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1. Introduction 

Above 10% of children in the U.S. are subjected to some form of maltreatment (Table 1) [1]. 

Childhood adversity can take the form of abuse, neglect, or loss, with examples including 

but not limited to: sexual abuse, physical abuse, emotional/psychological abuse, neglect, 

parental death, and bullying. Childhood adversity has been shown to have lifelong impact 

on the victim‘s physical and mental well-being (Table 2).  

 

Figure 1. Childhood adversity is prevalent and has pervasive and long term impact on mental and 

physical health.  

In many scientific studies invovling animal or human subjects, childhood trauma has been 

associated with low resting cortisol levels, altered stress response, increased inflammatory 

markers, and cognitive impairment [2]. In particular, childhood maltreatment has been 

linked to a variety of changes in stress-responsive neurobiological systems including brain 

structure and function [3]. Studies have shown that childhood maltreatment represents a 

strong risk factor for the development of depression and anxiety disorders in later life [3 - 5]. 
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A presumed mechanism for such association is the persistent sensitization of central 

nervous system (CNS) circuits, in particular the amygdala, as a consequence of early life 

stress, which leads to the higher vulnerability to these psychiatric disorders [6].  

 

Childhood abuse 
Total 

N=17,337 

Emotional abuse

(Did a parent or other adult in the household ...) 
10.6% 

1. Often or very often swear at you, insult you, or put you down?  

2. Sometimes, often, or very often act in a way that made you fear that you 

might be physically hurt? 
 

Physical abuse 28.3% 

(Did a parent or other adult in the household ...)  

1. Often or very often push, grab, slap or throw something at you?  

2. Often or very often hit you so hard that you had marks or were injured?  

Table 1. Adverse childhood experience (ACE) score definition and prevalence statistics [1]. 

2. Childhood adversity and psychiatric vulnerability: Epidemiology 

studies 

It has been shown for a long time that early life adversity significantly increases psychiatric 

vulnerability in adulthood [7]; such an effect has been replicated in many large sample 

studies [8,9]. High risk psychiatric conditions include depression [10], anxiety [11], 

substance abuse [12], as well as psychosis related disorders such as schizophrenia [13,14]. A 

very large sample ( N = 9377) 45-year prospective epidemiologic study has confirmed that 

such an impact is persistent throughout a person’s lifecourse [15]. It has been identified that 

amygdala hyperactivity and morphological abnoramlity, together with structural and 

functional abnormality of other brain regions such as the anterior cingulate and prefrontal 

cortex, could have significant contribution to such heightened risk [16].  

  Mental Health Disturbances 

ACE N Panic reactions Depressed affect Anxiety Hallucination 

0 (6255) 8.3% 18.4% 7.8% 1.3% 

1 (4514) 10.9% 25.2% 9.1% 1.5 

2 (2758) 13.6% 34.1% 12.4% 2.3% 

Table 2. Relationship of the ACE scores (see Table 1 for definition of ACE) to the prevalence of mental 

health disturbances [1].  

What further complicates the picture is the pattern of family risk for psychiatric disorders 

[17], which goes into a vicious circle, i.e., parents with psychiatric disorders tend to maltreat 

their children, which increases the psychiatric risk of their children, and such a vicious circle 

goes on for generations and generations. There are certainly genetic factors in addition to 



 
Amygdala, Childhood Adversity and Psychiatric Disorders 305 

the family enviromental factor in this vicious cycle. Research in recent years are paying 

more attention on the epi-genetic mechanisms modified by identifiable patterns of 

childhood maltreatment [18]. Epigenetic mechanisms are mechanisms that regulate gene 

expression without altering the DNA sequence but rather through changing the biochemical 

environment of nucleotides. DNA methylation, histone modification, and chromatin 

remodeling are common epi-genetic mechnisms. However, it should be noted that although 

epigenetic mechanisms do not involve changing the DNA sequence, they are still 

inheritable. It is said that every sperm and every egg has a different epigenetic environment, 

and such differences are maintained during cell divisions for the remainder of the cell's life 

and may also last for multiple generations. Studies have shown that prenatal maternal 

stress, postnatal maternal care, and infant neglect/abuse can lead to epigenetic variation, 

which may have long-term effects on stress responsivity, neuronal plasticity, and behavior 

[18]. The remainder of this chapter will not elucidate the exact epigenetic mechanisms 

invovled in the lifelong impact of childhood adversity, since that is an area of research that 

is still being explored in heavy mist. Instead, we are going to focus our discussion on the 

neurobiological phenotypes, in particular, the impact of childhood adversity on the 

structure and functionality of the amygdala, which in turn serves as a significnat risk factor 

for developing psychiatric disorders in adulthood. 

3. Amygdala abnormality due to early life adversity  

The amygdala is critically involved in activation of the hypothalamic-pituitary-adrenal 

(HPA) axis in the face of emotional challenges and threat [19]. The HPA axis is a complex set 

of interactions in the neuroendocrine system, which controls stress related reactions as well 

as many other physiological regulations. The amygdala contains a large amount of neurons 

that produce corticotropin releasing hormone (CRH), as well as endogenous CRH receptors. 

Stress can increase CRH levels and upregulate CRH receptors in the amygdala so as to 

initiate fear responses (with behavioral characteristics including fight, flee or freeze). Such an 

effect has been observed in both adult [20] and developing rodents [21]. The critical role of 

the amygdala in this process has been confirmed by studies on cases with amygdala lesions, 

in which elevated glucocorticoid levels were absent during stressful situations [22,23]. 

Furthermore, external infusion of CRH to the amygdala significantly increases typical 

anxious behaviors [24]; the same effect can also be caused by electrophysiological 

stimulation of the amygdala [25], and of course, psychobiological stress such as seizure and 

chronic psychological stress [26,27].  

Although stress-induced amygdala abnormality can happen any time in life, developmental 

studies have found that the amygdala is particularly sensitive to stress in early life such as 

during infancy and early childhood. Experiencing childhood adversity produces long lasting 

structural and functional changes in the amygdala during the dynamic processes of 

endogenous CRH production and regulation. As a behavioral result, the victim’s threshold of 

emotional reaction is lowered, resulting in heightened excitability of the neural system for 

emotional response, which puts the individual at risk of general anxiety and anxiety-related 

psychiatric disorders [28]. Such an effect has been observed in many experiments as 
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summarized in Table 3. The rest of this section will discuss these experimental evidences from 

behavioral neuroscience research with animal models as well as neuroimaging research with 

humans. At the end of this section, the complex interaction between the amygdala and other 

brain regions in the context of stress-related neural responses will also be discussed. 

 

Article N Subjects Adversity Findings 

Tottenham et 

al. (2010) [29]  
62 

Human 

children 

Adverse 

caregiving 

Larger amygdala volume in previously 

institutionalized group. 

Mehta et al. 

(2009) [30] 
25 

Human 

children 

Adverse 

caregiving 

Larger amygdala volume in previously 

institutionalized group. 

Bremner et al. 

(1997) [31] 
34 

Human 

adult 

Chronic child 

abuse  

Smaller hippocampus and unchanged 

amygdala volume in PTSD patients 

Cohen et al. 

(2006) [32] 
250 

Human 

adult 

Various 

early-life 

stressors  

Differences in hippocampal volume were 

marginally significant and amygdala 

were nonsignificant between groups 

Driessen et al. 

(2000) [33] 
42 

Human 

adults 

Childhood 

trauma/ BPD 

Patients had 16% smaller hippocampal 

and 8% smaller amygdala volume  

Schmahl et al. 

(2003) [34] 
33 

Human 

adult 

Childhood 

trauma/ BPD 

Patients had smaller amygdala (∼22%) 

and hippocampal (∼14%) volumes 

Plotsky et al. 

(2005) [35] 
20 rat 

Maternal 

separation 
Elevated CRH mRNA in amygdala  

Tsoory et al. 

(2008) [36] 
104 rat Various 

Increased neural cell adhesion molecule 

in basolateral amygdala 

Ono et al. 

(2008) [37] 
148 mice 

Early 

weaning  

Precocious development of amygdala at 

5 weeks of age 

Kikusui et al. 

(2009)[38] 
129 mice 

Early 

weaning  
Accelerated amygdala development 

Salzberg et al. 

(2007) [39] 
29 rats 

Maternal 

Separation 

Amygdala sensitization following 

maternal separation 

Becker et al. 

(2007) [40] 
20 rat Separation 

Higher CRF neuron levels in basolateral 

with lower levels in central amygdala  

Vazquez et al. 

(2006) [41] 
300 rat 

Maternal 

separation  

Higher basal CRH gene expression in 

amygdala than hippocampus. 

Moriceau et al. 

(2004) [42] 
108 rat Predator odor

Exogenously administered cortisol 

increased amygdala activation  

Hatalski et al. 

(1998) [21] 
20 rat Cold  

Increased CRF-mRNA in the central 

nucleus of the amygdala 

Sabatini et al. 

(2007) [43] 
12 rat 

Maternal 

separation 

Early separation (more than later), 

decreased amygdala gene expression  

Table 3. Summary of studies about the impact of early life adversity on amygdala. Abbreviation: CRF: 

corticotropin releasing factor, CRH: Corticotropin-releasing hormone, BPD, borderline personality disorder. 
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3.1. Evidence from behavioral neuroscience studies 

In labaoratory rodents, similar to the case in humans, rodent pups (e.g., baby rats) that 

experience early life stress also exhibit altered adult behavioral and behavioral responses to 

stress. There are many ways to introduce early life stress in animal experiments, the most 

common ones include frequent handling, early weaning, and maternal separation. 

Chateracteristics of maternal behavior are also commonly used as variables for evaluating 

early life stress. These characteristics are usually quantified in terms of the frequencies of 

licking, grooming, arch-back nursing, etc. of the dams (e.g., mom rats) (Figure 2).  

 

Figure 2. Maternal care patterns have important impact on the mental health of offsprings. In animal 

models with rats or mice, licking and grooming frequencies of the dam to the pups are common 

behavioral characteristics of maternal care [44]. This figure depicts rat maternal behavior, in comparison 

with that of human as represented in an artful sculpture.  

By manipulating the caregiving conditions of infant rodents with the above methods, 

behavioral neuroscience experiments found that early life maltreatment could accelerate 

amygdala development [38,45,46] in terms of accelerated growth of dendrites, early 

myelination [37], increases in the amount of CRH-containing neurons [40] (Table 3), and 

functional sensitization [39]. In the central nucleus of the amygdala, decreased levels of 

benzodiazepine receptor binding, which plays an important role in inhibition of neuron 

activity, were observed among rats that received worse maternal care during infancy 

(Figure 4), and these rats also demonstrated higher anxiety levels behaviorally. The earlier 

such effects occur, the more devastating they are behaviorally [26], which could include 

socio-emotional deficits [43]. Experiments have elucidated that the most vulnerable time is 

the early postnatal period [47]. Compared to exposure to stress in adulthood, it might take 

200 times less CRH in the early postnatal period to produce similar behavioral effects [48]. 

Functionally, accelerated amygdala maturation by early life adversity [49] promotes 

„aversive learning“ (one of the major functions the amygdala is involved in [50]), which can 

be essential for survival in harsh conditions if seen from an ecological perspective. More 

importantly, a few studies have shown that amygdala abnormality as a result of adversity 
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may be irreversible, i.e., amygdala cellular growth in response to stress failed to recover 

even in reversed environment [51,52]. It is possible that during evolution an "over-cautious" 

mechanism has been adapted to ensure the organism to be prepared for future adversity in 

an environment that is known to be threatening.  

 

Figure 3. Accelerated amygdala neural growth as a consequence of early life adversity. As illustrated, 

chronic stress causes increased growth of dendrites (lower pannel compared to the upper panel) in the 

basolateral amygdala [46].  

 

Figure 4. Significant correlations between maternal care characteristics (x-axis) and the level of 

benzodiazepine receptor binding (y-axis) in the central nucleus of the amygdala [53]. Lower frequencies 

of maternal care behaviors are associated with lower level of benzodiazepine receptor binding in the 

central nucleus of the amygdala, indicating less inhibition on neuron activity in the amygdala.  

3.2. Amygdala abnormality in human: Neuroimaging studies 

Neuroimaging techniques have made it possible to study amygdala morphometric and 

functional changes in vivo in human subjects. Many neuroimaging studies have shown that 

amygdala is structurally and functionally altered by psychosocial stress. It is usually 

difficult to study causality from human subjects, yet studies from animal models reviewed 

above have confirmed that amygdala abnormality follows stress exposure, rather than the 
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other way round (i.e., inborn amygdala abnormality serving as a risk factor for adversity 

exposure) [54]. Such a conclusion from animal literature is partially applicable to humans. 

As a consequence of early life adversity, accelerated amygdala maturation in the form of 

increased amount of neurons and dendrites can be demonstrated as increased amygdala 

gross volumes, which is a measure often used in human neuroimaging literature (Table 3). 

Neuroimaging studies have been conducted on children adopted from orphanages. These 

studies found increased amygdala volumes [30,48], and children adopted later tend to have 

larger amygdala (Figure 5). The fact that these children were adopted by families of very 

high socio-economic status further supported the view that amygdala abnormality as a 

result of early life adversity may be irreversible.  

 

Figure 5. (a) Illustration of amygdala volumetric study with anatomical MRI. In the study presented in 

(b), it was found that later-adopted post-institutionalized children had larger amygdala volume 

compared with early adopted and typically developing controls [46].  

Some neuroimaging studies might be occluding the picture with results seemingly 

contradictory with those from animal research. For example, many studies on trauma-

exposed adults have demonstrated smaller and hyperactive amygdala [33,34]. Decreased 

amygdala volumes were also observed in subjects with childhood adversity comorbid with 

current borderline personality disorder (BPD) (Table 3, [33,34]). It should be noted that the 

above studies, which used adult subjects, might have been confounded by the effect of 

aging-related neural atrophy. Given that stress induces acceleration of amygdala 

development, it is possible a continuation of this effect into late adulthood would be 

demonstrated as "accelerated aging". This hypothesis is reasonable, given that amygdala 

hyperactivity has been consistently observed in almost all studies. Besides hyper-

responsivity to threatening stimuli has been reported in previous literature [55 - 59], a recent 

study found amygdala hyperactivity even at resting state among individuals with 

unsuccessful stress coping (Figure 10). Such prolonged hyperactivity is likely to result in 
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cellular atrophy and/or death, as has been seen in terms of reduced brain volumes in MRI 

studies [60]. Results from some neuroimaging studies also seem to support this hypothesis, 

in which depression patients showed enlarged amygdala volume at the initial depressive 

episode [61,62], but decreased amygdala volume after living with depression for extended 

periods of time [63,64]. 

 

Figure 6. Enlarged versus reduced amygdala volumes in early-state (a) [61] or late stage (b) [63] 

depression. Note: p values are 0.002 (left amygdala) and 0.024 (right amygdala) in (a) with 30 subjects in 

each group, and 0.001 (left amygdala) and 0.002 (right amygdala) in (b) with 20 subjects in each group. 

Thus it is important to identify the time sensitivity of stress impact on amygdala, which 

seems to have a dichotomy in early life and late life. It is very difficult to identify specific 

critical time points in humans, because there are rarely isolated stressors in human life and 

researchers have limited options to manipulate these stressors compared to what we can do 

with animals. Nonetheless, identifying the turning time points can be helpful for designing 

timely intervention programs as demonstrated in section 7. Unlike the case in animal 

literature [63,64], we might be able to reverse the toxic impact on amygdala through 

appropriate behavioral intervention programs. 

4. Amygdala in the neural network 

It is important to keep in mind that amygdala should not be considered in isolation since it 

is interconnected with other brain regions in a complicated neural network. The amygdala 

has a large number of connections with a wide range of other brain regions (Figure 7). It 

sends excitatory signals to the HPA axis through periventricular neurons as well as to other 

limbic structures (such as the anterior cingulate) and the brain stem. It also receives 

inhibitory signals from the ventral striatum and frontal cortex (Figure 7).  

Due to the complicated network formed by the interactions between the above-mentioned 

structures, aversive influence from early life stress rarely affects the amygdala alone. Many 

other structures are also impacted, with the most common ones including the hippocampus, 

the anterior cingulate cortex, the frontal cortex (especially the ventral medial prefrontal 

cortex, the orbital frontal cortex as well as inferior frontal gyrus), as well as the right anterior 

insula. For example, numerous studies have demonstrated reduced volumes of the 

hippocampus [2,30,33,34,38,48,62,65,66] and anterior cingulate cortex [65,67] as a result of 
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early life stress. Generally speaking, as a consequence of early life adversity, brain regions 

typically involved in emotional response including the amygdala, anterior cingulate cortex, 

ventral medial prefrontal cortex, inferior frontal cortex, orbital frontal cortex, as well as the 

right anterior insula (Figure 8), tend to be hyperactive. In the meantime, brain regions 

typically involved in emotion inhibition and emotion regulation tend to be hypoactive, 

including the dorsal medial prefrontal cortex, the dorsal lateral prefrontal cortex, the 

posterior cingulate cortex, and the precuneus (Figure 8), which results in reduced inhibition 

on the amygdala, eventually leading to behavioral patterns demonstrating anxiety. In 

neuroimaging psychiatric literature, both kinds of brain regions are frequently reported to 

be associated with anxiety-related psychiatric conditions. Thus, it takes both a hyperactive 

amygdala and a hypoactive emotion regulation system to give rise to anxiety-related 

behaviors.  

 

 

 

 

 
 

 
 

 

 

 

 

Figure 7. Projections to and from amygdala nuclei to other regions of the brain. Abbreviations:  Cx: 

cortex, DM: dorsal medial. 
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Figure 8. Association of amygdala with brain regions that are actively involved in emotional processing 

(red) and brain regions that are typically involved in emotion inhibition and regulation (blue), as well as 

other regions involved in emotional responses (purple). Abnormal morphometry and activity of these 

brain regions are frequently reported in stress-related psychiatric conditions. Abbreviations: ACC: 

anterior cingulate cortex, VMPFC: ventral medial prefrontal cortex, IFG: inferior frontal cortex, OFC: 

orbital frontal cortex, R_Ant_Insula: right anterior insula, DMPFC: dorsal medial prefrontal cortex, 

DLPFC: dorsal lateral prefrontal cortex, PCC: posterior cingulate cortex. 

5. Amygdala abnormality and psychiatric disorders 

Amygdala abnormality has been reported in many psychiatric disorders both in pediatric 

and adult patient population. Most of these disorders are associated with anxiety, such as 

general anxiety disorder (GAD), panic disorder, posttraumatic stress disorder (PTSD), 

bipolar disorder and depression. In particular, amygdala abnormality seems to be 

specifically responsible for the anxiety symptoms, although in the context of  comorbid 

psychiatric disorders, such specificity could be confounded by other  comorbid symptoms. 

5.1. Amygdala abnormality in pediatric psychiatric disorders 

Children with anxiety disorders showed an exaggerated amygdala response to fearful faces 

compared to healthy children, whereas depressed children showed a blunted amygdala 

response to these faces [68]. In addition, the magnitude of the amygdala's signal change 

between fearful and neutral faces was positively correlated with the severity of everyday 

anxiety symptoms [68]. Figure 9 demonstrates a recent study about the association between 

childhood maltreatment and amygdala responsiveness to negative facial expressions [69], in 

which the amount of childhood trauma was positively correlated with the degree of 

amygdala activity. Such an effect is frequently reported in literature. 
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Figure 9. Childhood maltreatment (Childhood Trauma Questionnaire [CTQ] scores) is positively 

correlated with right amygdala responsiveness to negative facial expressions among 114 adult subjects 

[69].  The y axis stands for the  among of fMRI signal change in response to negative facial expressions 

compared to the control condition.  

Amygdala morphmetric changes in pediatric psychiatry literature is more complicated than its 

functional changes. Children with general anxiety disorder are reported to have enlarged right 

amygdala volumes [70] (Figure 10). But when anxiety symptoms comorbid with other 

symptoms, the story gets more complicated. For example, depressed children are reported to 

have significant reductions of amygdala volumes compared with healthy subjects [71]. 

Another study found that pediatric depression patients had significantly larger 

amygdala/hippocampal volume ratios than controls [72]; these increased ratios being 

associated with increased severity of anxiety but not increased severity of depression or 

duration of illness [72], suggest that amygdala abnorality was specific to the anxiety 

symptoms. Patients with a history of childhood trauma and current BPD also have smaller 

amygdala volumes (Table 3) [33,34]. Such complexity might arise from the timing issue of 

stress impact on amygdala as discussed in section 3.2, but it may also arise from complicated 

geneitc and epigenetic variations underlying these comorbid psychiatric disorders.  

 

Figure 10. Children with general anxiety disorder (GAD) have an enlarged right amygdala volume 

compared to healthy developing controls [70]. The y axis is the right amygdala volume adjusted for 

intracranial volume. The horizontal lines stand for group means and standard deviations.    



 

The Amygdala – A Discrete Multitasking Manager 314 

5.2. Amygdala abnormality in adult psychiatric disorders 

Amygdala abnoramlity is also frequently reported from studies on adults with stress related 

psychiatric disorders [73], such as depression, anxiety, BPD, PTSD, etc. Amygdala volume is 

generally reduced in adult patients, an effect observed with PTSD [74], depression [63] and 

BPD [33,34]. It is also reported that schizophrenia patients had a left-greater-than-right 

amygdala asymmetry [75]. Exaggerated amygdala responsivity to threat-related stimuli is 

also a prevalent effect associated with various kinds of stress-related disorders, such as 

depression [68,76,77], PTSD [78,79], anxiety [68],etc. A recent study on PTSD using the novel 

resting state fMRI approach reported that amygdala was hyperactive even in resting state, 

i.e., a state without any prescribed cogntive tasks nor any external stimuli (Figure 11), and it 

also had reduced functional connectivity with middle frontal cortex, suggesting that 

amygdala can be constantly hyperactive even without external stimuli, and this is coming 

along with reduced inhibition from the frontal cortex. 

 

Figure 11. Resting state fMRI revealed higher amygdala spontaneous activity (left) with weaker 

functional connectivity with middle frontal cortex (right) in PTSD patients. 

5.3. Amygdala abnormality as a risk factor for adult psychiatric disorders 

In the context of lifelong human develoment, pediatric and adult psychiatric conditions are 

not isolated from each other. Epidemiology studies have shown that early onset depression 

and anxiety are highly predicative of adult psychiatric disorders [80]. An important 

scientific question is to test the following causal link: ealry life adversity  amygdala 

abnormality (and other neural abnormality)  increased risk for developing psychiatric 

disorders. Responding to this question is a very difficult scientific challenge. To begin with, 

it is very hard to identify a causal relationship with emprical experiments involving human 

subjects, because it is difficult to conduct longitudinal studies across the human lifespan. A 

common appraoch is to use the cross-sectional research paradigm instead of the 

longitudinal approach. In order to differentiate the influence of genetic and environmental 

factors on psychiatric conditions, a common approach is to use twin-studies, in which 

researchers study monozygotic and/or dizygotic twins, particularly those reared seperatly 

since brith [81 - 84]. PTSD is a particularly good disease model to address this question, 

because it has a clear onset and an obviously identifiable external stressor (which may still 
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have complicated interation with other factors in real life). A recent twin study on PTSD 

identified vulnerability indicators such as smaller hippocampal volumes, low intellectual 

ability etc, and indicated that higher resting anterior cingulate metabolism could be the 

consequence rather than a pre-existing risk factor of PTSD [85], although another recent 

twin study suggest that hyper-responsitivity at dorsal anterior cingulate cortex could be a 

familial risk factor [86]. However, given the short history of prevelant application of 

neuroimaging approaches in studies of psychiatric disorders, there has not yet been a 

neuroimaging study directly establishing the above hypothesized causal link between early 

life adversity, amygdala abnoramlity and heighted vulnerability to psychiatric disorders in 

adulthood. 

6. The neglected impact of stress from natural environment 

Previous studies on childhood adversity have been focused on social stress particularly 

related to parental relations. However, other factors, such as malnutrition, poverty, crowded 

housing, urban noise, even industrial pollution and harsh natural environment, can also 

constitute stress factors during childhood and have equal, if not more, toxic impact on 

neural substrates including the amygdala, which may in turn have a lifelong influence on 

mental and physical health. These factors can also induce parental abuse by imposing stress 

thus elevating the irritability and irrationality of parents. Nonetheless, these factors have 

been neglected in the literature. In our laboratory, we conducted a series of multi-modal 

MRI studies on the long term impact of chronic hypoxia on young adults who were born 

and raised at high altitudes (2500-4000 meters above sea level) regions [87-93]. Our data did 

not show any effect of hypoxia on the amygdala; however, other regions typically involved 

in emotion processing such as the insula and hippocampus, were shown to have reduced 

gray matter volumes and elevated spontaneous activity among the subjects raised at high 

altitudes compared to control subjects [89]. There is one study that reported smaller 

amygdala and hippocampal volumes among adult individuals (aged 44-48 years) that 

suffered from financial hardship during childhood compared to those who did not [94]. 

These studies suggest a possible impact of factors that constitute childhood adversity on the 

structure and function of amygdala-related neural circuitry that are not directly linked to 

parental relationships. 

7. What can we do? Neural plasticity and interventions 

We hope there are ways to alleviate, if not to reverse, the toxic impact of early life adversity 

on the amygdala, and eventually, on behavioral patterns. More and more recent studies 

suggest that neural plasticity can be induced by social, cognitve and behavioral intervention 

[46]. For example, a study showed that Cognitive Behavioral Therapy (CBT, a common 

behavioral intervention approach particularly effective for depression) administered to 

depressive patients, was able to reduce amygdala activity and enhance prefrontal activity 

[95] (Figure 12). Another study suggested that Mindfulness Based Stress Reduction (MBSR) 

training (commonly known as “meditation”) induced changes in perceived stress level as 
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well as in amygdala gray matter density, while larger decreases in perceived stress were 

associated with larger decreases in amygdala gray matter density [96] (Figure 13). 

 

Figure 12. Cognitive behaivoral therapy on depressed patients induced reduced amygdala activity in 

an emotional task and enhanced prefrontal activity in a cognitive task [95]. Panel (a) represents 

amygdala response in an emotional task (rating the personal relevance of negative words), panel (b) 

represents prefrontal cortex response in a cognitive task (arranging digits in numerical order). These  

experiments were conducted on 9 depressed participants before (pre) and after (post) they had CBT and 

24 control participants. As shown in the response profiles, after depressed patients completed CBT (post 

vs. pre) they had reduced amgydala  response and increased prefrontal response, with the response 

profile closer to that of the control group.   

 

Figure 13. Mindfulness Based Stress Reduction (MBSR) training induced changes in perceived stress 

level as well as in amygdala gray matter density. Larger decreases in perceived stress were associated 

with larger decreases in amygdala gray matter density [96].  
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Other studies indicated that physical exercise was able to modulate aging related neural 

atrophy [97]. A significant effect was observed at the medial temporal lobe (Figure 14), 

but there was also a remarkable trend in the amygdala, the volume of which had a 

significant negative correlation with age in the low-exercise group (r=-0.62, p<0.001) but 

no significant correlation in the high exercise group (r=-0.21). It is possible that exercise 

might also help alleviate stress-induced amygdala atrophy, which is a good topic for 

future study. 

In summary, childhood adversity can cause structural and functional changes of the 

amygdala, which increase the risk of developing psychiatric disorders in adulthood. 

Nonetheless, some behavioral intervention strategies (Figure 15) might help to promote 

neural plasticity, thus alleviating the neural toxicity and, thereby, reducing the risk to 

develop these disorders lately. 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 14. Exercise modulates aging related neural atrophy [97]. There was a significant negative 

correlation between the medial temporal lobe volume in the low exercise group (r = -0.65, p < 0.001), 

which demonstrates aging related atrophy, but such effect was absent in the high exercise group (r = -

0.24). Such effect was also observed in the amygdala.  
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Figure 15. Behavioral intervention can induce neural platicity to protect the toxicity of early life 

adveristy on neural substracts such as the amygdala, thus reducing the risk of developing psychiatric 

disorders in later life. There are many easily implementable behavioral interventions, such as prosocial 

activity [98], meditation [99] or exercise [100], which have been suggested to be helpful in neuroscience 

literature [95 - 97].  
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