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1. Introduction

In 1927, the Swiss pediatrician Guido Fanconi first reported a family with aplastic anemia
and physical anomalies known as FA now, as reviewed by Lobitz et al (Lobitz and Velleuer
2006). FA is a chromosomal fragility disorder characterized by cytopenia, progressive bone
marrow failure (BMF) under production, variable developmental anomalies and a strong
propensity for cancer. The prevalence of FA is 1 to 5 per million, and heterozygous carrier
frequency is about 1 in 300. Clinically, FA patients develop heterogeneous manifestations.
80% of FA patients develop progressive BMF with a mean age of death occurring at 19 years
(D'Andrea, Dahl et al. 2002; Bagby and Alter 2006;Giri, Batista et al. 2007). The other 20% of
patients usually die of malignancies resulting from the acquisition of myeloid cell leukemia
particularly acute myelogenous leukemia and myelodysplastic syndrome. In addition, FA
Patients are susceptible to solid tumors, including gynecologic squamous cell carcinoma,
head and neck squamous cell carcinoma, esophageal carcinoma, liver tumors, brain tumors,
skin tumors, and renal tumors(Kutler, Singh et al. 2003).

To date, at least 15 distinct FANC genes, including FANCA, FANCB, FANCC, FANCD1/
BRCA2, FANCD2/BRCA1, FANCE, FANCF, FANCG/XRCC9, FANCI, FANCJ/BRIP1, FANCL,
FANCM/HEF, FANCN/PALB2, FANCO/ RAD51c and FANCP/SLX4, are found in FA pa‐
tients, and FANCA, FANCC, FANCG and FANCD2 are the most frequentin clinic (Moldovan
and D'Andrea 2009; Vaz, Hanenberg et al. 2010; Kim, Lach et al. 2011; Stoepker, Hain et al.
2011). Except for FANCB which is on the X chromosome (Meetei, Levitus et al. 2004), all
these FANC genes are located on autosomes.

FA pathway is inactive in normal cells but turned on during the S phase of cell cycle or in
the presence of DNA damage proteins, and it also plays a pivotal role in DNA repair path‐
way in cellular defense against DNA interstrandcrosslinkers(Moldovan and D'Andrea 2009;
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Kee and D'Andrea 2010). Following the activation, eight of 15 FANC gene productions, in‐
cluding FANCA, B, C, E, F, G, L and M proteins assemble into a nuclear E3 ubiquitin ligase
complex. This complex is known as FA core complex and one of the main functions of this
core complex is to monoubiquitinate and to activate the proteins of FANCD2 and FANCI,
which co-localizes with BRCA1 and BRCA2, at the sites of DNA repair(D'Andrea 2010). The
monoubiquitinated FANCD2/FANCI is then translocated to chromatin and interacts with
other downstream FA proteins FANCD1, J, N and O to form a nuclear DNA-repair complex
(D'Andrea 2010). FA patients display spontaneous chromosomal breakage and chromoso‐
mal abnormalities (Schroeder, Anschutz et al. 1964; Sasaki 1975). In addition, these DNA in‐
stability can be significantly enhanced by DNA cross-linking agents, such as mitomycin C
(MMC) (Schroeder, Anschutz et al. 1964; Sasaki 1975).

2. FANC genes regulate HSC/HPC functions

Because of the earlier bone marrow failure and the predisposition to malignancy, especially
the high risk of developing acute myeloid leukemia(AML), FA has been clinically catego‐
rized as a hematopoietic disease due to hematopoietic dysfunction. The defective hemato‐
poietic functions are known related to an excess of genetic instability. FA bone marrow cells
have clonal evolution, which predispose patients to the development of malignancies. Vinci‐
guerra et al reported an increased number of ultrafine DNA bridges and binucleated cells in
both bone marrow stromal cells from FA patients and in primary murine FA pathway-defi‐
cient hematopoietic stem/progenitor cells (HSCs/HPCs)(Vinciguerra, Godinho et al. 2010).
Using primary and immortalized cell cultures as well as ex vivo materials from patients,
multiple studies showed oxidant hypersensitivity of these FA cells as reviewed by Du et al.
(Du, Adam et al. 2008).

3. Murine models of FA

To our best knowledge, 9 of 15 Fanc genes have been inactivated in mice, resulting in Fanca,
Fancc, Fancg, Fancd1, Fancd2, Fancl, Fancm, Fancnand Fancp knockout mice.

Cheng et al first created Fanca−/− mice by deletion of Fanca exons 4-7(Cheng, van de Vrugt et
al. 2000). The Fanca-/- mice developed a significant thrombocytopenia, while no other severe
hematological abnormalities were observed. Using the same murine model, Rio and collea‐
gues reported that megakaryocyte progenitors, but not granulocyte-macrophage progeni‐
tors from the bone marrow of the Fanca−/− mice have impaired proliferation in vitro(Rio,
Segovia et al. 2002). In addition, embryonic fibroblasts (MEFs) derived from these knocknout
mice are hypersensitive to the crosslinker MMC and both male and female mice showed re‐
duced fertility due to hypogonadism(Cheng, van de Vrugt et al. 2000; Rio, Segovia et al.
2002). Different from FA patients, these knockout mice do not spontaneously develop con‐
genital anomalies(Cheng, van de Vrugt et al. 2000; Rio, Segovia et al. 2002). Later, Wong and
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colleagues established another Fanca-/- murine model by deletion of exons 1-6 of Fancagene
(Wong, Alon et al. 2003). The homozygous germline-line deletion of the functionally exons
1-6 of Fancaleads to multiple developmental deficits, including growth retardation, micro‐
phthalmia, craniofacial malformations, as well as hypogonadism, resembling those observed
in FA patients (Wong, Alon et al. 2003).

Two different Fancc-/- murine models were generated by deletion of Fancc exon 9 or exon 8
(Chen, Tomkins et al. 1996; Whitney, Royle et al. 1996). Similar to Fanca−/− mice, these mice
do not spontaneously develop peripheral hematological abnormalities. However the bone
marrow HSCs/HPCs of these mice display impaired functions in vitro, such as abnormal col‐
ony forming capacity, hypersensitive to interferon-γ. Furthermore, these Fancc-/- mice also
have impaired fertility and increased incidence of a congenital microphthalmia without
skeletal abnormalities, replicating some of the features of the FA patients(Chen, Tomkins et
al. 1996; Whitney, Royle et al. 1996).

Fancg-/- micewere generated by deletion of Fancg exons 2-9 (Yang, Kuang et al. 2001; Koo‐
men, Cheng et al. 2002). Similar to Fanca-/-  and Fancc-/-  mice, Fancg-/-  mice do not develop
spontaneously  hematological  abnormalities  and  congenital  anomalies  either,  although
MEFs  ofFancg-/-  mice  are  hypersensitive  to  MMC  (Yang,  Kuang  et  al.  2001;  Koomen,
Cheng et al. 2002).

BRCA2 has a close functional relationship with the classical FA pathway. Genetic deletion of
Fancd1/Brca2 in mice results in embryonic lethality (Sharan, Morimatsu et al. 1997). Using
mice with hypomorphic mutations in Brca2 (Brca2Δ27/Δ27), Navarro et al reported thatbone
marrow cells of Brca2Δ27/Δ27mice display spontaneous chromosomal aberrations and are more
hypersensitive to MMC (Navarro, Meza et al. 2006), consistent with FANCD1/BRCA2 as
downstream of FA core complex in FA pathway and plays a critical role in DNA repair
process. Different from Fanca-/- mice, Fancd1-/- mice are hypersensitive to ionizing radiation
and do not have defect in fertility (Navarro, Meza et al. 2006).

Fancd2 undergoes monoubiquitylation by the complex and is targeted into nuclear foci and
co-localizes with Brca1. Fancd2-/- mice were generated by targeted deletion of Fancd2 exons
26 and 27 (Houghtaling, Timmers et al. 2003).Fancd2 mutant mice display cellular sensitivity
to DNA interstrand cross-links and germ cell loss, which is similar to human FA patients
and other FA mouse models. Interestingly, different from other mice carrying disruptions of
proximal FA genes, these Fancd2 mutant mice exhibited phenotypes including microphthal‐
mia, perinatal lethality, and epithelial cancers. There is similarity betweenFancd2 mutant
mice andBrca2/Fancd1hypomorphic mutation mice, implying a common function for both
proteins in the same pathway.

Although Fancg-/-, Fancc-/-, and Fancd2-/- mice do not develop spontaneous hematopoietic ma‐
lignancies seen in FA patients, HSCs/HPCs from Fancg-/-, Fancc-/-, and Fancd2-/- mice have de‐
fective engraftment and reconstitution of the short and long term hematopoiesis in a
competitive transplantation assay (Haneline, Gobbett et al. 1999; Parmar, Kim et al. 2010;
Barroca, Mouthon et al. 2012). The defective homing and reconstitution may associated with
an impaired cell migration and adhesion of Fancg-/- hematopoietic cells as reported by Barro‐
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ca et al(Zhang, Shang et al. 2008; Barroca, Mouthon et al. 2012). In addition, the mobilization
of HSCs/HPCs in Fanca-/- mice in response to G-CSF was defective in the absence of bone
marrow failure (Milsom, Lee et al. 2009).

Fancl, also known as Pog(proliferation of germ cells), belongs to the multisubunit FA com‐
plex.Fancl-/- mice were generated by deletion of Pog gene exons 4-14 (Agoulnik, Lu et al.
2002). Fancl-/- mice have defects in fertility, growth retardation, although no obvious hemato‐
logical abnormalities (Agoulnik, Lu et al. 2002). Fancm-/- mice were generated by deletion of
Fancm exon 2 (Bakker, van de Vrugt et al. 2009). Similar to other FA mouse models, Fancm-/-

mice do not spontaneously develop hematological abnormalities and congenital anomalies,
whereas, Fancm-/- mice showed increased cancer incidence.

Fancn/Palb2 -/-micewere generated by insertion of a gene trap construct located between exon
1 and exon 2 of the Palb2 gene (Rantakari, Nikkila et al. 2010;Bouwman, Drost et al. 2011).
Homozygous deletion of Palb2 leads to embryonic lethality which die at E9.5 at the latest
(Rantakari, Nikkila et al. 2010; Bouwman, Drost et al. 2011)

As described above, differing from FA patients who often spontaneously develop bone mar‐
row failure in their lives, most of the models have relatively normal hematological function.
It is possible that FA proteins have divergent functions which are independent of FANCD2/
FANCI monoubiquitination in hematopoietic cells. To test if deletion of multiple Fancgenes
would result in a more aggressive hematopoietic phenotype, Pulliam-Leath and colleagues
generatedFancc-/-;Fancg-/-(DKO)miceby genetically intercrossing Fancc+/-mice withFancg+/-

mice(Pulliam-Leath, Ciccone et al. 2010).Combined inactivation of Fancc and Fancg leads to a
defective hematopoietic stem cell function, supporting the hypothesis that besidestheir com‐
mon role in FANCD2/FANCI monoubiquitination, FANCC and FANCG function in diver‐
gent molecular pathways of relevance to hematopoiesis. This DKO model best recapitulates
the spontaneous clinical hematopoietic phenotypes of human FA, including hematopoietic
malignancies and bone marrow aplasia.

4. Bone marrow microenvironmental abnormalities in hematopoietic
diseases

Hematopoiesis is a dynamic and highly regulated process,which relies on the ordered self-
renewal and differentiation of HSCs/HPCs within the bone marrow (BM) (Kotton, Ma et al.
2001; Krause 2002; Zhang, Niu et al. 2003; Li and Li 2006; Yin and Li 2006). This process in‐
volves intrinsic and extrinsic cues including both cellular and humoral regulatory signals
generated by the HSC microenvironment, also known as “niche”. The concept of hemato‐
poietic niche has been proposed in the 1970s (Schofield 1978). Studies have shown that the
cellular composition of this “niche” contains heterogeneous populations, including endothe‐
lial cells, osteoblasts, adipocytes (Calvi, Adams et al. 2003; Zhang, Niu et al. 2003; Arai, Hir‐
ao et al. 2005; Sacchetti, Funari et al. 2007), and mesenchymal stem/progenitor cells (MSPCs)
(Badillo and Flake 2006),a common progenitor for many of these cells composing the HSC
niche. The regulatory signals of the BM microenvironment represent a demarcated anatomi‐
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cal compartment that provides stimulatory signals to HSCs via the following mechanisms:
(1) cell/cell direct interactions, (2) secreting soluble factors, and (3) extracellular matrix.
These cellular and humoral regulatory signals dictate HSC cell fate, such as self-renewal,
proliferation, differentiation, and apoptosis.

The osteoblastic  niche and the vacular  niche are  well  described by independent  groups
(Heissig, Hattori et al. 2002; Calvi, Adams et al. 2003; Zhang, Niu et al. 2003;Avecilla, Hat‐
tori et al. 2004).Studies have shown that BM microenvironment is critical for the physio‐
logic  as  well  as  pathologic  development  of  hematopoiesis  through  the  following
mechanisms: cell/cell interactions, soluble factors and extracellular matrix(Koh, Choi et al.
2005; Williams and Cancelas 2006). There is increasing evidence suggesting a role of the
hematopoietic microenvironment in initiating hematopoietic disorders, such as myelopro‐
liferative disorders (MPD).

Recently, using a murine model in which Dicer1 was specifically deleted in osteoprogeni‐
tors, Raaijmakers et al demonstrated that bone marrow microenvironment plays a causative
role in the development of myelodysplasia and secondary leukaemia(Raaijmakers, Mukher‐
jee et al. 2010). The vascular microvessel density is increased in the bone marrow of many
hematopoietic disorders including AML, acute lymphoblastic leukemia (ALL), myelosyn‐
dromes (MDS) and myeloproliferative neoplasms (MPN). The adipocytes are also found to
be accumulated in BMF (Li, Chen et al. 2009). Although the mechanism for the accumulation
of adipocytes in bone marrow is still largely unknown, the accumulated adipocytes may act
as negative regulators in the hematopoietic microenvironment (Naveiras, Nardi et al. 2009).

5. Dysregulated bone marrow microenvironment in FA patients and FA
murine models

Besides the hematopoietic defects, mesenchymal tissue-derived congenital malformations
are also prevalent in FA patients, such as the renal/limb abnormalities and short stature. De‐
spite these clinical observations suggesting multiple mesenchymal defects, little attention
has been directed to the association between the pathological HSC functions and the micro‐
environment in FA.

Using a murine model with targeted disruption of the Fancg gene (Fancg-/-), Li and collea‐
gues first reported that Fancg-/- MSPCs have decreased clonogenic growth, diminished pro‐
liferating capability and increased apoptosis and senescence (Li, Chen et al. 2009). Fancg-/-

MSPCs have impaired function in supporting the proliferation, recruitment, adhesion and
homing of HSPCs in vitro and in vivo. Importantly, some cellular defects such as survival
and proliferation of murine MSPCs can be restored by introduction of hu‐
manFancgcDNA(Li, Chen et al. 2009).

Consistently, study by Zhang et al showed that MSPCs derived from the bone marrow of
Fancd2-/- mice showed less support for progenitor growth than that from wild type mice in a
CAFC assay (Zhang, Marquez-Loza et al. 2010).
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Using the MSPCs derived from patients with FANCA mutation, Lecourt et al showed that
human FA MSPCs also have poor proliferation and increased senescence, while no defective
hematopoietic supportive activity was observed in vitro(Lecourt, Vanneaux et al. 2010), sug‐
gesting a species-specific effect between human and murine system.

6. Current treatments for FA

The long-term curative therapy for the BMF of FA patients is HSC transplantation, ideally from
an HLA-matched sibling(Gluckman, Broxmeyer et al. 1989; Davies, Khan et al. 1996; Guardio‐
la, Pasquini et al. 2000; Kutler, Singh et al. 2003; Mathew 2006) Allogeneic BM transplantation
(BMT) or cord blood (CB) transplantation is available to up-to 30% of FA patients. However, al‐
logeneic BMT or CB transplantation is frequently associated with an increased risk of secon‐
dary cancers, particularly squamous cell carcinoma of the head and neck(Kutler, Auerbach et
al. 2003; Rosenberg, Socie et al. 2005). Since the conditioning regimens such as irradiation clear‐
ly heightens the risk of transformation of the ongoing genetic susceptibility of non-hemato‐
poietic tissue. This complication is even more severe in high-risk FA patients, transplanted
with non-matched donors and those develop chronic graft-versus-host disease. Therefore,
even with successful allogeneic transplantation for BMF, the risk of secondary malignancies
results in a high mortality over 10-15 years. Gene therapy using autologous HSCs is a second
theoretical modality to correct defects in the HSC compartment. Transplantation of genetical‐
ly corrected autologous HSCs without genotoxic conditioning regiments could provide a ther‐
apeutic strategy that avoids the increased risks of secondary cancer(Si, Ciccone et al. 2006).
However, a significant obstacle for this therapy is the limited number of HSCs that can be har‐
vested from mobilized blood or BM. In addition, in preliminary phase 1 clinical trials in
FANCC and FANCA patients using retroviral mediated gene transfer, despite an efficient
gene transfer of the mobilized progenitors (40-80%), and no long-term engraftment of retrovi‐
ral marked stem cells was achieved(Liu, Kim et al. 1999; Williams, Croop et al. 2005; Kelly,
Radtke et al. 2007). Although inefficient gene transfer of repopulating HSCs can not be exclud‐
ed, inefficient engraftment and homing of exogenous genetically modified cells could also be
contributory, particularly given the low numbers of HSC targets that are available for gene
transfer/transplantation(Gothot, Pyatt et al. 1998; Glimm, Oh et al. 2000; Orschell-Traycoff, Hi‐
att et al. 2000). Since mesenchymalstem/progenitor cells were excluded in these studies, it is
possible that the lack of an appropriate microenvironment could have impaired the ability of
transduced cells to home and proliferate in vivo.

7. Biology of MSPCs and their potential clinical application in
transplantation therapy for FA patients

Friedenstein and colleagues first reported a rare, plastic-adherent and fibroblast-like subpo‐
pulation expanded from the culture of bone marrow in 1970s (Friedenstein, Chailakhjan et
al. 1970), this type of stromal cells, now commonly known as MSCs/MSPCs, has captivated
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more and more investigators, especially in the past two decades. As a group cells with heter‐
ogeneity, three criteria have been proposed to define human MSPCs, including plastic-ad‐
herence, surface expression of CD105, CD73 and CD90, and the absence of CD45, CD34,
CD14 or CD11b, CD79a, CD19, CD14 or CD11b and HLA-DR, and trilineage differentiation
to osteoblasts, adipocytes and chondrocytes in vitro(Dominici, Le Blanc et al. 2006).

It is well known that MSPCs lack expression of MHC class II and most of the classical co-
stimulatory molecules such as CD80, CD86, or CD40 (Pittenger, Mackay et al. 1999; Tse,
Pendleton et al. 2003). This phenotypic characteristic endows MSPCs with nonimmunoge‐
nicity, and therefore transplantation of MSPCs into allogeneic host could be implemented
without using immunosuppressive agents. MSPCs are known promote the reconstitution of
hematopoiesis. We have recently provided evidence for the first time that Fancg-/- MSPCs
exhibited profoundly diminished supportive activity for normal HSCs, and intratibial injec‐
tion of WT or genetically corrected FA MSPCs enhanced donor HSC reconstitution (Li, Chen
et al. 2009). This data suggests that normal MSPCs transplantation may have a potential clin‐
ical application in FA patients.

8. Future directions

FA is an inherited disease caused by germ-line mutations in FANC genes. Investigators are
now paying more attentions on the emerging role of the Fanc gene inactivation-caused de‐
fective bone marrow microenvironment in the pathogenesis of FA. Co-transplantation of
HSCs and MSPCs is hypothesized as a potentially more effective option than HSC trans‐
plantation alone for treating the hematopoietic abnormalities in FA. Therefore, much more
effort is warranted to understand the mechanisms of the utility of MSPCs to treat FA pa‐
tients. These efforts should include: 1) unveiling the cellular fates of the co-injected MSPCs
in vivo, such as at what degree these MSPCs are able to reconstitute the marrow microenvir‐
onment and how long a significant degree of MSPC engraftment could persist; 2) clarifying
whether an immune suppression activity mediated by the injected MSPCs contributes to the
enhanced HSC engraftment by co-transplantation of MSPCs; and 3) elucidating at what ex‐
tend the co-injected MSPCs could normalize the altered marrow microenvironment cyto‐
kine/growth factors profiling in FA patients.
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