2¢p,) 1 -1 1 (71)
0 10 0 0O -1 1

and A, is identical to A; from (63). The 5x5 templates of the mapping (47) are given by:

B A *A A A *A(pO+8p'B¢O*A(p0_8p'B¢O*B§DO (72)

f= f=

The final filter templates result according to relations (64) and (65).

Regarding the proposed method, the frequency responses of this class of 2D filters can be
viewed as derived through a radial distortion from a generic maximally-flat circular filter.
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Indeed, referring to (48), the circular filter is the trivial case for which p(w,, w,)=1 and the

mapping (48) reduces to w? — @ + wf, as expected. This method allows one to design 2D filters

with anon-convex shape in the frequency plane. The proposed design method does notinvolve
global numerical optimization techniques, but only a few numerical approximations. The
method is more general and can be applied as well to design fan filters, diamond filters, multi-
directional filters etc. (Matei, 2011 a).

7. Zero-phase FIR circular filters
Filters with circular symmetry are very useful in image processing. We propose an efficient

design technique for 2D circularly-symmetric filters, based on the previous 1D filters, consid-
ered as prototypes. Given a 1D prototype H p(w), the corresponding 2D circular filter function

H (wy, w,) results using the frequency mapping w — 4/ Wl + Wi

He(,,0,) = Hy (o} + 0} | 73)

The currently-used approximation of the circular function cosyw{ + w5 is given by:

cosyj@f +w; =C(wy,w,) =—0.5+0.5(cosw, +cosm, ) +0.5c08m; - cosw, (74)
which corresponds to the 3x3 array:

0.125 025 0.125
C=| 025 -05 025 (75)
0125 025 0.125

Let us consider as prototype a LP analog elliptic filter of order N =4, pass-band peak-to-peak
ripple R, =0.04 dB, stop-band attenuation R;=40 dB and passband-edge frequency Q,=m /2.

Its transfer function in variable s is:

Hp(5) =0.1037 - (s* +19.864-5” +84.041) /(s* +3.2041-5° + 8431557 +13.126 -5+ 14.082)  (76)

Using MAPLE or another symbolic computation program and following the design steps
described in section 2, we obtain a a polynomial approximation of the magnitude | Hp(jw) |

through Chebyshev expansion, which has the following factorized form, with x =cosw:
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|Hp ()| = 48.6 - (x +0.8491)(x + 0.7717)(x — 1.087)(x* +1.9934x + 0.994) o
(x* +1.0797x +0.318)(x* — 0.3849x + 0.1766)(x* —1.2882x + 0.5314)(x* —1.9338x + 0.9726)

In order to obtain a filter with circular symmetry from the factorized 1D prototype function,
we replace in (12) cosw with the circular cosine function (74). For instance, corresponding to
(12), the filter template A results in general as the discrete convolution:

A=k A *Ap, . xA %A, %Ay, *. xA, (78)

where A;; (i=1...n) are 3x3 templates and A,; (j=1...m) are 5x5 templates, given by:
A;=C+a;- Ay and Ay ;=C * C+a, ;- Cy+a, - Ay, where Ay is a 3x3 zero template and Ay, a

5x5 zero template with the central element equal to one; C, is a 5x5 template

obtained by bordering C with zeros. The above expressions correspond to the factors in (12).

The frequency response H-(w;, w,) of the 2D circular filter results in a factorized form by
substituting x=C(w;, w,) in (77). Even if the filter results of high order, with very large

templates, next we show that using the Singular Value Decomposition (SVD), the resulted 2D
filter can be approximated with a negligible error. For the filter template B we can write
B=U zxSpxV 5. The vector of singular values Sy of size 1x27 has 14 non-zero elements:

§5,=[0.50536 0.086111 0.032794 0.013627 0.00521 0.002937 0.001935
0.001061 0.000639 0.000451 0.000418 0.0000385 0.0000196 0.00000144]

T T &)

(@ (b)
Figure 13. Frequency response magnitude (a) and contour plot (b) of a circular FIR filter

Let us denote the vector above as Sz, =[s; ], with k=1...14 in our case. The exact filter matrix B
can be written as: B=U g,xSp,xV g, where Uy, and Vg, are made up of the first 14 columns
of the unitary matrices Uz and V. If we consider the first largest M values of the vector

Sp1=[5;], the matrix B can be approximated as:
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@ 0 ©

Figure 14. Frequency response magnitudes and contour plots for the circular filter resulted by taking into account the
first largest: (a), (b) 8 singular values; (c), (d) 5 singular values

M
~ = T
B=B,, = s, Uy ® Vg, (79)
k=1

Here B,, is the approximation of matrix B taking into account the first M singular values (in
our case M <14), while U g, V5, are the k-th columns of the matrices U, and V,; ® stands

for outer product and the superscript T for transposition.

Fig.14 shows the frequency response magnitudes of the designed circular filter approximated
by taking into account the first largest 8 singular values and 5 singular values. It can be noticed
that even retaining only the first 5 singular values, the 2D filter preserves its circular shape
without large distortions. In this case the filter template B is approximated by B,, from (79),

for M =5. Therefore, the template B can be written as a sum of only 5 separable matrices
according to (79). This is an important aspect in the filter implementation.

8. Applications and simulation results

An example of image filtering with a two-directional filter is given. We use the filter shown in
Fig.3(e), (f). This type of filter can be used in simultaneously detecting perpendicular lines from
an image. The binary test image in Fig.15 (a) contains straight lines with different orientations
and lengths, and a few curves. It is known that the spectrum of a straight line is oriented in
the plane (v, w,) at an angle of 7t /2 with respect to the line direction. Depending on filter

selectivity, only the lines with the spectrum oriented more or less along the filter pass-bands
will remain in the filtered image. In the output image in Fig.15 (b), the lines roughly oriented
horizontally and vertically are preserved, while the others are filtered out or appear very
blurred, due to directional low-pass filtering. The joints of detected lines appear as darker
pixels and can be detected, if after filtering a proper threshold is applied.

Let us apply the designed fan-type filters, which can be regarded as components of a DFB, in
filtering a typical retinal vascular image. Clinicians usually search in angiograms relevant
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features like number and position of vessels (arteries, capillaries). An angular-oriented filter
bank may be used in analyzing angiography images by detecting vessels with a given
orientation. Let us consider the retinal fluorescein angiogram from Fig.16(a), featuring some
pathological elements which indicate a diabetic retinopathy. This image is filtered using 5
oriented wedge filters with narrow aperture (0 =7 /24), designed using the method described
in section 4. Fig.16 (b)-(f) show the directionally filtered angiography images.
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Figure 15. (a) Test image; (b) filtered image

(d)

Figure 16. (a) Retinal fluorescein angiogram; (b)-(f) images resulted as output of five component filters of the fan-
type filter bank

As can be easily noticed, the vessels for which the frequency spectrum overlaps more or less
with the filter characteristic remain visible, while the others are blurred, an effect of the
directional low-pass filtering (Matei & Matei, 2012). The directional resolution depends on the
filter angular selectivity given by 0.
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(b)

Figure 17. (a) Retinal fluorescein angiogram; (b), (c) results of image filtering with a FIR LP circular filter with cutoff
frequency Q-,=0.16mr and Q-,=0.08

The designed zero-phase circularly-symmetric FIR filters may be useful as well in pre-
processing tasks on biomedical images, having a blurring effect on the image which depends
on its selectivity given by the circular filter bandwidth. The effect is somewhat similar to the
Gaussian smoothing, which is used as a pre-processing stage in computer vision tasks to
enhance image structures at different scales. Applying the presented design procedure, a
circularly-symmetric filter bank can be derived, with components having desired bandwidths.
Let us consider another retinal fluorescein angiogram, displayed in Fig.17(a). In the simulation
result shown in Fig.17 (b) and (c), the two circular filters introduce gradual blurring which is
visible on the fine image details, like small vessels and capillaries. In the image in Fig.17 (c) all
the finer details have been almost completely smoothed out.

9. Conclusion

The design methods presented in this chapter combine the analytical approach based on 1D
prototype filters and frequency transformations with numerical optimization techniques. For
the classes of 2D filters designed here, we have used mainly analog filters as prototypes, which
turn out to make simpler the expressions of the derived frequency mappings, and therefore
the complexity of the designed 2D filters is lower in the analyzed cases. The prototypes used
here were both maximally-flat or very selective, either low-pass or band-pass. For each type
of 2D filter, a particular spectral transformation is derived. An important advantage is that
these spectral transformations include some parameters which depend on the 2D filter
specifications, like bandwidth, orientation, aperture etc. Once found the specific frequency
mapping, the 2D filter results from its factorized prototype function by a simple substitution
in each factor. The designed filters are versatile in the sense that the prototype parameters
(bandwidth, selectivity) can be adjusted and the 2D filter will inherit these properties.

An advantage of the analytical approach over the completely numerical optimization techni-
ques is the possibility to control the 2D filter parameters by adjusting the prototype. Another
novelty is the proposed analytical design method in polar coordinates, which can yield
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selective two-directional and even multi-directional filters, and also fan and diamond filters.
In polar coordinates more general filters with a specified rotation angle can be synthesized.

The design methods approached here are rather simple, efficient and flexible, since by starting
from different specifications, the matrices of a new 2D filter result directly by applying the
determined frequency mapping, and there is no need to resume every time the whole design
procedure.

Stability of the designed filters is also an important problem and will be studied in detail in
future work on this topic. In principle the spectral transformations used preserve the stability
of the 1D prototype. The derived 2D filter could become unstable only if the numerical
approximations introduce large errors. In this case the precision of approximation has to be
increased by considering higher order terms, which would increase in turn the filter complex-
ity; however, this is the price paid for obtaining efficient and stable 2D filters. Further research
will focus on an efficient implementation of the designed filters and also on their applications
in real-life image processing.
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