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1. Introduction

Because of the global warming and depletion of fossil fuels, in recent years, intensive inves‐
tigations are carried on for providing the greater use of sustainable biofuels instead of fossil
fuels. Biomass, which various biofuels are produced from, has an important role among oth‐
er alternative energy sources including wind energy, solar energy, geothermal energy, etc.

Biodiesel is one of the important biofuels and a clean energy source as an alternative to pe‐
troleum-based diesel fuels. Biodiesel has some advantages and disadvantages. Transporta‐
bility, high combustion efficiency, low sulphur and aromatic content, high cetane number
and biodegradability are advantages of the biodiesel [1]. Disadvantages of biodiesel are high
viscosity, lower energy content, high cloud and pour point, high nitrogen oxide emission,
lower engine speed and power, injector cooking, high price and engine erosion [2].

The flash point of biodiesel is higher than diesel fuel. This feature is important for fuel stor‐
age and transportation in the way of safety. Cetane number of biodiesel (~50) is higher than
diesel fuel [3]. Biodiesel does not include aromatic and sulphur content and contains oxygen
at the rate of 10-11% by mass [4]. Cetane number is an important factor to determine the
quality of diesel fuel, especially ignition quality of diesel fuel. In other words, it determines
the ignition tendency of fuel when being injected into engine. Ignition quality of biodiesel is
determined by the structure of methyl ester [5].Viscosity is also an important factor for bio‐
diesel. Viscosity affects mostly fuel injection equipment and the increase of fuel viscosity
changes the viscosity at low temperatures. High viscosity has an negative effect on fuel
spray atomization [6]. Amounts of elements and compounds in biodiesel and diesel fuel are
present in Table 1 [7]. Biodiesel has more polar structure than diesel fuel because of the oxy‐
gen, which is an electronegative element present in its structure, and therefore biodiesel has
higher viscosity comparing with diesel fuel. In addition, elemental oxygen content is respon‐
sible for lower heating value of biodiesel when compared with diesel fuel. [7-9]. Biodiesel
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can be used in its pure form or when mixed with diesel fuel in certain proportions. Most
common biodiesel blends are B2 (2 % biodiesel, 98 % diesel), B5 (5 % biodiesel, 95% diesel),
B20 (20 % biodiesel, 80 % diesel) [10].

Biodiesel Content (%) Diesel Content (%)

Carbon 79.6 86.4

Hydrogen 10.5 13.6

Oxygen 8.6 -

Nitrogen 1.3 -

C/H 7.6 6.5

n-Aliphatics 15.2 67.4

Olephenics 84.7 3.4

Aromatics - 20.1

Naphtens - 9.1

Table 1. The comparison of elemental and chemical content of diesel and biodiesel [7]

The transesterification reaction can be influenced by several factors including molar ratio of
alcohol, catalyst, presence of water, free fatty acid in oil samples, temperature, time and agi‐
tation speed. In this context, an understanding of the factors affecting the process is very im‐
portant to make economically and environmentally biodiesel production [11].

To accelerate reaction rate, transesterification process is carried out in the presence of cata‐
lysts. So, biodiesel production is made by using chemical or enzymatic catalysts. Compared
to chemical, enzymatic reaction is more attractive because of ability of make a high quality
product, simplify the separation of products, mild reaction conditions, the reuse of the cata‐
lyst and especially environmental impact, although high conversion and reaction rate are
obtained with chemical catalysts [11-14]. Lipase is important enzyme catalyst that catalyzes
esterification and transesterification reaction to produce methyl esters (biodiesel). Figure 1
presents the enzymatic transesterification reaction [15].

Figure 1. Enzymatic transesterification reaction [15].

In this study, enzymatic approach for biodiesel production was reviewed, and especially the
usage of lipases in biodiesel production and factors affecting the effectiveness of lipase in
reaction were explained in detail.
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2. Lipases in biodiesel production

Biocatalyst based biotechnological applications are receiving increasing attention. Lipases
(triacylglycerol acylhydrolases, EC 3.1.1.3) are the important biocatalysts because of their ex‐
cellent biochemical and physiological properties. Lipases are the hydrolytic enzymes that
can be used in various industrial applications for alcoholysis, acidolysis, amynolysis and hy‐
drolysis reactions. Biodiesel production is one of the stunning applications of lipase. Lipase
catalyzed biodiesel production was reported first by Mittelbach [16]. Lipase-catalyzed trans‐
esterification takes place in two steps, which involves hydrolysis of the ester bond and ester‐
ification with the second substrate [15]. A ping-ping bi bi mechanism generally used for
kinetic studies of enzyme catalyzed transesterification.

Lipases can be isolated from many species of plants (papaya latex, oat seed lipase, and cas‐
tor seed lipase), animals (pig’s and human pancreatic lipases), bacteria, filamentous fungi
and yeast [17-19]. For industrial enzyme production generally microorganisms are preferred
because of their shortest generation time [20]. The other advantages of microorganisms can
be listed as high yield of conversion of substrate into product, great versatility to environ‐
mental conditions and, simplicity in genetic manipulation and in cultivation conditions [20].
Although lipases from different sources are able to catalyze the same reaction, bacterial and
fungal lipases are mostly used in biodiesel production such as Aspergillus niger,Candida ant‐
arctica, Candida rugosa, Chromobacterium Viscosum, Mucor miehei, Pseudomonas cepacia, Pseudo‐
monas fluorescens, Photobacterium lipolyticum, Rhizopus oryzae, Streptomyces sp., and
Thermomyces lanuginose [21]. Candida rugosa, obtained from yeast, is the most used microor‐
ganism for lipase production [22]. Recently, Streptomyces sp. was investigated as a potent li‐
pase producing microbe for biodiesel production and found applicable in the field of
biodiesel [23].

Specificity of lipases has a great importance in the selection of the usage area of lipases. Li‐
pases can be divided into three groups due to their specificity as 1,3-specific lipases, fatty
acid-specific lipases and nonspecific lipases. Especially, 1,3-specific lipases which release fat‐
ty acids from positions 1 and 3 of a glyceride and hydrolyze ester bonds in these positions
such as Aspergillus niger, Rhizopus oryzae and Mucor miehei catalyze transesterification reac‐
tions efficiently [20,24]. The study of Du et al. [25], showed that higher yield (90%) was ach‐
ieved for biodiesel production by using a sn-1,3-specific lipase, Thermomyces lanuginosa
immobilized on silica gel (Lipozyme TL IM). Thus, the use of sn-1,3- specific lipases can give
rise to biodiesel yield of above 90% under appropriate conditions [24]. Substrate specificity
of lipases is also a crucial factor towards the biodiesel production which acts on the choice of
the proper enzyme based on the composition of raw materials by consisting in the capability
of distinguishing structural features of acyl chains [20,24]. Lipases from Pseudomonas fluores‐
cens, Pseudomonas cepacia, Candida rugosa, Candida antarctica and Candida cylindracea are suita‐
ble for transesterification reaction by displaying both wide substrate specificity and
regiospecificity [24].
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2.1. Immobilization of lipases

The immobilization of enzymes, which is attracting worldwide attention, was firstly report‐
ed in 1971 at Enzyme Engineering Conference [26]. During the past decade, chemical modi‐
fication, physical modification, and gene expression techniques have been developed to
obtain more economic, active, selective, or stable lipases. Immobilization is a modification
method that can be defined as attaching the enzyme onto an insoluble solid support materi‐
al [18]. By immobilization more operational and temperature stable lipases can be obtained
and also lipases can be reused in the reactions. In addition, reusability of lipases will be a
possible solution to the high cost of the enzymes and make them suitable for applications in
industrial scale. The comparison of free enzymes and immobilized enzymes is given in Ta‐
ble 2. Methods for enzyme immobilization can be classified as adsorption, covalent bonding,
entrapment, and cross-linking. The selection of method and support material is a prominent
factor for obtaining an efficient lipase. The results of comparative studies revealed that the
same lipase molecule can show very different catalytic activities after immobilization onto
different supports [27].

Characteristics Free Enzyme Immobilized Enzyme

Price High Low

Efficiency Low High

Activity Unstable Stable

Reusability and recovery Not possible Possible

Tolerance to temperature, pH, etc. Low High

To separate from the substrate Difficult Easy

To separate from the product Difficult Easy

Table 2. The comparison of free enzyme and immobilized enzyme [19]

2.1.1. Adsorption technique

Adsorption is the adhesion of lipase on the surface of the adsorbent by weak forces, such as
van der Walls, ionic and hydrophobic interactions, or dispersion forces [28]. Immobilization
via adsorption method is the simply mixing of an aqueous solution of enzyme with the car‐
rier material for a period and washing away the excess enzyme from the immobilized en‐
zyme on the carrier after a time [29]. The level of adsorption is strictly related to the pH,
temperature and ionic strength. Adsorption is the most widely employed method besides
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other methods because of its special commercial advantages and simplicity. Adsorption is
the only reversible enzyme immobilization method. The advantages of adsorption is mild
and easy preparing conditions, low cost, no need for chemical additives, the carrier can be
recovered for repeated use, and high activity [30].

Various types of carriers used in immobilization of lipases. Acrylic resin, celite, polypro‐
pylene and textile  membrane are broadly used carriers.  Some of  the reported results  of
adsorption technique based immobilized enzymes used in biodiesel production are sum‐
marized in Table 3. As can be seen from table generally the biodiesel yields using the en‐
zymes  obtained  by  adsorption  method  are  higher  than  85%.  Novozym  435  is  a
commercial  lipase,  which  is  obtained  by  immobilization  of  Candida  antartica  lipase  on
acrylic  resin  and is  a  good catalyst  that  provides  biodiesel  yield  higher  than 90% with
vegetable  oil  or  waste  cooking oil  as  feedstock [31].  The other  commercialized lipase  is
known as Candida sp. 99–125 lipase immobilized on textile membrane, which can catalyze
lard, waste oil  and vegetable oils with higher yields that is more than 87% [31].  Besides
many advantages of immobilization by adsorption method, the main disadvantage is that
desorption of the lipase from the carrier occurs because of the weak interactions between
the enzyme and support.

2.1.2. Covalent binding technique

Another approach is covalent binding technique, which is the formation of covalent bonds
between the aldehyde groups of support surface and active amino acid residues on the sur‐
face of the enzyme [29]. A variety of supports have been used such inorganic materials, nat‐
ural polymers (agarose, chitin and chitosan), synthetic polymers (hydrophobic
polypeptides,nylon fibers) and Eupergit® (made by copolymerization of N,N’-methylene-
bis-(methacrylamide), glycidyl methacrylate, allyl glycidyl ether and methacrylamide) for
immobilization of lipases by covalent binding [56].The main advantage of covalent binding
method is obtaining thermal and operational stable enzymes because of strong interactions
between the lipase and the carrier [31]. The comparison of biodiesel production performance
using immobilized lipase via covalent binding method is summarized in Table 4. Chitosan is
a promising carrier as a natural polymer due to its membrane forming and adhesion ability,
high mechanical strength and facility of forming insoluble in water thermally and chemical‐
ly inert films [57]. Xie and Wang [58], reported a technique for immobilization of Candida
rugosa lipase on magnetic chitosan microspheres for transesterification of soybean oil.The
immobilized enzyme was determined as an effective biocatalyst for the transesterification
reaction due to giving a good conversion of soybean oil and retaining its activity during the
four cycles [58].

Using two immobilized lipases with complementary position specificity instead of one li‐
pase is a new approach to produce a cost effective biodiesel [19]. Lipase from Rhizopus orizae
and Candida rugosa was covalently bound to the silica, which was used to produce biodiesel
from crude canola oil. Under optimum conditions, the conversion rate of degummed crude
canola oil to fatty acid methyl esters was 88.9%, which is higher than the conversion ob‐
tained by free enzyme mixture (84.25%) [59].
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Lipase Source Carrier Acid/Oil

Source

Alcohol Maximum

Performance

(%)

Reference

Burkholderia sp. C20 Alkyl-functionalized

Fe3O4–SiO2

Olive Methanol 92

(conversion)

[32]

Candida antartica Acrylic resin Soybean Methanol 92(yield) [33]

Candida antartica Acrylic resin Soybean and

rapeseed

Methanol 98.4

(conversion)

[34]

Candida antartica Acrylic resin Soybean and

rapeseed

Methanol "/>95

(conversion)

[35]

Candida

antarctica B

Granular activated carbon Palm Isobutanol 100

(conversion)

[36]

Candida sp. 99–125 Textile membrane Lard Methanol 87.4

(yield)

[37]

Candida sp. 99–125 Textile (cotton) membrane Salad Methanol 96

(conversion)

[38]

Candida sp. 99–125 Textile membrane Crude rice bran Methanol 87.4

( yield)

[39]

Candida rugosa and

Pseudomonas fluorescens

Acurel Palm Ethanol 89 (yield) [40]

Chromoacterlum viscosum Celite-545 Jatropha Ethanol 92 (yield) [41]

Geobacillus

thermocatenulatus

Poly-hydroxybutyrate beads Babassu Ethanol 100 (yield) [42]

Pseudomonas aeroginosa Celite Soybean Methanol 80(yield) [43]

Pseudomonas cepacia Celite Jatropha Ethanol 98 (yield) [44]

Pseudomonas cepacia Electrospun

polyacrylonitrile fibers

Rapeseed n-butanol 94

(conversion)

[45]

Pseudomonas cepacia Polystyrene Sapium

sebiferum

Methanol 96.22 (yield) [46]

Pseudomonas cepacia Ceramic beads Waste cooking Methanol 40 (yield) [47]

Pseudomonas fluorescens Porous kaolinite particle Triglyceride

triolein

1-propanol "/>90

(conversion)

[48]

Pseudomonas fluorescens

and Pseudomonas cepacia

Polypropylene powder Soybean Methanol 58

37

( yield)

[49]

Penicillium expansum Resin D4020 Waste Methanol 92.8 (yield) [50]

Rhizomucor miehei Hydrophilic resins Olive husk Ethanol - [51]

Rhizomucor miehei Silica Waste cooking Methanol 91.08 (yield) [52]

Rhizopus oryzae Macroporous resin HPD-400Pistacia chinensis

bge seed

Methanol 94 (yield) [53]

Saccharomyces cerevisiae Mg–Al hydrotalcite Rape Methanol 96 (conversion) [5454]

Thermomyces lanuginosus

(Lipozyme TL IM)

Hydrotalcite Waste cooking Methanol 95 (yield) [55]

Table 3. Comparison of biodiesel production performance using immobilized lipase via adsorption method
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Lipase Source Carrier Acid/Oil Source Alcohol Maximum

Performance

(%)

Reference

Burkholderia cepacia Niobium Oxide (Nb2O5) Babassu Ethanol 74.13

(yield)

[60]

Burkholderia cepacia Polysiloxane–Polyvinyl

Alcohol (SiO2–Pva)

Babassu

Beef Tallow

Ethanol 100

89.7

(yield)

[60]

Candida rugosa Chitosan Microspheres Soybean Methanol 87

(conversion)

[58]

Candida rugosa Chitosan Powder Rapeseed

Soapstock

Methanol 95

(conversion)

[61]

Enterobacter aerogenesSilica Jatropha Methanol 94

(yield)

[62]

Porcine pancreatic Chitosan Beads Salicornia Methanol 55

(conversion)

[63]

Pseudomonas

fluorescens

Toyopearl Af-

Amino-650m Resin

Babassu Ethanol 94.9

(yield)

[64]

Rhizopus oryzae Resin Amberlite Ira-93 Pistacia Chinensis

Bge Seed

Methanol 92

(yield)

[63]

Rhizopus oryzae Polystyrene

Polymer(Amberlite

Ira-93)

Soybean Methanol 90.05

(yield)

[65]

Rhizopus Orizae

+Candida rugosa

Silica - Methanol "/>98

(conversion)

[66]

Rhizopus orizae

+Candida rugosa

Silica Crude Canola Methanol 88.9

(conversion)

[59]

Thermomyces

lanuginosus

Olive Pomace Pomace Methanol 93

(yield)

[67]

Thermomyces

lanuginosus

Polyglutaraldehyde

Activated Styrene-

Divinylbenzene

Copolymer

Canola Methanol 97

(yield)

[68]

Thermomyces

lanuginosus

Toyopearl Af-

Amino-650m Resin

Palm Ethanol 100

(yield)

[64]

Thermomyces

lanuginosus

Polyurethane Foam Canola Methanol 90

(yield)

[69]

Thermomyces

lanuginosus

Aldehyde-Lewatit Soybean Ethanol 100

(conversion)

[70]

Thermomyces

lanuginosus

Magnetic Fe3O4 Nano-

Particles

Soybean Methanol 90

(conversion)

[71]

Table 4. Comparison of biodiesel production performance using immobilized lipase via covalent binding method
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2.1.3. Entrapment technique

Entrapment method is based on capturing of the lipase within a polymer network that retains
the enzyme but allows the substrate and products to pass through [72]. This method can be
simply defined as mixing an enzyme with a polymer solution and then crosslinking the poly‐
mer to form a lattice structure that captures the enzyme [29]. Entrapment is often used for in‐
dustrial applications because the method is fast, cheap and can be carried out under mild
conditions [73]. Entrapment can be divided into three categories such as gel or fiber entrap‐
ping and microencapsulation [74]. A number of supports have been investigated such as algi‐
nate, celite, carrageenan, resins, acrylic polymers etc. Some carriers used for entrapment and
the biodiesel production yields obtained by these enzymes are displayed in Table 5. A disad‐
vantage of entrapment method is the mass transfer problem due to the act of support as a bar‐
rier, so the lipase became effective only for low molecular weight substrates [19,75].

Lipase Source Carrier Acid/Oil Source Alcohol Maximum

Performance

(%)

Reference

Burkholderia cepacia K-Carrageenan Palm Methanol 100

(conversion)

[76]

Burkholderia cepacia Phyllosilicate

Sol–Gel

Tallow and

Grease

Ethanol 94

(yield)

[77]

Burkholderia cepacia Mtms-Based Silica

Monolith Coated

With Butyl-Substituted

Silicates

Jatropha Methanol 95

(yield)

[78]

Candida antarctica Celite® Triolein Methanol 60

(conversion)

[79]

Candida rugosa Calcium Alginate MatrixPalm Ethanol 83

(yield)

[80]

Candida rugosa Activated Carbon Palm Ethanol 85

(conversion)

[81]

Pseudomonas cepacia Hydrophobic Sol–Gel Soybean Methanol 67

(conversion)

[82]

Pseudomonas fluorescens

Mtcc 103

Alginate Jatropha Methanol 72

(yield)

[83]

Via Encapsulation Method

Burkholderia cepacia Silica Aerogels Sunflower Seed - 56

(conversion)

[84]

Burkholderia cepacia K-Carrageenan Palm Methanol 100

(conversion)

[85]

Candida antartica Silica Aerogels Sunflower Seed Methanol 90

(conversion)

[86]

Table 5. Comparison of biodiesel production performance using immobilized lipase via entrapment method
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2.1.4. Cross linking technique

Cross-linking is another method for immobilization that can be defined as the interaction of
a three dimensional network within enzyme, coupling reagent, and carrier [19]. The advant‐
age of cross-linking is obtaining stable lipases due to the strong interaction between the li‐
pase and the carrier. On the other hand, the cross-linking conditions are intense and the
immobilized lipase shows lower activity [31].

The high free fatty acid content of waste cooking oil form water by esterification with alco‐
hol which cause agglomeration of lipase and lowering biocatalysis efficiency [87]. Hence,
free Geotrichum sp. lipase was not a suitable enzyme catalyst for transesterification of waste
cooking oil. Yan et al. [87], report a modification procedure for preparation of cross-linked
Geotrichum sp. The obtained lipase exhibited improved pH and thermostable stability com‐
pared to free lipase. The relative biodiesel yield was 85% for transesterification of waste
cooking oil with methanol.

Kumari et al. [88] studied the preparation of Pseudomonas cepacia lipase cross-linked enzyme
aggregates. It was shown that cross linked lipases has a greater stability than free enzymes
to the denaturing conditions. The enzyme also used to catalyze madhuca indica oil, which’s
transesterification is difficult by chemical routes due to its high free fatty acid content. As a
result, 92% conversion was obtained after 2.5 h.

Immobilization of Candida rugosa lipase on fine powder of Scirpus grossus L.f. by glutaralde‐
hyde by cross linked technique for biodiesel production from palm oil, as already investigat‐
ed by Kensingh et al. [89]. It was concluded that immobilized lipase yielded higher
conversion of biodiesel than that of free lipase.

Lorena et al. [90] investigated the immobilization of the Alcaligenes spp. lipase on polyethyle‐
nimine agarose, glutaraldehyde agarose, octyl agarose, glyoxyl agarose, Sepabeads® by the
aggregation and crosslinking method. The transesterification of canola oil was achieved
with a yield 80% using a six-step addition of methanol and lipase immobilized on Sepa‐
beads® by the aggregation method.

All these methods are shown schematically in Figure 2.

Figure 2. Schematic diagram of enzyme immobilization methods: a)Adsorption method b)Covalent binding method
c)Entrapment method d) Crosslinking method
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2.1.5. Whole cell immobilization

The applicability of lipases for the bulk production of fuels was limited significantly by the
high cost of lipases [91]. Utilizing microbial cells such as fungi, bacteria, and yeasts cells con‐
taining intracellular lipase instead of extracellular lipases (free and immobilized lipase) is an
easier and a cost effective way of enzymatic biodiesel production. Compared to conventional
enzymatic processes, the use of whole cells provides excellent operational stability and avoids
the complex procedures of isolation, purification and immobilization [91,92]. The general
preparation steps for immobilized extracellular enzymes and whole cell enzymes showed in
Figure 3. Biomass support particles have been used for immobilization of whole cells.

 

(a) (b) 

Figure 3. The preparation steps of a) immobilized extracellular lipase and b) whole cell biocatalyst

Aspergillus and Rhizopus have been most widely used as whole cell biocatalyst. Ban et al.
[93], used first a whole cell biocatalyst, immobilized Rhizopus oryzae IFO4697 (a 1,3-posi‐
tional specificity lipase) cells within biomass support particles, for the production of biodie‐
sel and 91.1% methyl ester content was attained which was a similar result as that using the
extracellular lipase. Many researchers have experimented on the use of whole cells to cata‐
lyze transesterification reaction summarized in Table 6.

A technique using glutaraldehyde cross-linking treatment on whole cell catalyst for metha‐
nolysis of soybean oil was developed by Sun et al. [94]. The glutaraldehyde cross linking
treatment resulted in higher methanol tolerance and high catalytic activity (with the ratio of
methanol to oil reaching 3). Also, a novel methanol addition strategy was proposed as step‐
wise addition of different amounts of methanol (1.0, 1.2, 1.5, and 2.0M equivalent of oil) ev‐
ery 24 h. It was found that the highest methyl ester yield could reach 94.1% after 24 h
reaction by 1.2 mol, 1.5 M and 1.2 mol methanol additions at 0, 8, and 14 h. In general, the
whole cell catalyzed process is slower than extracellular lipase catalyzed process. Sun et al.
[94], also reported that the reaction time could be shortened by this way. It is clear that sig‐
nificant reduction in the cost of biodiesel production can be achieved by combining the
whole cell biocatalyst process with stepwise addition of methanol.
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Lipase Source Carrier Acid/Oil Source Alcohol Maximum

Performance

(%)

Reference

Aspergillus niger BSPsa Waste Cooking Methanol 86.4

(yield)

[96]

Aspergillus niger Polyurethane

BSPsa

Palm Methanol >90

(yield)

[97]

Aspergillus niger BSPsa Palm Methanol 87

(yield)

[98]

Aspergillus oryzae NS4 BSPsa Soybean Methanol 98

(conversion)

[99]

A. oryzae carrying r-

CALBb

BSPsa Palm Soybean Methanol 85

90

(conversion)

[100]

Aspergillus oryzae

expressing r-FHLc

BSPsa Rapeseed Methanol

Ethanol

1-Propanol 1-

Butanol

96 (yield)

94 (yield)

96 (yield)

97 (yield)

[101]

Escherichia coli BL21 - Rapeseed Methanol 97.7

(conversion)

[102]

Rhizopus chinensis

CCTCC M201021

- Soybean Methanol "/>86

(yield)

[103]

Rhizomucor miehei

displaying Pichia

pastoris

- Soybean Methanol 83.14

(yield)

[104]

Rhizopus oryzae IFO

4697

BSPsa Refined Rapeseed

Crude Rapeseed,

Acidified Rapeseed

Methanol ~60(yield)

~60(yield)

~70(yield)

[105]

Rhizopus oryzae IFO

4697

BSPsa Soybean Methanol ~90(yield) [106]

Rhizopus oryzae IFO

4697

BSPsa Soybean Methanol ~85(yield) [107]

Rhizopus oryzae

IFO4697

- Soybean Methanol 71

(conversion)

[108]

Rhizopus oryzae IFO

4697 and Aspergillus

oryzae niaD300

(combined use)

BSPsa Soybean Methanol ~100

(conversion)

[109]
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Lipase Source Carrier Acid/Oil Source Alcohol Maximum

Performance

(%)

Reference

Rhizopus oryzae ATCC

24563

- Soybean

(Free Fatty Acid Content

5.5%)

Methanol 97

(conversion)

[110]

Rhizopus oryzae IFO

4697

BSPsa Soybean Methanol 72

(yield)

[111]

Rhizopus oryzae Polyurethane foam

BSPsa

Soybean Methanol 90

(conversion)

[112]

Rhizopus oryzae BSPsa Jatropha Curcas Methanol 80 (conversion) [113]

Rhizopus oryzae IFO

4697

- Soybean Methanol 86

(yield)

[114]

Rhizopus oryzae BSPsa Rapeseed Methanol,

Ethanol,

1-Propanol, 1-

Butanol

83,

79,

93,

69

(yield)

[101]

Serratia marcescens

YXJ-1002

- Grease Methanol 97

(yield)

[115]

aBSPs:Biomass support particles

br-CALB: Candida antarctica lipase B

cr-FHL: Fusarium heterosporum lipase

Table 6. Comparison of biodiesel production performance using whole cell biocatalysts

Whole  cell  biocatalysts  will  be  a  way  to  industrialization  of  biodiesel  production  but
the  limited  mass  transfer  efficiency  of  product  and  substrate  is  a  hurdle  to  further  in‐
vestigations [95].

3. Feedstocks

The main aim of researches is to obtain a biodiesel, which will have a competitive price com‐
pared to other conventional sources of energy [116]. At this point, selecting the feedstock,
represents more than 75-80% of the overall biodiesel production cost, is a vital step to ensure
a cost effective biodiesel production. Different kinds of feedstock with varied range of edible
and inedible vegetable oil, animal fats, waste oil, microbial oil and microalgae oil can be
used for enzyme catalyzed transesterification [117].

Biodiesel - Feedstocks, Production and Applications220



3.1. Vegetable oils

Vegetable oils are candidates as alternative fuels for diesel engines with their high heat con‐
tent [118]. But, direct use of vegetable oils is not possible because of the high kinematics vis‐
cosity of them which are varies in the range of 30–40 cSt at 38 °C and are about 10 times
higher than of diesel fuel (Grade No. 2D) leads to many problems [118,119]. Therefore, mod‐
ification of vegetable oil is necessary and the valuable product of this modification is named
‘‘biodiesel’’. The edible vegetable oils such as soybean [120,121], sunflower [122-124], palm
[81,125], corn [126], cottonseed [127], canola [68,69,128] and olive [129,130] oils have been
widely used in enzymatic transesterification. In developed countries, edible oils constitute
more than 95% of biodiesel production feedstock because the produced biodiesel from these
oils have properties very similar to petroleum-based diesel [131]. Also, the country and its
climate, the oil percentage and the yield per hectare are effective parameters in selecting the
potential renewable feedstock of fuel [118,132]. For example, while rapeseed oil prevailing
the EU production, soybean oil prevailing the US and Latin American production, and palm
oil mainly being used in Asia [133].

Inedible oils do not find a place in human consumption due to including toxic components.
Therefore, inedible oils do not compete with food crops. Thus, inedible vegetable oils are an
alternative feedstock for biodiesel production. Babassu (Orbinya martiana), Jatropha curcas
(Linnaeus), neem (Azadiracta indica), polanga (Calophyllum inophyllum),karanja (Ponga‐
mia pinnata), rubber seed tree (Hevea brasiliensis), mahua (Madhuca indica and Madhuca
longifolia), tobacco (Nicotina tabacum), silk cotton tree, etc. are promising inedible vegeta‐
ble oil sources. Jatropha curcas is an attractive feedstock between various oil bearing seeds
as it has been developed scientifically and found to give better biodiesel yield and produc‐
tivity [134]. Crude Jatropha oil contains about 14% of free fatty acid that is too high for alka‐
line catalyzed biodiesel production [118]. However, high free acid content is not a problem
in the production process of biodiesel via using enzyme catalysts. Besides Jatropha curcas,
26 species of fatty acid methyl ester of oils of including Azadirachta indica, Calophyllum in‐
ophyllum, and Pongamia pinnata were found most suitable for use as biodiesel, which ad‐
just to the major specification of biodiesel standards of European Standard Organization,
Germany, and USA [135]. Modi et al. reported conversion of crude oils of Pongamia pinnata
(karanj), Jatropha curcas (jatropha) via immobilized Novozym 435 to biodiesel fuel with
yield 90, and 92.7%, respectively [136].

3.2. Animal oils/fats

Animal fats are another group of feedstock for biodiesel production. Animal fats used to
produce biodiesel via enzymatic route include lard [137], lamb meet [138] and beef tallow
[139]. Animal fats are economically feasible feedstocks compared to vegetable oils. Animal
fat methyl ester also has many favorably properties such as non-corrosive, high cetane num‐
ber, and renewable [140,141]. However, animal fats saturated compounds lead to a tendency
to oxidation and crystallization unacceptably at high temperatures [142].
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3.3. Waste oils/fats

In general, around the world only half of the discharged edible oils recycled as animal feed
or as raw material for lubricant and paint and the remainder is discharged into the envi‐
ronment [143]. Hence, the use of waste oils/fats for biodiesel production is very important
to reduce and recycle the waste oil [143], to eliminate the environment and human health
risk caused by waste oils [144] and to lower the biodiesel production cost. Waste cooking
oil, animal fats, yellow grease, brown grease obtained from highly oxidized yellow grease
or recovered waste grease from plumbing trap and waste sludge or soap-stock from the
vegetable oil refining process were the major sources of waste oil have been used for bio‐
diesel production [145]. The selection of a catalyst to be used for the production of biodie‐
sel fuel is mostly influenced by the amount of free fatty acid content in various feedstocks
[146]. The lipase-catalyzed reaction is a promising method for converting waste oils which
contains high percentage of free fatty acids and high water content, into biodiesel with high
yield [145]. It has been reported that Novozym 435 is capable of converting the used olive
oils [129].

3.4. Algae oils

There is a considerable interest in the use of algae (micro and macro) oils for synthesis of
biodiesel. Because these oils are cheap raw materials besides animal fats and have rapid
growth rate and productivity when compared to conventional forestry, agricultural crops,
high lipid content,  tolerance for poor quality water,  smaller land usage up to 49 or 132
times less when compared to rapeseed or soybean crops [142,147]. The smaller land usage
brings the advantage of reducing the competition for arable soil with other crops, in partic‐
ular for human consumption [147]. However, there are still some drawbacks for utilization
of algae for biodiesel production. A considerable investment in technological development
and technical expertise is needed to optimize the microalgae harvesting and oil extraction
processes,  to  use  cheap sources  of  CO2  for  culture  enrichment  [147].  Algae  oils  contain
about 20-40% oil [148]. Several researchers have been experimented on microalgal oils as
raw material for biodiesel production. Tran et al. [130], investigated the conversion of mi‐
croalgal oil from Chlorella vulgaris ESP-31 to biodiesel by using immobilized Burkholderia
lipase and a high fatty acid methyl esters conversion efficiency of 97.25 wt% oil (or 58.35 wt
% biomass) was obtained for 48 h reaction. It is proposed that microalgal oil has good po‐
tential for application in the commercial production of biodiesel. The enzymatic conversion
of microalgal oils to biodiesel in ionic liquids was firstly studied by Lai et al. [149]. Four
microalgae two strains of Botryococcus braunii (BB763 and BB764), Chlorella vulgaris, and
Chlorella pyrenoidosa have been catalyzed by two immobilized lipases, Penicillium expan‐
sum lipase and Candida antarctica lipase B (Novozym 435), in two solvent systems: an ion‐
ic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIm][PF6]) and an organic
solvent (tert-butanol). Penicillium expansum lipase was found more efficient for this appli‐
cation and the ionic liquid [BMIm] [PF6] showed a greater conversion yield (90.7% and
86.2%) obtained relative to the one obtained in the commonly used organic solvent tert-bu‐
tanol (48.6% and 44.4%).
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4. The effect of reaction parameterson enzymatic transesterification

4.1. The effect of temperature on enzymatic transesterification

Enzymatic transesterification takes place at low temperatures varying from 25 to 60°C. In
general,  initially the rate of reaction increases with rise in reaction temperature, because
of  an  increase  in  rate  constants  with  temperature  and  less  mass  transfer  limitations
[150,151].  Nevertheless,  increased temperature  after  the  optimum temperature  promotes
to  denaturation  and  higher  thermal  deactivation  of  the  enzyme,  since  it  decreased  the
catalytic activity [152].

Various researches have been carried out to find out the effect of temperature on biodiesel
production with immobilized enzymes. It is clear that immobilization provide more temper‐
ature resistance compared to free enzymes due to supplying a more rigid external backbone
for lipase molecule [150,151]. However, optimum temperature is specific for each produc‐
tion. The studies about the effect of temperature for enzymatic transesterification are shown
in Table 7.

Lipase Oil Source Alcohol Performed

Temperatures In

The Range (°C)

Optimum

Temperature (°C)

Reference

Immobilized Aspergillus

niger

Palm Methanol 25-50 40 [153]

Immobilized Aspergillus

niger

Waste Cooking Methanol 25-50 30 [154]

Immobilized

Burkholderia cepacia

Babassu Ethanol 39-56 39 [155]

Candida antarctica Cotton Seed T-Butanol 30-50 50 [156]

Candida antarctica Acid Methanol 30-50 30 [157]

Immobilized Candida Sp.

99–125

Salad Methanol 27-50 40 [158]

Candida Sp. 99–125 Waste Cooking Methanol 35-50 40-50 [159]

Immobilized

Enterobacter aerogenes

Jatropha T-Butanol 30-55 55 [160]

Immobilized

Enterobacter aerogenes

Crude Rapeseed Ethanol 25-50 35 [161]

Lipozyme RM IM Soybean Butanol 20-50 30 [162]

Lipozyme RM IM Soybean Methanol and

Ethanol

40–60 50 [163]

Lipozyme RM IM Soybean Oil

Deodorizer

Distillate

Ethanol 45-78 50 [164]

Lipozyme TL IM Rapeseed N-Butanol 30-60 40 [165]

Lipozyme TL IM Soybean Ethanol 20-50 35 [162]
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Lipase Oil Source Alcohol Performed

Temperatures In

The Range (°C)

Optimum

Temperature (°C)

Reference

Lipozyme TL IM Palm Ethanol 30-78 50 [166]

Novozyme 435 Rapeseed Methanol 25-55 40 [167]

Novozyme 435 Tung and Palm Methanol and

Ethanol

45-55 55 [168]

Novozym 435 Cottonseed -(Dimethyl

Carbonate As

Organic

Solvent)

30-55 50 [169]

Novozym 435 Canalo Methanol 25-65 38 [170]

Novozym 435 Olive Methanol 30-70 40 [129]

Novozym 435 Soybean T-Amyl 30-60 40 [171]

Novozym 435 Sunflower Methanol 25-65 45 [172]

Novozym 435 Stillingia Methanol 30-60 40 [173]

Novozym 435 Cotton Seed Methanol 30-70 50 [174]

Novozym 435, Lipozyme

TL IM and Lipozyme

RM IM

Soybean Ethanol 25-60 25 [175]

Immobilized Penicillium

expansum

Waste T-Amyl 25-55 35 [176]

Immobilized

Pseudomonas cepacia

Soybean Methanol and

Ethanol

25–60 35 [177]

Pseudomonas cepacia Soybean Methanol 20–60 30 [178]

Immobilized

Pseudomonas

fluorescens

Triolein 1-Propanol 40-70 60 [48]

Pseudomonas

fluorescens

Soybean Methanol 30-60 40 [49]

Rhizopus chinensis

CCTCC M201021

Soybean Methanol 30-40 30 [179]

Thermomyces

lanuginosus

Canola Methanol 30-70 40 [69]

Table 7. Data on optimum temperature for enzymatic biodiesel production

4.2. The effect of water content on enzymatic transesterification

Water content is one of the key factors for enzymatic transesterification reaction that have a
strong effect on lipase’s active three-dimensional conformational state [21,180]. Biocatalysts,
needs a small amount of water to retain their activities [181]. Lipase has an unique feature
on the water-oil interface, and the lipase activity depends on this interface. The presence of
an oil–water interface required because it provides a suitable environment for enzyme acti‐
vation which occurs due to the unmasking and restructuring the active site through confor‐
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mational changes of the lipase molecule [182,183]. When the addition of water increased, the
amount of water available for oil to form oil–water droplets also increases, hence increasing
the available interfacial area [182]. Thus, enzymatic activity can not be possible in a water
free media. However, excess water cause reverse reaction of hydrolysis. The amount of re‐
quired water, to provide an optimum enzyme activity, differs according to the type of en‐
zyme and reaction medium composition. Enzymes, substrates, organic solvent and also
immobilized support have a crucial role on optimal water activity for lipase [184]. Optimum
water content not only provides keeping the hydrolysis of ester linkages at the minimum
level, but also ensures the highest degree of transesterification [24]. Thus, a better control of
water content is very important for enzymatic process.

Water activity (aw) is defined as free (boundness) water in the system, which is a ratio of va‐
por pressure over the given system versus that over pure water [24]. Thermodynamic water
activity is the best predictor of reaction rate that can be determined in any phase by different
kinds of sensors such as holographic sensor, Weiss LiCl humidity sensor [180,185]. Also,
several methods have been developed for control of water activity, for example, equilibra‐
tion with saturated salt solutions [186], addition of salt hydrate pairs [187,188] and introduc‐
tion of air or nitrogen into the reactor [189]. Recently, Peterson et. al. developed a practical
way for control of water activity in large-scale enzymatic reactions by using a programma‐
ble logic controller. On the other hand, percentage water content is another expression
which is used widely in transesterification, generally assayed by Karl-Fischer coulometer.

In general, lipases show higher activity with higher water activities in solvent free systems
instead of Candida antarctica lipase (Novozym 435) [184]. For Candida sp. 99–125 lipase, the
optimum water content is 10–20% based on the oil weight to maintain the highest transester‐
ification activity [31].

Salis et al., investigated production of oleic acid alkyl esters by using Pseudomonas cepacia
and determined that aw in the range 0.4–0.6, 1-butanol:triolein 3:1 – were the best conditions
to reach maximum enzymatic activity. It was also found that at the higher values of water
activity, no hydrolysis reaction was occurred [190].

Noureddini and Philkana [82] tested immobilized Pseudomonas cepacia for the transesteri‐
fication of soybean oil with methanol and ethanol and observed that increased addition of
water provide a considerable increase in the ester yield. The optimal conditions were deter‐
mined for processing 10 g of soybean oil by 475 mg lipase in 1 h as 1:7.5 oil/methanol molar
ratio, 0.5 g water in the presence of methanol that resulted in 67 % yield and 1:15.2 oil/etha‐
nol molar ratio, 0.3 g water in the presence of ethanol that resulted in 65% yield.

Al-Zuhair et al. studied the esterification of n-butyric acid with methanol in the presence of
Mucor miehei lipase, and found similar results with literature [191] that higher water con‐
tent, makes lipase more efficient [182].

Shah and Gupta used immobilized Pseudomonas cepacia lipase for ethanolysis of Jatropha
oil and noted that the best yield 98% gained by in the presence of 4–5% (w/w) water in 8 h.
The yield was only 70% in absence of water [44].
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Kawakami et al. determined the effect of water content for transesterification of Jatropha oil
and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substi‐
tuted hydrophobic silica monolith. The authors reported that biodiesel yield reached 90%
with water content of 0.6% (w/w) after 12 h using a stoichiometric mixture of methanol and
oil (3:1) [78].

Chen et al. investigated the effect of water content for production of biodiesel with oleic acid
with methanol catalyzed by soluble lipase NS81020, produced by modification of Aspergil‐
lus oryzae microorganism, in the biphasic aqueous-oil systems and found that the esterifica‐
tion yield is low if the water was scant. The higher reaction rate and fatty acid methyl ester
yield was obtained with 10 wt % water by oleic acid weight [192].

It is clear that during the past decade numerous investigations have been made to determine
the optimal water content for transesterification. As a result, the necessary amount of water
content is an important factor to create an interfacial surface between oil and water and to
ensure optimal enzymatic activity. Also, water has a strong influence on structural integrity,
active site polarity, and protein stability of lipase [21,193]. However, it differs from enzyme
to reaction conditions.

4.3. The effect of acyl acceptors on enzymatic transesterification

Methanol, short chain alcohol, usually used as an acyl acceptor due to its low price and
availability. Insoluble and a relatively high amount of methanol with respect to oil, have a
negative influence on the stability of lipases and could be solved by a stepwise addition of
the alcohols [15, 194]. To eliminate inhibitory effects of methanol some co-solvents are add‐
ed to the reaction mixture. Tert-butanol is one of the important co-solvents which is added
to enzymatic reaction. Usage of tert-butanol, a polar solvent, is also a possible solution for
eliminating the inhibitory effects of methanol and glycerol (both of them soluble in tert-bu‐
tanol) and suggested instead of using butanol [195]. Liu et al. [196], transesterified waste
baked duck oil by three different commercial immobilized lipases (Novozym 435, Lipozyme
TLIM and Lipozyme RMIM) with different monohydric alcohols (methanol, ethanol, propa‐
nol, isopropanol, isobutanol, isoamyl alcohol) and fusel oil-like alcohol mixture (containing
15% isobutanol, 80% isoamyl alcohol, 5% methanol) in solvent-free and tert-butanol sys‐
tems. It was reported that each lipase presented a different kinetic pattern depending on the
monohydric alcohols. The results showed that Lipozyme TL IM and Novozym 435 gave
high conversion rate with isobutanol and isoamyl alcohol either in solvent-free or in tert-bu‐
tanol system. Thus, the combined use of lipases, Novozym 435 and Lipozyme TLIM, as cata‐
lyst and fusel oil-like mixture as raw material for biodiesel synthesis was found effective in
view of cost saving of biodiesel production [195].

Recently, novel acyl acceptors were investigated such as ethyl acetate, methyl acetate, butyl
acetate, vinyl acetate [197], dimethyl carbonate [198]. Du and coworkers demonstrated the
positive effect of methyl acetate, on enzymatic activity of Novozym 435 and found that li‐
pase could be reused directly without any additional treatment [199]. The advantage of us‐
ing methyl acetate is that the cost of the catalyst can be reduced dramatically due to the
longer operational life and reusability of lipase. The byproduct of the system is triacetylgly‐
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cerol, which does not have any negative effect on the fuel property, and also no glycerol
produced [200]. Hence, these advantages will provide industrial implementation of enzy‐
matic biodiesel production. Dimethyl carbonate is another promising alternative acyl ac‐
ceptor, which is eco-friendly, odorless, cheap, non-corrosive, and non-toxic [200]. The
transesterification reaction is irreversible, because carbonic acid monoacyl ester, the inter‐
mediate compound, immediately decomposes to carbon dioxide and alcohol [200]. The fatty
acid methyl ester yield is higher for lipase-catalyzed transesterification of vegetable oils with
dimethyl carbonate besides conventional acyl acceptors (methanol and methyl acetate) [200].
Only, the higher price of acyl acceptor besides alcohols is a disadvantage [194].

4.4. Effects of the solvent on enzymatic transesterification reaction

In enzymatic transesterification reaction, excess of alcohol increases reaction efficiency, but
if alcohol doesn’t dissolve in reaction medium it can disrupt the enzyme activity. Methanol
and vegetable oil in the values close to 1:1 molar ratio forms a solution in 40°C. Solvent is
added into the reaction medium to increase the solubility of alcohol and thus it allows first
step enzymatic transesterification by blocking degradation lipase catalytic activity [24]. To
overcome deactivation of lipase activity and improve the lipase activity, various organic sol‐
vents have been used for enzymatic biodiesel synthesis. These solvents have been listed in
Table 8. Cyclohexane, n-hexane, tert-butanol, petroleum ether, isooctane and 1,4-dioxane are
mainly studied hydrophilic and hydrophobic organic solvents in enzymatic biodiesel pro‐
duction. In organic solvent medium, overall alcohol is added at the beginning of the reac‐
tion. In solvent free reaction medium, alcohol is added in several portions to prevent
enzyme activity with high alcohol concentration [24].

Hexane is generally preferred because of its low cost and easily availability in the market.
Some studies were performed in hexane solvent systems with soybean and tallow oil using
monohydric alcohols [70,201, 202]. Nelson et al. performed transesterification of tallow with
monohydric alcohols by Lipozyme IM 60 (M. miehei) and Novozyme SP435 (C. antarctica)
in hexane and a solvent-free system. They compared the transesterification yields of two dif‐
ferent systems. The yields with higher than 95% were obtained with methanol, ethanol and
butanol with Lipozyme IM 60 lipase under hexane system (Table 8) while reaction yields
under solvent-free system were 19% for methanol, 65.5% for ethanol, and 97.4% for isobuta‐
nol [201]. Similar results were found by Rodrigues et al. [70]. They compared the yields of
transesterification of soybean with ethanol by Lipozyme TL IM. In the presence of n-hexane
with 7.5:1 molar ratio of ethanol:soybean oil, the transesterification conversion was found to
be as 100% while in solvent-free system the yield was 75%. At stoichiometric molar ratio, the
yield was 70% conversion after 10 h of reaction in both systems. Transesterification conver‐
sion was obtained as 80% by three stepwise addition of ethanol, while a two step ethanolysis
produced 100% conversion after 10 h of reaction in both solvent and solvent-free systems.

In enzyme catalyzed reaction, both alcohol amount and low glycerol solubility in biodiesel
have negative effects on enzyme activity. Deposit of glycerol coating the immobilized cata‐
lyst is formed during the process, which reduces the enzymes activity [203]. The solubility of
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methanol and glycerol in hydrophobic solvents is low. For this reason, this problem may oc‐
cur in hydrophobic solvent system.

The enzymatic alcoholysis of triglyceride also was studied with petroleum ether, isooctane,
cyclo hexane,1,4-dioxane (Table 4-2) [16,48,204]. Iso et al. [48], reported that when methanol
and ethanol were used as alcohol in enzymatic transesterification, the reactions need an ap‐
propriate organic solvent [48]. On the other hand, the reaction could be performed without
solvent when 1-propanol and 1-butanol was used. They also used, benzene, chloroform and
tetrahydrofuran as solvent and immobilized P. fluorescens lipase as catalyst at 50°C to com‐
pare the results that of the 1,4 dioxane. The highest enzymatic activity was observed with
1,4-dioxane. The enzymatic activity increased with the high amount of 1,4-dioxane. But high
conversion of oil (app.90%) to biodiesel was obtained with high proportion of 1,4 diox‐
ane(90%). Although usage of high amount of solvents is not preferable in industry solvents
can be recovered together with methanol after transesterifiation reaction.

Hydrophilic organic solvents can interact with water molecule in enzyme and this may af‐
fect the catalytic activity of enzyme. However, as shown in Table 8 high performance was
ensured with hydrophilic solvents such as 1,4-dioxane and tert-butanol [48,156, 205-208].
Some studies were performed in the presence of t-butanol solvent because of positive effects
on enzymatic catalyzed reaction. T-butanol has moderate polarity so methanol and glycerol
are easily soluble in tertiary butanol. Solubility of methanol prevents enzyme inhibition and
solubility of glycerol prevents accumulation on the enzyme carrier material. Another ad‐
vantage of this solvent is sinteric hindrance. Due to this property, tert-butanol is not accept‐
ed by the lipase. High yield and conversions were obtained in the presence of t-butanol with
various vegetable oils and immobilized lipases shown in Table 4-2. For example, Liu et al.,
[196] studied biodiesel synthesis by immobilized lipases in solvent-free and tert-butanol me‐
dia. Each lipase showed a different conversion depending on the monohydric alcohols and
immobilized lipase in solvent-free medium and tert-butanol system. For methanolysis, re‐
gardless of the lipase type, the conversion rate is higher in tert-butanol than that in solvent-
free medium. Novozym 435 showed higher conversion rate with straight monoalcohols in
tert-butanol medium. Lipozym RM IM and Lipozyme TL IM showed lower conversion with
straight and branched monoalcohols (except methanol) in solvent free system. Similar re‐
sults were obtained by Halim and Kamaruddin [208], in transesterification of waste cooking
palm oil using various commercial lipases (Lipozyme RM IM, Lipozyme TL IM and Novo‐
zyme 435) in tert-butanol as reaction medium. Novozyme 435 was found to be more effec‐
tive in catalyzing the transesterification with methanol in in-tert-butanol medium. It was
also been demonstrated that even 3:1 methanol to oil molar ratio didn’t inhibit the Novo‐
zyme 435 in tert-butanol system. Du et al. [209], showed that Lipozyme TL IM could be used
without loss of lipase activity for 200 batches in tert-butanol system. Li et al. [210], used ace‐
tonitrileand tert-butanol mixture as co-solvent in transesterfication of stillingia oil with
methanol. The highest biodiesel yield (90.57%) was obtained in co-solvent with 40% tert-bu‐
tanol and 60% acetonitrile (v/v) with co-solvent. They also reported that co-solvent (as a
mixture)enhance the tolerance of lipase to the methanol than the pure tert-butanol.
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Solvent Oil Alcohol Lipase Temp/

Time

Reaction mixture Performance

(%)

Ref.

Tert-butanol Cotton seed Methanol Novozyme

435

(Candida

antarctica)

50 °C /

24h

13.5% meth., 54%

oil

32.5% tert-

butanol,

Lipase:1.7%

(wt of oil)

97 (yield) [156]

Tert-butanol Cotton seed Methanol Pancreatic

lipase

37 °C /

4 h

Methanol :oil mol

ratio:1:15

Lipase:0.5%

enzyme

(wt of oil)

water conc.5%

(wt of oil)

75–80

(conversion)

[205]

Tert-butanol Rapeseed Methanol Novozyme435

& Lipozyme TL

IM

35 °C /

12 h

Methanol: oil mol.

ratio 4:1

tert-butanol/oil

vol. 1:1

Lipase:

3% Lipozyme TL IM

1% Novozym 435

(wt of oil)

95 (conversion) [206]

Tert-butanol Soybean and

deodorizer

distillate

Methanol Lipozyme TL

IM

Novozym 435

40°C/

12 h

Methanol:oil molar

ratio 3.6:1

Lipase :3%

Lipozyme TL IM

2% Novozym 435

tert-butanol: 80%

(wt of oil)

84 ( yield) [207]

Tert-butanol Waste cooking

palm

Methanol Novozyme 435 40°C /

12 h

Methanol:oil mol.

ratio 4:1,

Lipase:4% (wt of

oil)

88(yield) [208]

Tert-butanol Waste baked

duck

Methanol Novozym 435

Lipozyme TL

IM

45 °C /

20 h

Methanol:oil mol.

ratio 4:1,

Lipase: 5 wt%(wt

of oil)

85.4,

78.5,

(conversion)

[196]

Hexane Tallow Methanol

Ethanol

Propanol

Lipozyme IM

60

45 C/

5 h

0.34 M tallow in

hexane

(8 mL),

Lipase: 10

(wt of oil)

200rpm

94.8,

98.0,

98.5

(conversion )

[201]
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Solvent Oil Alcohol Lipase Temp/

Time

Reaction mixture Performance

(%)

Ref.

Hexane Soybean Methanol Lipozyme IM

77

36.5°C/

3h

Methanol :oil mol

ratio:3.4:1

Lipase:0.9BAUN*of

lipase;

water 5.8% (wt%

of oil)

92.2 (yield) [202]

Hexane Soybean Ethanol Lipozyme TL

IM

30 °C/

10 h

Ethanol:oil

mol.ratio:7.5:1

Lipase: 15 %(wt of

oil).

4% water

100

(conversion)

[70]

Cyclo

hexane

Sunflower Methanol Lipase AK

Lipozyme TL

IM

Lipozyme RM

IM

40°C/

24 h

Volume of organic

solvent/ oil: 2

ml/0.2 mmol

Lipase: 10% (wt of

oil)

65,

75,

35

(conversion)

[204]

Acetonitrile

60%and 40%

t-butanol (v/v)

Stillingia Methanol Novozym 435

and Lipozyme

TL IM

40°C/

24h

Methanol:oil mol

ratio: 6.4:1

Lipase:

4% (w/w) of

multiple-lipase

(1.96% Novozym

435+2.04%

Lipozyme TL IM)

90.57

(yield)

[210]

Petroleum

ether

Sunflower Ethanol Lipozyme IM

Lipase AK

45°C /

5h

Ethanol:oil mol.

ratio:11:1

Lipase:20%

(wt of oil)

82,

99,

(yield)

[16]

I-octane Sunflower Methanol Lipase AK

Lipozyme TL,

IM

Lipozyme

RM,IM

40 °C Methanol: oil mol

ratio::3:1

Vol. of organic

solvent/oil: 2

ml/0.2 mmol

80,

65,

60,

(yield)

[204]

1,4-dioxane Triolein Methanol Lipase AK 50°C /

80h

Methanol:oil mol.

ratio: 3:1

90% solvent

~70 (conversion) [48]

*BAUN:Batch Acidolysis Units Novo

Table 8. Effect of the solvent on the performance of enzymatic transesterification reaction
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Although positive effects of the usage of the solvents on the transesterification reaction,
some drawbacks has also been known) such as; extra reactor volume, solvent toxicity and
emissions, solvent recovery and loss cost [133].

4.5. The effect of molar ratio of alcohol to oil on enzymatic transesterification

Biodiesel yield always increased due to the molar excess of alcohol over fatty acids in trigly‐
cerides in traditional transesterification system [15]. The transesterification reaction is rever‐
sible and so, an increase in the amount of one of the reactants will result in higher ester yield
and minimally 3 molar equivalents of methanol are required for the complete conversion of
methyl ester [174]. Conversely, for enzyme catalyzed transesterification, insoluble excess
methanol which exists as fine droplets demonstrates negative effects on enzyme activity and
also decrease the production yield [211]. The reaction medium is an important factor during
the determination of the optimum molar of alcohol to oil. The inactivation of lipases occurs
by contact with insoluble alcohol because the highly hydrophilic alcohol eliminates the layer
of essential water from the enzymes [212]. Thus, stepwise addition of alcohol is a potential
approach for ratio optimizing the molar ratio in solvent free systems [15]. Whilst, higher re‐
action rates could be obtained with a slight excess of alcohol in organic solvent systems [15].

The two-step reaction system was reported to avoid the inactivation of the lipase by addi‐
tion of excess amounts of methanol in the first-step reaction, and by addition of vegetable oil
and glycerol in the second-step reaction [213]. Watanabe et al. [213], used a two-step reac‐
tion system for methyl esterification of free fatty acids and methanolysis of triacylglycerols
using immobilized Candida antarctica lipase. The first step reaction was methyl esterifica‐
tion of free fatty acids that was performed by treating a mixture of 66 wt % acid oil and 34
wt % methanol with 1 wt % immobilized lipase. The second step reaction was conducted to
convert triacylglycerols to fatty acid methyl esters. In this step, a mixture of 52.3 wt % dehy‐
drated first-step product, 42.2 wt% rapeseed oil, and 5.5 wt% methanol using 6 wt% immo‐
bilized lipase in the presence of additional 10 wt % glycerol was treated. The contents of
fatty acid methyl esters was 91.1wt.% after the second step reaction was repeated by the use
of immobilized lipase for 50 cycles using recovered glycerol.

Moreno-Pirajan and Giraldo [81], added different amounts of alcohol varied from 2.7 to 13.7
molar equivalents for methanol and from 5.7 to 26.7 molar equivalents for ethanol, based on
the moles of triglycerides toward the transesterification of palm oil catalyzed by Candida ru‐
gosa lipase and 10.4 molar ratio for all alcohols to palm oil was determined as optimal alco‐
hol requirement resulted in 85 mol% of methyl esters yield with n-butanol.

Lipase catalyzed esterification of palmitic acid with ethanol in the presence of Lipozyme IM
20 in a solvent free medium was investigated by Vieira et al. [212]. Different acid/alcohol
molar ratios were tried as 0.16, 0.5, 1.0, 1.5, and 1.84. The best result was obtained with 0.5
acid/alcohol molar ratio.

Zaidi et al. [214], explained the correlation existing between the kinetic parameters and the
chain-length of the substrates in esterification of oleic acid using nylon-immobilized lipase
in n-hexane. It is observed that the inhibition coefficient of the alcohol increased from 0.034
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to 0.42 mol l−1, when the number of carbon atoms increased from 1(methanol) to 18 (oleyl
alcohol), respectively.

Dizge and Keskinler [69], used immobilized Thermomyces lanuginosus lipase to produce bi‐
odiesel with canola oil with methanol and investigated the role of substrate molar ratio. The
biodiesel production was conducted at 1:1, 1:2,1:3,1:4,1:5;1:6 and 1:10 oil/alcohol molar ratios
at 40°C. The highest methyl ester yield (85.8%) was obtained at the oil/methanol molar ratio
of 1:6. Two important result from this study can be concluded as (i) an increase in the num‐
ber of moles of methanol resulted in an increase in the ester production, (ii) when the forma‐
tion of esters reached a maximum level the further increases in the methanol concentrations
cause a decrease in the formation of esters due to enzyme inactivation.

Thus, the actual amount of alcohol needed varies significantly depending on the origin of
the lipase and fat.

5. Reactors for enzymatic transesterification

Through the industrialization of enzymatic biodiesel production, it is necessary to show the
applicability of enzymes in reactor systems. Various reactors, including batch reactors,
packed bed reactors and supercritical reactors have been investigated by researchers. Most
of the investigations on enzymatic synthesis of biodiesel have been performed in batch reac‐
tors and packed bed reactors.

Batch reactors are simple designs used in the laboratory. In batch reactors, methanol shows
a good dispersion in the oil phase. But the physical agitation caused by shear stress from the
stirring would disrupt the enzyme carrier which shortens the enzymes life [31]. On the other
hand, batch operation is labor intensive, and not suitable for automation [215]. Packed bed
reactors are alternative of batch reactors which are substantially faster and more economical
continuous reactors [216]. A packed-bed reactor system is most widely used in biotechnolo‐
gy, as it is easy to operate and scale up these systems. In addition, these systems have high
bed volume. The most important advantage of these systems is that it is lowering shear
stress on immobilized enzymes which leads to long-term enzyme stability [217]. Further‐
more, stepwise addition of alcohol can be performed to reduce the inactivation of the en‐
zyme caused by excess alcohol. One of the encountered problems with an immobilized
lipase is the inhibition of the enzyme due to the cloggage of the catalyst by accumulation of
the glycerol by-product inside the reactor [218]. Also, the separation of glycerol which re‐
mains in the bottom of the reactor can be achieved in a simple way by using more than one
column. Recently, a packed-bed reactor system, in which a reactant solution is pumped
through a column containing biomass support particles immobilized recombinant Aspergil‐
lus oryzae and the effluent from the column is recycled into the same column with a step‐
wise addition of methanol was developed by Yoshida et al. [219]. In this system, lipase
retains its activity for five batch cycles and 96.1% methyl ester content was obtained with a
residence time of 140 min per pass and stepwise addition of 4.25 molar equivalents of meth‐
anol to oil for 6 passes. The methanolysis of soybean oil in packed bed reactor system using
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Rhizopus oryzae whole cell was studied by Hama et al. [112]. The final methyl ester content
was over 90% at a flow rate of 25 l/h in the first cycle and also, after 10 cycles approximately
80% conversion was achieved. Wang et al. [216], developed Pseudomonas cepacia lipase –
Fe3O4 nanoparticle biocomposite based packed bed reactors. A single-packed-bed reactor
and the four-packed-bed reactor were used to produce biodiesel by using refined soybean
oil. A high conversion rate (over 88%, 192 h) and great stability was achieved with the four-
packed-bed reactor compared to single-packed-bed reactor. It is considered that the four-
packed-bed reactor supplied a longer residence time of the reaction mixture in the reactor
and lowered the inhibition of the lipase by products [216]. By this way, the reaction efficien‐
cy was improved. Additionally, the cost of biodiesel production can be reduced by the effec‐
tive recycling of the enzyme catalysts [184].

Supercritical reactors also have been investigated by researchers for enzymatic biodiesel
production. D. Oliveira and J. V. Oliveira [220], produced biodiesel from palm kernel oil in
the presence of Novozym 435 and Lipozyme IM in supercritical carbon dioxide in the tem‐
perature range of 40−70 °C and from 60 to 200 bar using a water concentration of 0−10 wt %
and oil/ethanol molar ratios from 1:3 to 1:10. Lipozyme IM showed better results and the
highest reaction conversion was obtained as 77.5 %. It was observed that lipase structure
changed at pressures beyond 200 bar. Madras et al. [221], synthesized biodiesel from sun‐
flower oil in supercritical carbon dioxide catalyzed by Novozym. However, the obtained
conversions, when the reaction was conducted in supercritical methanol and ethanol at the
optimum conditions, were 23 and 27%, respectively [221]. Enzymatic transesterification of
lamb meat fat in supercritical carbon dioxide was investigated by Taher et al. [222].The max‐
imum conversion (49.2%) was obtained at 50◦C, with 50% Novozym 435 loading, 4:1 molar
ratio, within 25 h reaction. Supercritical reactors could not commercialized according to the
low conversion rate and cost of the system.

Consequently, packed bed reactor systems seem to be a practical transesterification reactor
system with high transesterification efficiency. These systems will bring industrial scale up
enzymatic biodiesel production in an economic way.

6. Conclusion

Today, the growing energy necessity and environmental pollution problem requires the use
of renewable alternative energy sources to become less dependent on fossil resources. As
known, biodiesel is an important alternative energy resource and seems to be the fuel of fu‐
ture because it is an environmentally friendly, nontoxic, renewable, and biodegradable fuel.

Conventionally, biodiesel production is achieved by mainly alkaline or acid catalysts. The
interest in the use of biocatalyst for biodiesel production has been an increasing trend due to
its many advantages.

Biodiesel have been shown to be effectively produced by enzymatic catalyst and also, nu‐
merous researches have been performed to obtain highly active lipases and to optimize
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process conditions for biodiesel production. Besides many advantages, to produce biodiesel
by enzyme catalysts on an industrial scale, it is necessary to reduce the high cost of enzymes
and obtain lipases with better features. The immobilization of lipases and genetic engineer‐
ing methods seems to be an attractive way to obtain more active, stable, and reusable lipases
in organic solvents and alcohols. Also, selection of alternative acyl-acceptors is an option for
eliminating the negative effects of methanol on lipase activity.

It can be concluded that in enzyme catalyzed biodiesel production significant progresses
have been made but further improvements such as novel reactor design should be ad‐
dressed and emphasized in the future research in order to ensure industrial enzymatic bio‐
diesel production. By making novel improvements, much attention will be focused on
enzyme usage in biodiesel production, and especially lipase reactions will be applied much
more in this area.
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