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1. Introduction 

Irritable bowel syndrome (IBS) is a functional digestive disorder characterized by abdominal 

pain, bloating and altered bowel habits without any organic cause (Drossman 1999b; Mulak 

and Bonaz 2004). Patients with IBS exhibit enhanced perception of visceral sensation to 

colonic distension which is associated with hypervigilance at the origin of visceral 

hypersensitivity (VHS) (Ritchie 1973; Bradette, et al. 1994; Elsenbruch, et al. 2010). VHS is a 

clinical marker of IBS considered to play a major role in its pathophysiology. The exact 

cause of VHS is unknown but a number of mechanisms are evoked as represented by 

neuroplastic changes in primary afferent terminals (peripheral sensitization) due to 

peripheral inflammation or infection of the gut (i.e. post-infectious IBS) but also in the spinal 

cord (central sensitization) and in the brain (supraspinal pain modulation) or in descending 

pathways that modulate spinal nociceptive transmission (Bonaz 2003; Mulak and Bonaz 

2004). In addition, stress is able to increase visceral sensitivity either at the central and/or 

peripheral level (Mulak and Bonaz 2004; Larauche, et al. 2011). 

There is a bidirectional communication between the central nervous system (CNS) and the 

gastrointestinal (GI) tract, i.e. the brain-gut axis, such as signals from the brain can modify 

the motor, sensory, secretory, and immune functions of the GI tract and, conversely, visceral 

messages from the GI tract can influence brain functions in a top-down and bottom-up 

relation. Numerous data argue for a dysfunction of this brain-gut axis in the 

pathophysiology of IBS (Mulak and Bonaz 2004; Bonaz and Sabate 2009; Tillisch, et al. 2011).  

Stress, through the corticotrophin-releasing factor (CRF) system (CRF, urocortins and their 

receptors CRF1,2), is a key factor involved in the pathophysiology of IBS. Indeed, stress is 
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able to modify visceral sensitivity as well as GI motility, permeability, intestinal microbiota, 

and immunity of the GI tract, all mechanisms that are involved in the pathophysiology of 

IBS. In addition, stress is able to modulate the hypothalamic pituitary adrenal (HPA) axis 

and the autonomic nervous system (ANS) which is the link between the gut and the CNS 

and an imbalance of the ANS is observed in IBS patients (Pellissier, et al. 2010a; Mazurak, et 

al. 2012). The main brain areas involved in stress are the prefrontal cortex, the limbic system 

(e.g. the hippocampus and the amygdala) and the hypothalamus. Relations between the 

prefrontal cortex and the limbic system are important in the management of stress response.  

The amygdala is a key structure involved in the stress effect on the GI tract. Indeed, the 

amygdala is involved in brain-gut and gut-brain interactions. i) The amygdala receives 

informations from the gut through the parabrachial (PB) nucleus, a sensitive nucleus, and 

the dorsal vagal complex. The latter, composed of the nucleus tractus solitaries (NTS), is the 

main entrance of the vagus nerve (vagal afferents) and sends projections to the amygdala. 

The amygdala is therefore a relay of somatic and visceral nociceptive and non-nociceptive 

afferents through ascending inputs from the spinal cord and the NTS to the insula which is 

the main cortical area involved in sensitive information processing. ii) The amygdala 

controls the ANS which is a key element in the neuro-endocrine and autonomic responses to 

stress of the organism to maintain homeostasis. On the one hand, the amygdala projects to 

the dorsal motor nucleus of the vagus nerve (DMNV) at the origin of the parasympathetic 

branch of the vagus nerve (vagal efferents); this makes the amygdala able to modulate the 

functioning of the parasympathetic system through the vagus nerve. On the other hand, the 

amygdala projects to the intermediolateral column cells of the spinal cord, at the origin of 

the sympathetic nerves, and locus coeruleus (LC) in the pons. It makes the amygdala able to 

modulate the sympathetic nervous system, the other branch of the ANS, and thus to 

modulate the sympatho-vagal balance, a marker of brain-gut interactions (Mazurak, et al. 

2012). iii) The amygdala controls the HPA axis activation either directly or indirectly via the 

hippocampus (i.e. inhibition), known to inhibit the HPA axis, and thus to decrease stress 

response. iv) The amygdala is also involved in childhood psycho-traumatic experiences 

which are key elements in the pathophysiology of IBS. Indeed, early life stress, as 

represented by sexual abuse in infancy or adolescence, is present in 30 to 50% of IBS patients 

(Chitkara, et al. 2008; Bradford, et al. 2012). The amygdala is particularly vulnerable to 

stressors in early life. The amygdala contains all the elements of the CRFergic system (e.g. 

CRF, Ucns, CRF1,2) and early life stress induces persistent changes of the CRFergic system 

in the amygdala leading to an increased stress sensitivity in adulthood. This has been well 

modelled in the maternally separated (MS) rat model where morphological modifications of 

the amygdala (e.g. enlarged amygdala volumes and increases in CRF-containing neurons) 

are induced. v) The amygdala (central nucleus; CeA) and the bed nucleus of the stria 

terminalis (BNST) are highly interconnected with limbic regions (Bienkowski and Rinaman 

2012). These two regions are frequently referred as a “central extended amygdala”, which 

shares similar connectivity with other brain regions (e.g. hypothalamus and brainstem) that 

coordinate behavioural and physiological responses to interoceptive and exteroceptive 
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stressors. It makes the amygdala able to link pain and emotional processings. Furthermore, 

the amygdala is sensitive to stress-induced increase in glucocorticoids since the existence of 

elevated glucocorticoid level in the amygdala is associated with anxiety-like behavior and 

visceral hypersensitivity (Myers and Greenwood-Van Meerveld 2007b; 2010). The amygdala 

is therefore at the cross-road of anxiety, stress, and visceral sensitivity. The role of the 

amygdala in IBS is therefore crucial since IBS patients reported higher score of state and trait 

anxiety than healthy volunteers or in inflammatory bowel disease (IBD) patients in 

remission with IBS symptoms (Drossman 1999b; Pellissier, et al. 2010a). vi) The prefrontal 

cortex (PFC), and particularly its medial part (mPFC), is able to modulate the functioning of 

the amygdala. Indeed, the mPFC involvement in fear extinction process (Sotres-Bayon, et al. 

2004; Quirk, et al. 2006a) has been shown to be indirectly mediated by its inhibitory action 

on the amygdala output (Vidal-Gonzalez, et al. 2006). vii) Brain imaging techniques (fMRI, 

PET) have contributed to a better understanding of the pathophysiology of IBS. During 

rectal distention, an activation of most of the brain structures referenced above, and in 

particular the amygdala, have been observed in healthy volunteers (Baciu, et al. 1999) while 

an abnormal brain processing (i.e. abnormal loci of cerebral activation) of pain was observed 

in IBS patients (Bonaz, et al. 2002; Agostini, et al. 2011). In addition, brain structural changes 

of the HPA axis and limbic structures have been recently reported in IBS patients 

(Blankstein, et al. 2010; Seminowicz, et al. 2010). 

At the present time, the only medical treatment of IBS is directed at GI motor/sensory or 

CNS processing. Unfortunately, this treatment is poorly effective and often associated with 

high placebo effects, thus revealing the importance of the overlap between pain and placebo 

neurobiological pathways. The therapeutic approach is essentially focused on the symptoms 

as represented by anti-spasmodics for pain, laxatives or bulking agents, 5-HT4 agonists and 

guanylate cyclase-C agonist for intestinal transit regulation and anti-depressives/anxiolytics 

drugs. Placebo has a  40% efficacy in IBS patients (Patel, et al. 2005) and pronounced 

placebo analgesia is coupled with  prominent changes of brain activity in visceral pain 

matrix, as represented by the amygdala (Lu, et al. 2010). Non-pharmacological therapies are 

of special interest. Cognitive behavioral therapy is associated with reduced limbic activity 

(e.g. reduced neural activity in the amygdala), GI symptoms, and anxiety (Lackner, et al. 

2006). Hypnosis has shown efficacy in IBS (Whorwell, et al. 1984) and is known to modify 

the activity of the amygdala (Drossman 1999b). All methods focused on stress reduction 

such as mindfulness-based stress reduction should reduce pain perception (Drossman 

1999a). Repetitive transcranial magnetic stimulation of the PFC that decreases the activity of 

the amygdala (Baeken, et al. 2010) would also be of interest in IBS patients. In this context, 

vagal nerve stimulation, used for the treatment of refractory epilepsy and depression, 

should be of interest in the treatment of IBS by modulating the amygdala. Indeed, an 

inhibitory action of vagal nerve stimulation on amygdala-mPFC neurotransmission, 

probably due to the deactivation of the amygdala, has been described under VNS (Kraus, et 

al. 2007). Consequently, new methods aimed at modifying the activity of the amygdala 

represent a therapeutic challenge in the management of IBS patients. 
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2. Irritable bowel syndrome 

2.1. Definition-background 

The irritable bowel syndrome (IBS) is the most common disorder encountered by 

gastroenterologists. IBS is defined as “a functional bowel disorder in which abdominal pain 

is associated with defecation or a change in bowel habit with features of disordered 

defecation and distension”(Drossman 1999b). Classically the syndrome is considered as 

functional since biological as well as morphological (e.g. colonoscopy) investigations are not 

able to evidence any detectable organic lesions or anatomical abnormalities (colonic polyps 

or diverticulosis…) relative to symptomatology of the affected patients. The syndrome has 

been defined according to Rome III criteria (Longstreth, et al. 2006). There is a female 

predominance in a ratio of 2:1 (Drossman, et al. 1993). IBS affects up to 10–15% of the 

population with an estimated 1.7 billion dollars in annual direct cost (Talley, et al. 1991). 

Generally patients suffer from the absence of a real diagnostic and from the consideration 

that they have a psychosomatic disease. Pain is perceived by patients as the most distressing 

symptom and constitutes their major reason for consulting a physician (Sandler, et al. 1984). 

Extra-intestinal manifestations are also frequently described by the patients (e.g. headache, 

low back pain, chronic fatigue, interstitial cystitis…) (Whitehead, et al. 2002).  

2.2. Pathophysiology 

The pathophysiology of IBS is multifactorial. Altered bowel motility, sensory disorders, 

psychosocial factors are evoked (Drossman, et al. 1999c; Gaynes and Drossman 1999; Bonaz 

and Sabate 2009). Local features have also been considered as important. The role of food is 

often evoked by patients and a number of them are intolerant to lactose, fructose, gluten, 

polyols (Dapoigny, et al. 2004; Morcos, et al. 2009) with an enhancement of their symptoms 

following an eviction of such foods from diet. There is also good evidence for a role of the GI 

microbiota in its pathogenesis (Parkes, et al. 2008). Neuroimmune interactions are also 

involved, based on the development of IBS after infectious gastroenteritis (i.e. post-

infectious IBS) (Gwee 2001) or in patients with IBD in clinical remission (i.e. post-

inflammatory IBS) (Long and Drossman 2010). A low grade inflammation has been 

observed in IBS patients with a predominance of mastocytes in close contact with neural 

fibers explaining why IBS is assimilated to an IBD by some authors (Ford and Talley 2011). 

Sensory disorders, and especially VHS, have also been evoked in the pathophysiology of 

IBS. VHS, represented by the increased sensation of pain when the pelvic colon is distended 

with an inflated rectal balloon, is a clinical marker of IBS which is observed in most of IBS 

patients. The exact location of the abnormal processing of visceral pain is unknown, and can 

have a peripheral origin, i.e. in the digestive tract by altered peripheral functioning of 

visceral afferents (i.e. bottom-up model), a spinal origin, e.g. spinal hyperalgesia by a defect 

of the gate control, or a defect of descending inhibitory controls or an altered central 

processing of afferent information from the gut, i.e. top-down model or a combination of all 

these hypotheses. IBS patients have an alteration in the spinal modulation of nociceptive 
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process by the inhibitory descending pain modulation systems (Wilder-Smith, et al. 2004) in 

which the amygdala could be involved. 

Psychosocial factors are often found in IBS patients. Among 20 to 50% of IBS patients have 

psychiatric disorders, such as major depression, anxiety, and somatoform disorders (Garakani, 

et al. 2003). Low dose of tricyclic antidepressants have shown efficacy in ameliorating the 

symptoms in patients (Rahimi, et al. 2009). IBS is also frequently associated with fibromyalgia 

in 30% to 70% of the cases. This syndrome is characterized by somatic hyperalgesia, the 

physiopathology of which is close to IBS (Mathieu 2009). IBS and fibromyalgia are classified by 

some authors as central sensitization syndromes (Woolf 2011). A majority of IBS patients 

associate stressful life events with initiation or exacerbation of their symptoms (Whitehead, et 

al. 1992) and stress is able to act at all levels of the physiopathology of IBS (see below). 

Globally, a concept has emerged that IBS is the result of a dysfunction of the brain-gut 

interplay, as conceptualized in the brain-gut axis. The ANS is, with the HPA axis, the link 

between the CNS and the gut and an autonomic dysfunction is observed in IBS patients which 

could be of top-down or bottom-up origin, as observed for VHS. 

3. The brain-gut axis 

3.1. Definition 

The brain talks to the gut and conversely through a bidirectional communication under 

normal conditions and especially during perturbations of homeostasis. The CNS and the gut 

communicate through the ANS and the circumventricular organs and the gut contains a 

“little brain” as represented by the enteric nervous system which is a target of the ANS. 

3.2. The enteric nervous system 

The enteric nervous system can control functions of the intestine even when it is completely 

separated from the CNS (Bayliss and Starling 1899). The enteric nervous system contains three 

categories of neurons, identified as sensory, associative, and motor neurons (both excitatory 

and inhibitory) which are the final common pathways for the control of signals to the 

musculature, submucosa, mucosa, and vasculature, both blood and lymphatic. The enteric 

nervous system contains as many neurons as in the spinal cord (400–600 million) and confers 

an autonomy to the digestive tract such as the enteric nervous system can function 

independently of the CNS for the programming of motility and secretion (Furness 2012). Some 

neuropeptides and receptors are present in both the enteric nervous system and the CNS. The 

function of the GI tract is modulated by both the enteric nervous system and the ANS.  

3.3. The autonomic nervous system (The afferent system) 

The ANS is composed of the sympathetic (i.e. the splanchnic nerves) and parasympathetic 

nervous system (i.e. the vagus nerves and the sacral parasympathetic nucleus represented 

by the pelvic nerves) which are mixed systems.  
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The vagus nerve contains essentially 80-90% of afferent fibers vehiculating informations 

from the abdominal organs to the brain (Altschuler, et al. 1989) with the exception of the 

pelvic viscera for which informations are vehiculated to S2-S4 levels of the spinal cord by 

the pelvic nerves with central projections similar to other spinal visceral afferents. The vagus 

nerve carries mainly mechanoreceptor and chemosensory informations from the gut. If 

classically vagal afferents do not encode painful stimuli, they are able to modulate 

nociceptive processing in the spinal cord and the brain (Randich and Gebhart 1992). 

The sympathetic nerves contain 50% afferent fibers. Visceral afferents that enter via spinal 

nerves (i.e; splanchnic and pelvic nerves), at thoracic 5 - lumbar 2 segments of the spinal 

cord, carry information concerning temperature as well as nociceptive visceral inputs 

related to mechanical, chemical, or thermal stimulation through C and Aδ fibers, which will 

reach conscious perception.  

The afferent informations of the ANS reach the CNS at the spinal cord level, for the 

splanchnic nerves, the nucleus tractus solitarius (NTS) level in the dorsal medulla for the 

vagus nerve, and the sacral parasympathetic (S2-S4) level for the pelvic nerves. At the level 

of the spinal cord, sympathetic afferents are integrated at the level of laminae I, II outer, V, 

VII (indirectly) and X. Then the information is sent to the upper level through the spino-

thalamic and spino-reticular tracts, the dorsal column with projection to the thalamus 

(ventral posterolateral nucleus, intralaminar nucleus) and the cerebral cortex (insular, 

anterior-cingulate, dorsolateral PFC…). Neurons from laminae I, IV, and V responding to 

visceral stimuli also receive nociceptive cutaneous inputs (Foreman 1999). 

At the level of the NTS, vagal afferents are integrated in subnuclei according to visceral 

somatotopy (e.g. medial, commissural, gelatinosus) (Altschuler, et al. 1993) and then 

projections to the PB nucleus, in the pons, according to a viscerotopic organization, which in 

turn projects to numerous structures in the brainstem, hypothalamus, basal forebrain, 

thalamus, and cerebral cortex (Fulwiler and Saper 1984). In the cerebral cortex, the insular 

cortex acts as a visceral (e.g. GI) cortex through a NTS-PB-thalamo-cortical pathway 

according to a viscerotopic map. The insular cortex is connected with the limbic system (bed 

nucleus of the stria terminalis and CeA) and with the lateral frontal cortical system (Saper 

1982). The NTS also sends projections to the ventrolateral medulla, the hypothalamus, and 

the amygdala/bed nucleus of the stria terminalis contributing to visceral perception. The 

NTS receives convergent afferents from both the spinal cord (i.e. laminae I, V, VII, and X) 

and the vagus nerve; some of these afferents probably being at the origin of autonomic 

reflex responses. This convergence is also observed at the level of the PB and ventrolateral 

medulla (Saper 2002) thus arguing for a relationship of pain with visceral sensations. 

At the forebrain level, the spinal visceral sensory system constitutes a postero-lateral 

continuation of the cranial nerve to the visceral sensory thalamus and cortex (Saper 2000). 

There is also a spino-PB pathway since about 80% of lamina I spinothalamic axons send 

collaterals to the PB (Hylden, et al. 1989) and a spino–parabrachio–amygdaloid pain 

pathway which implicates the transmission of nociceptive information to the amygdala. 

Spinal nociceptive neurons in laminae I, IV, V, VII, and X directly innervate the 
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hypothalamus and medial prefrontal cortex (Cliffer, et al. 1991; Burstein 1996). The messages 

coming from the gut are integrated in the central autonomic network (see below), which, in 

turn, adapts the response of the digestive tract through the efferent ANS through reflex 

loops which are essentially unconscious or become conscious in pathological conditions 

such as VHS observed in IBS. There is also descending pathways that control somatic as 

well as visceral pain by modulating visceral informations at the spinal cord level. These 

pathways are both inhibitory, thus producing analgesia as represented by projections from 

the periaqueductal gray to the rostroventral medulla, and LC descending fibers to the spinal 

cord as well as facilitatory producing hyperalgesia (rostroventral medulla and OFF and ON 

cells) (Tsuruoka, et al. 2010). 

3.4. The circumventricular organs 

The circumventricular organs are highly vascularized structures with fenestrated capillaries 

located around the 3rd and 4th ventricles. They are characterized by the lack of a blood–brain 

barrier and represent points of communication between the blood, the brain, and the 

cerebrospinal fluid (Benarroch 2011). They are represented by the subfornical organ, median 

eminence, pineal gland, area postrema, organum vasculosum of the lamina terminalis. The 

circumventricular organs are sensitive to the vascular content (e.g. circulating interleukins, 

electrolytes). They activate dendritic cells releasing prostaglandins acting on PGE2 receptor 

of neurons located closely to these circumventricular organs. These neurons send 

projections to the hypothalamus, activating the HPA axis, and to the central autonomic 

network represented by the DMNV and the sympathetic pre-ganglionar neurons of the 

intermediolateralis column. The circumventricular organs are consequently involved in the 

central integration of a peripheral message to maintain homeosthasis. For example, they are 

involved in sodium and water balance, cardiovascular regulation, metabolic and energetic 

balance, immune function, regulation of body temperature, vomiting, reproduction. During 

an immune challenge represented by systemic inflammation, cytokines released in the 

circulation talk to the brain through two routes i.e. neural (vagal afferents) and humoral 

(circumventricular organs) to activate the HPA axis. 

3.5. The central autonomic nervous system 

The central autonomic nervous system integrates and modulates afferent informations from 

the gut and sends reversible inputs to the gut. In the CNS, visceral informations are 

integrated in the central autonomic nervous system via brain regions involved in the 

autonomic, endocrine, motor, and behavioral responses (Saper 2002). The brain network can 

be roughly divided into executive structures, mainly hypothalamic, coordinating structures, 

mainly included in the limbic system, and high level control structures, mainly the frontal 

cortex. 

The hypothalamus e.g. paraventricular nucleus (PVN), lateral hypothalamus, arcuate 

nucleus and adjacent retrochiasmatic area innervate the parasympathetic and sympathetic 

preganglionic neurons. The principal neuromediators are oxytocin and vasopressin 
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(Hallbeck, et al. 2001). Through the release of CRF, the neuromediator of stress, the PVN is 

involved in the HPA axis response to stress. The limbic system is represented by the 

amygdala and its nuclei, the bed nucleus of the stria terminalis, considered as the extended 

amygdala, the septum and the hippocampus. The limbic system modulates the endocrine 

system and the ANS, two major components of the brain-gut axis. Classically, the amygdala 

is involved in the integration of emotions and the emotional conditioning which is 

represented by the association of a conditioned stimulus (i.e. a sound) with an 

unconditioned stimulus (the reinforcement) (Henke, et al. 1991; Benarroch 2006; LeDoux 

2007). The amygdala receives afferents from the NTS, PB nucleus, frontal cortex, and LC and 

sends projection to the ANS, the frontal cortex and the hippocampus. The amygdala inhibits 

the DMNV, stimulates the sympathetic nervous system and the stress response through the 

HPA axis. The amygdala is a CRF-containing nucleus. 

The prefrontal, insular, and anterior cingulate cortices are involved in the integration of 

visceral informations, attention, emotions and in the regulation of humor. The anterior 

cingulate cortex is divided in a cognitive dorsal part and an affective ventral part i.e. the 

perigenual part which has been frequently activated in brain imaging by numerous emotional 

stimuli. Most of these structures (ANS, HPA axis, limbic system, endogenous pathways that 

modulate pain and discomfort…) are part of the emotional motor system that mediates the 

effect of emotional states on the GI function, modulates gut functions and communicates 

emotional changes via the ANS to the gut. The threshold for visceral perception is dependent 

on the individual’s emotional and cognitive state (Mayer 2000; Mayer 2011). 

Visceral as well as stressful informations activate the LC, a nucleus belonging to central 

noradrenergic system localized in the pons. The LC is the largest group of noradrenergic 

neurones. It is involved in emotional arousal, autonomic, and behavioural responses to stress 

and attention-related processes through its dense projections to most areas of the cerebral 

cortex and alertness-modulating nuclei (e.g. majority of the cerebral cortex, cholinergic 

neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic 

neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and 

laterodorsal tegmental nucleus). The LC also exerts an indirect action on autonomic activity 

via projections to the PVN and to the cerebral cortex and amygdala, structures which are 

known to influence the activity of premotor sympathetic neurones in the PVN. LC activation 

leads to anxiety through an activation of the amygdala (Tasan, et al. 2010). 

4. Stress and the gut 

4.1. Background 

Stress is defined as the response of the organism to a solicitation of the challenging 

environment. The body engages a “fight or flight” response when exposed to an acute 

challenge with a sympathetic activation leading to an increase of heart rate and respiration, 

increased arousal, alertness, and inhibition of acutely non adaptive vegetative functions 

(feeding, digestion, growth and reproduction). The time course of the reaction corresponds 
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to the general syndrome of adaptation defined by Hans Selye in 1950 (Selye 1950). The 

reaction of stress is physiological but may become pathological following an unbalance 

between the capacities of adaptation and the requirement of the environment, thus leading 

to functional, metabolic, and even lesional disorders. 

4.2. The CRFergic system 

CRF is a 41-amino acid peptide derived from a 191-amino acid preprohormone. CRF is 

secreted by the paraventricular nucleus (PVN) of the hypothalamus in response to stress 

(Vale et al. in 1981) as well as its related peptides the urocortines (Ucn) i.e. Ucn 1, Ucn 2 (also 

known as stresscopin-related peptide), and Ucn 3 (also known as stresscopin). CRF and the 

Ucns exert their biological actions on target cells through activation of two 7–

transmembrane-domain G protein–coupled receptors, known as CRF receptor type 1 (CRF1) 

and CRF receptor type 2 (CRF2) which are encoded by 2 distinct genes [for review (Gravanis 

and Margioris 2005)]. CRF and Ucn 1 have equal affinity for the CRF1 receptor, although 

Ucn 1 is 40 times more potent than CRF in binding CRF2. In contrast, Ucns 2 and 3 bind 

selectively to CRF2. The population of CRF synthetizing neurons is predominantly 

expressed in the parvocellular part of the PVN of the hypothalamus and projects via the 

external zone of the median eminence to the anterior pituitary. In addition to its role as a 

hypothalamic hypophysiotropic hormone, CRF acts as a neurotransmitter in several brain 

areas. CRF has predominantly excitatory actions on neurons in the hippocampus, cortex, 

LC, and hypothalamic nuclei (Siggins, et al. 1985). CRF1 mediates anxiety-like behaviors 

whereas CRF2 mediates anxiolytic effects in the defensive withdrawal test (Heinrichs, et al. 

1997). Competitive CRF receptor antagonists have been developed to determine the 

functions of CRF receptors under basal and stress conditions (Bonaz and Tache 1994b). The 

CRF system plays a critical role in coordinating the autonomic, endocrine, and behavioural 

responses to stress (Dunn and Berridge 1990).  

The effect of stress on the GI tract is now well characterized. Stress induces modifications of 

motility, secretion, visceral sensitivity, local inflammatory responses (Delvaux 1999; 

Mawdsley and Rampton 2006; Tache and Bonaz 2007) through a central and/or peripheral 

action through CRF1,2 related receptors. Alterations of this complex system in humans are 

linked to a variety of anxiety-related psychiatric disorders and stress-sensitive pain 

syndromes, including IBS. Dysfunction in the HPA axis regulation attributable to 

overactivation of CRF/CRF1 signaling in response to chronic stress has been implicated in 

the pathophysiology of IBS symptoms (Chang, et al. 2009). 

4.3. Stress effect on GI functions 

4.3.1. Motility and secretion 

Stress is known to decrease gastric emptying, lengthen small bowel motility and increase 

colonic motility (Tache and Bonaz 2007). The effects of stress on gut function are mediated by 

the ANS represented by the sympathetic, vagal and pelvic parasympathetic innervation of the 
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enteric nervous system (Grundy 2006). At the central level, stress inhibits the parasympathetic 

nervous system and activates the sympathetic nervous system through the effect of PVN 

projections on the DMNV and intermediolateral column cells of the spinal cord. 

CRF signaling is a key component in the alterations of gut motor function in response to 

stress in both the brain and the gut. The CRF/CRF1 signalling pathway is involved in stress-

induced anxiety/depression (Holsboer and Ising 2008) and alterations of colonic motor and 

visceral pain while both central and peripheral CRF2 receptor activation may exert a 

counteracting influence (Tache, et al. 2005; Million, et al. 2006). At the level of the GI tract, 

stress delays gastric emptying through CRF2 while increasing colonic motility and secretion 

through CRF1 (Tache and Bonaz 2007). In the small bowel, CRF-like peptides stimulate the 

contractile activity of the duodenum through CRF1 receptor while inhibiting phasic 

contractions of the ileum through CRF2 receptor (Porcher, et al. 2005). 

Stress also induces an activation of the sacral parasympathetic nucleus through the 

projections of the Barrington nucleus through CRF activation thus stimulating recto-colonic 

motility (Tache and Bonaz 2007). Numerous data have established the involvement of 

peripheral CRF signalling in the modulation of secretory function under stress conditions 

via activation of both CRF1 and CRF2 receptors, activation of cholinergic enteric neurons, 

mast cells and possibly serotonergic pathways (Larauche, et al. 2009). 

4.3.2. Intestinal permeability 

An increase of intestinal permeability is observed in the colon of IBS patients, associated 

with visceral or somatic hypersensitivity (Zhou and Verne 2011). Stress is able to disrupt the 

intestinal epithelial barrier thus increasing the penetration of luminal antigens into the 

lamina propria, leading to nociceptors sensitization and favoring the development of 

visceral hypersensitivity (Ait-Belgnaoui, et al. 2005). This increase of intestinal permeability 

is due to an activation of peripheral CRF signaling involving both CRF2 and CRF1 (Buckinx, 

et al. 2011) as well as mast cell activation (Santos, et al. 2001). 

4.4. Stress effect on intestinal inflammation 

Stress is able to increase intestinal inflammation by increasing intestinal permeability (see 

above) thus activating mast cells and visceral afferents in a local loop. Stress favours 

intestinal inflammation by stimulating the sympathetic nervous system and inhibiting the 

vagus nerve thus decreasing the cholinergic anti-inflammatory pathway. Stress, through its 

immune-suppressive function also favours inflammation (Ghia, et al. 2006; Mawdsley, et al. 

2006; Bonaz 2010).  

4.5. Stress effect on the microbiota 

Bacteria in the gut (400–1,000 different bacterial species) have an important role in the 

immune response, including inflammation (Lee and Mazmanian 2010). Stress is able to 
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modify the intestinal microbiota (Bailey, et al. 2010). Alteration of the microbiota favors 

translocation of bacteria from the intestinal lumen to the interior of the body where they can 

stimulate the immune system (Clarke, et al. 2010). This can in turn have significant impact 

on the host and affect behavior, visceral sensitivity and inflammatory susceptibility (Collins 

and Bercik 2009).  

4.6. Stress effect on visceral sensitivity 

Stress is known to increase visceral sensitivity [(Larauche, et al. 2012) for review]. Either 

acting at the central and/or peripheral (e.g. digestive) level, stress is able to increase visceral 

perception and emotional response to visceral events by a disturbance of the brain-gut axis 

at its different levels, central, gut and the ANS. Genetic model of depression or anxiety, such 

as the high-anxiety Wistar-Kyoto (WKY) rats or Flinders Sensitive Line rats have shown 

increased sensitivity to colorectal distension (Overstreet and Djuric 2001). In the same way 

genetic models deleting CRF1 exhibit a decrease in colonic sensitivity to colonic distension 

(Trimble, et al. 2007) while models overexpressing CRF1 exhibit enhanced response to 

colonic distension (Million, et al. 2007). These data argue for the filiation stress-anxiety-

inflammation and visceral hypersensitivity. 

Again, the CRF signalling, at both the central and peripheral level, is a key element involved 

in stress-induced visceral hypersensitivity. Recent data argue for an equally important 

contribution of the peripheral CRF/CRF1 signalling pathway locally expressed in the gut to 

the GI stress response (Larauche, et al. 2009). At the peripheral level, mast cells 

degranulation observed in the colon following stress and peripheral administration of CRF 

(Wallon, et al. 2008) induces visceral hypersensitivity via the release of mediators 

(histamine, tryptase, prostaglandin E2, nerve growth factor) that can stimulate or sensitize 

sensory afferents (van den Wijngaard, et al. 2009; 2010). Intravenous administration of CRF 

increases GI motility and visceral pain sensitivity in IBS patients compared with healthy 

controls, whereas administration of a non-selective CRF receptor antagonist improved these 

responses (Million, et al. 2005; Tache, et al. 2005; Tsukamoto, et al. 2006). 

4.7. Gut pathologies are engineered by stress 

The GI tract is a sensitive target to stress. Numerous data argue for a role of stress in the 

pathophysiology of IBS. Patients with IBS report more stressful life events than medical 

comparison groups or healthy subjects (Drossman, et al. 1996; 2000; Drossman 2011). Stress 

is strongly associated with symptom onset and symptom severity in IBS patients. Illness 

experience, health care-seeking behavior, and treatment outcome are adversely affected by 

stressful life events, chronic social stress, anxiety disorders, maladaptive coping style. A 

history of emotional, sexual, or physical abuse is often found in IBS patients [(Chitkara, et al. 

2008) for review]. For example, there is a significantly higher prevalence (i.e. 44%) of sexual 

or physical abuse in patients with functional GI disorders than in controls with organic GI 

disorders (Drossman, et al. 1990). Psychiatric comorbidity, especially major depression, 

anxiety, and somatoform disorders, occur in 20 to 50% of IBS patients (Garakani, et al. 2003) 
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and more likely precede the onset of the GI symptoms, thus suggesting a role for psychiatric 

disorders in functional GI disorder development (Sykes, et al. 2003). 

Functional brain imaging studies have shown that there is a major influence of cognitive-

affective processes on GI sensations and its CNS correlates in health and functional digestive 

disorders as IBS (Mayer, et al. 2006; Van Oudenhove, et al. 2007). Cognitive-affective 

processes including arousal, attention and negative emotions strongly influence visceral 

pain perception through modulation of its neural correlates (Mayer 2011). Feeling emotions 

requires the participation of brain regions, such as the somatosensory cortices and the upper 

brainstem nuclei that are involved in the mapping and/or regulation of internal organism 

states (Damasio, et al. 2000). This has led to the biopsychosocial concept of IBS (Drossman 

1996b). These data are in agreement with the role of hypervigilance in the visceral 

hypersensitivity observed in IBS patients (Naliboff, et al. 2008). Spence et al. (Spence and 

Moss-Morris 2007) have characterized predictors of post-infectious IBS such as perceived 

stress, anxiety, somatisation and negative illness beliefs at the time of infection in favor of a 

cognitive-behavioural model of IBS. The importance of psychosocial factors and 

somatisation compared to gastric sensorimotor function is most pronounced in 

hypersensitive patients with functional dyspepsia, another functional GI disorder (Van 

Oudenhove, et al. 2008). 

5. Gut and emotional memories 

Early life trauma (neglect, abuse, loss of caregiver or life threatening situation) increases 

susceptibility to develop later affective disorders such as depression, anxiety, and is a key 

factor in the development of IBS (Bradford, et al. 2012). Traumatic events, such as war, 

environmental disasters, physical abuse or a bad accident in adulthood can induce post-

traumatic stress disorder (PTSD) with increased prevalence of GI symptoms, such as IBS 

(Cohen, et al. 2006). 

The role of stress sensitization is also reproduced in preclinical studies. Adults rats 

previously subjected to neonatal maternal separation (MS) exhibit visceral hypersensitivity 

to colorectal distension in basal conditions (Ren, et al. 2007). This visceral hypersensitivity is 

exacerbated in acute stress (e.g. water avoidance stress: WAS; Avoidance to water for 1 h by 

standing on a small platform; Bonaz & Taché 1994b) conditions (Coutinho, et al. 2002). 

Chronic exposure to repeated WAS is used to study visceral hypersensitivity and is very 

close to clinical conditions. However, habituation of the CRFergic system is observed in 

chronic conditions (Bonaz and Rivest 1998) and may induce analgesia. It seems that these 

conflicting data are influenced by the basal state conditions of the animals before applying 

the repeated stressor (surgery and single housing) (Larauche, et al. 2010).  

6. The amygdala in IBS pathophysiology 

The amygadala is a key element in the pathogeny of IBS. 
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6.1. Anatomical and functional basis 

6.1.1. Amygdala structures 

The amygdala is divided into a primitive group of nuclei associated with the olfactory 

system (central, medial and cortical nuclei, and nucleus of the lateral olfactory tract), and a 

phylogenetically new group of nuclei (lateral and basal) (Knapska, et al. 2007). The lateral 

(LA), basolateral (BLA), and central nuclei (CeA) are important for sensory processing 

(Neugebauer 2006; LeDoux 2007). The amygdala is part of the central autonomic nervous 

system that is involved in the brain-gut axis. The amygdala is a key element in 

emotional/affective behavior (LeDoux 2007), including the emotional responses to pain such 

as anxiety and fear of pain (Gauriau and Bernard 2002; Neugebauer, et al. 2004; Neugebauer 

2006) as well as in the reciprocal relationship between pain and affective state (Meagher, et 

al. 2001; Rhudy and Meagher 2003). Affective content is attached to sensory information 

through associative processing in the LA–BLA circuitry and is then transmitted to the CeA 

which is the output nucleus for major amygdala functions (Maren 2005; Phelps and LeDoux 

2005). The CeA serves to attach emotional significance to afferent nociceptive transmission 

and coordinates appropriate autonomic, affective and motor behavioral responses through 

its outputs to the hypothalamus, cortex and brainstem (Neugebauer, et al. 2004).  

6.1.2. Amygdala inputs 

The CeA receives numerous sensory informations from descending cortical, thalamic 

(perigeniculate, paraventricular) and brainstem inputs (Whalen and Kapp 1991), as well as 

from the olfactory system, medial PFC, insula, brainstem viscerosensory and nociceptive 

centers (NTS, PB), and from all parts of the amygdala. The amygdala increases the 

excitability of CNS sites regulating behavioral, neuroendocrine, and autonomic responses to 

stress (LeDoux, et al. 1988) and thus is able to modify GI functions. The amygdala is 

involved in the affective processing of sensory information and in the generation of anxiety 

and fear (Davis 1997), elements which are involved in the pathogeny of IBS.  

6.1.3. CRF as a key mediator in amygdala 

The amygdala, and particularly the CeA, is a major site of extrahypothalamic CRF, in cell 

bodies and terminals as well as CRF1 and, to a lesser extent, CRF2 receptors. The amygdala 

is a key element of the extrahypothalamic circuits through which CRF contributes to 

anxiety-like behavior and affective disorders (Aguilera, et al. 1987; Sajdyk, et al. 1999; Reul 

and Holsboer 2002; Fu and Neugebauer 2008). Excepting the hypothalamus, the amygdala is 

the major site of urocortin III (the endogenous ligands for CRF2 receptors) expression (Li, et 

al. 2002). In particular, activation of CRF neurons in the CeA that project to the LC increase 

its firing thus resulting in a noradrenaline release in the structures it is projecting to (Bouret, 

et al. 2003). LC activation leads to anxiety through the activation of the amygdala and, 

conversely, anxiety producing stimuli (stressful and fear-inducing stimuli) that increase the 

activity of the amygdala lead to LC activation (Samuels and Szabadi 2008). 
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6.1.4. Amygdala output to gut 

The CEA is involved in the modulation of the ANS because of its brainstem projections to 

the DMNV, NTS, PB and the periaqueductal gray (Rizvi, et al. 1991), known to modulate the 

spinal cord processing of noxious information through descending inhibitory controls (Le 

Bars, et al. 1992). The CEA innervates hypothalamic nuclei, modulating the HPA axis 

(Rodrigues, et al. 2009). The CeA also projects to the medial peri-LC dendritic region, 

resulting in increased norepinephrine release and other monoamine systems in the 

brainstem and forebrain (Gray 1993; Fudge and Emiliano 2003; Pare 2003) which are 

involved in arousal and hypervigilance. 

6.1.5. Modulators of amygdala 

The LC has an inhibitory effect on the BLA and the activation of this pathway leads to a 

disinhibition of the CeA, since the BLA has a predominantly inhibitory influence over the 

CeA (Rosenkranz, et al. 2006). The LC is involved in the stress response through CRF1 

receptors as well as CRF afferent fibers from the Barrington nucleus which is ventro-

laterally located to the LC. The Barrington nucleus projects to the sacral parasympathetic 

nucleus to increase the motility of the distal recto-colon (Valentino, et al. 1993). Colorectal 

distension increases the firing of the LC through CRF1 through a LC-Barrington nucleus 

pathway (Rouzade-Dominguez, et al. 2001). In addition, the LC is involved in the brain 

noradrenergic modulation of the GI tract motility (Bonaz, et al. 1992a; 1992b; 1995). 

Consequently, the Barrington-LC-amygdalo complex is ideally positioned to bidirectionally 

coordinate brain-gut interactions.  

6.2. Amygdala and the pathophysiology of IBS 

6.2.1. Amygdala and visceral hyperalgesia 

The use of C-Fos expression as a marker of neuronal activation has shown that somato-

visceral (Bonaz and Fournet 2000; Sinniger, et al. 2004; 2005), and visceral (Wang, et al. 2009) 

pain as well as stress- or abdominal surgery-induced GI disturbances (Bonaz and Tache 

1994a; 1994b; 1997; Bonaz and Rivest 1998) and colitis (Porcher, et al. 2004) induced the 

activation of the amygdala. In addition, the amygdala is one of the central areas from where 

digestive sensations are elicited in epileptic patients (Mulak, et al. 2008) during intracerebral 

electrical stimulations. In a model of visceral pain induction such as inflating a balloon into 

the rectum, an activation of the amygdala is observed in healthy volunteers (Baciu, et al. 

1999) while aberrant functional responses (e.g. deactivation of the amygdala) to noxious 

rectal stimulation was observed in areas of the brain involved in emotional sensory 

processing, particularly the amygdala, insula, and prefrontal cortex in IBS patients (Bonaz, 

et al. 2002; Elsenbruch, et al. 2010; Tillisch, et al. 2011) thus arguing for an abnormal brain 

processing of visceral pain following rectal distension. 
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Activation of corticosteroid receptor (both glucocorticoid and mineralocorticoid receptors) 

in the CeA is involved in the induction of anxiety and visceral hypersensitivity (Myers and 

Greenwood-Van Meerveld 2007b). High levels of glucocorticoids result in CRF mRNA level 

increases in the amygdala (Makino, et al. 1994). The group of Greenwood-Van Meerveld ) 

have shown that implants of corticosterone micropellets in the CeA increase anxiety-like 

behavior as well as visceral hypersensitivity to colonic distension and increased 

responsiveness of viscera-sensitive lumbosacral spinal neurons that mediate visceromotor 

reflexes to colo-rectal distension (Greenwood-Van Meerveld, et al. 2001; Myers, et al. 2005; 

Greenwood-van Meerveld, et al. 2006; Myers and Greenwood-Van Meerveld 2007a). Indeed, 

exposure of the amygdala to corticosterone-releasing micropellets caused an increase in 

action potential frequency in the dorsal horn neurons in the L6-S1 spinal segments 

suggesting that a descending neuronal pathway, originating in the amygdala, could be 

triggered by continuous activation by corticosterone. The neurons responding with 

excitation to colorectal distension were short-lasting and long-lasting excitatory neurons 

based on the duration of the reponse (Venkova et al. 2009). Mineralocorticoid receptors but 

not glucocorticoid receptors in the amygdala trigger descending pathways facilitating 

viscero-nociceptive processing in the spinal cord (Venkova, et al. 2009). In addition, a WAS 

known to activate the amygdala (Bonaz and Tache 1994b), performed during 7 consecutive 

days induced VHS that was abolished by glucocorticoid receptor and mineralocorticoid 

receptor antagonists in the amygdala. These results argue for a role of amygdaloid 

glucocorticoid receptor and mineralocorticoid receptor in IBS. 

The CRF signaling is also involved in pain processing. WKY is a rat strain for studying 

anxiety and IBS. WKY express a greater amount of CRF and CRF1 mRNA in the CeA and 

the PVN (Bravo, et al. 2011). In this model, it has been shown that colonic hypersensitivity to 

luminal distension is reversed by peripheral administration of a CRF1 antagonist (O'Malley, 

et al. 2011). Infusion of CRF1 antagonist into the CeA attenuates the hypersensitivity to 

colonic distension in the WKY rats, thus confirming the role of CRF1 receptor in the 

amygdala in VHS mechanism (Johnson, et al. 2012). The basal expression of CRF in the LC is 

increased in WKY rats and a selective CRF1 receptor antagonist abolished the activation of 

LC neurons by colorectal distension and intracisternal CRF in rats (Kosoyan, et al. 2005). 

These data strengthen the role of the CeA and LC in VHS through CRF1 which is in 

agreement with the interactions between both nuclei involved in emotional-arousal circuit. 

Indeed, CRF neurons in the CeA project directly to the LC and increase the firing rate of LC 

neurons thus increasing noradrenaline release in the vast terminal fields of this ascending 

noradrenergic system. In humans, oral administration of a selective CRF1 antagonist 

(GW876008) is followed by a significant BOLD signal reductions within the amygdala 

during pain expectation in IBS patients (Hubbard, et al. 2011). CRF1 receptors in the 

amygdala contribute to pain-related sensitization, whereas the normally inhibitory function 

of CRF2 receptors is suppressed in the arthritis pain model. Thus, due to the opposing effect 

of CRF1 and CRF2 receptors, CRF can induce a dual effect in the amygdala. The differential 

effects of CRF1 and CRF2 receptor antagonists on pain-related processing in the amygdala 

have reciprocal opposing influences on anxiety-like behaviors. CRF1 and CRF2 receptors in 

the amygdala mediate opposing effects on nociceptive processing (Ji and Neugebauer 2007). 
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Numerous data argue for a role of CRF1 and CRF2 to mediate pro- and anti-nociceptive 

effects of CRF respectively. It has been shown that low concentrations of CRF facilitate 

nociceptive processing in the CeA neurons through CRF1 while higher concentrations of 

CRF have inhibitory effects through CRF2 receptors. This is in agreement with the concept 

that CRF2 receptors serve to dampen or reverse CRF1-initiated responses (Tache and Bonaz 

2007). These results clarify the controversial role of CRF in pain modulation and show that 

the CRFergic system in the amygdala may be a key link between pain and affective states 

and disorders. 

6.3. Amygdala and stress conditioning 

6.3.1. The synchronic stress engineering 

Systemic cortisol is a classical marker of the HPA axis activation. The amygdala and 

hippocampus have numerous receptors for cortisol and are consequently highly susceptible 

to the products of the HPA axis. Glucocorticoid occupation of hippocampal receptors has a 

suppressive effect on the HPA axis (van Haarst, et al. 1997) whereas glucocorticoid 

occupation of amygdala receptors have a facilitating effect on the HPA axis, often increasing 

CRF expression within the amygdala (Makino, et al. 1994). CRF receptors are greatly 

expressed in the amygdala and hippocampus early in development (Baram and Hatalski 

1998), thus explaining why young animals are especially vulnerable to threat. In agreement, 

early-life stress induces a decrease of hippocampal volume and functional alterations when 

measured in adulthood (Nemeroff, et al. 2006). Structural changes have also been observed 

in IBS patients using brain imaging (Blankstein, et al. 2010; Seminowicz, et al. 2010). Also, 

circulating glucocorticoids can have contrasting effects in the amygdala and hippocampus, 

and these two structures can play contrasting roles in the activity of the HPA axis. In the 

context of an overactivity of the HPA axis due to an enhanced stress responsiveness, greater 

basal levels of systemic cortisol have been reported in IBS patients (Chang, et al. 2009). 

Circulating cortisol regulates the HPA axis and is also able to act within the amygdala by 

binding to selective glucocorticoid and mineralocorticoid receptors, highly expressed in the 

amygdala (Sapolsky, et al. 1983) to facilitate behavioral and psychological stress responses 

including GI motility.  

6.3.2. Amygdala and stress memorisation 

Functional imaging studies indicate that the mPFC is engaged in fear extinction process in 

relation with the amygdala (Phelps, et al. 2004). The amygdala is an important region 

involved in the acquisition of fear conditioning, a learning that corresponds to the 

association between a conditioned stimulus andan unconditioned stimulus. The infralimbic 

region of the mPFC participates in the mechanism of fear extinction (Rosenkranz, et al. 2003; 

Quirk and Vidal-Gonzalez 2006b) and also in the recall of fear extinction with an active 

inhibition of the previous fear condition responses. This is mediated by a down regulation 

of amygdala outputs with mPFC neurons exciting (glutamate) inhibitory neurons (GABA) 

within the BLA or in the intercalated region inhibiting in turn amygdala outputs from the 
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CeA (Vidal-Gonzalez, et al. 2006). The activity of intentional regulation of treat related-cues 

by the PFC is decreased in anxious patients and the conditioned fear extinction is also less 

active, in PTSD-anxious patients and this is associated with symptoms provocations 

(Bradette, et al. 1994). The amygdala is also activated by uncertainty and the capacity of the 

PFC to regulate attention, (re) interpretation of the situation will modulate the level of the 

response of amygdala to uncertainty. In IBS, uncertainty plays an important role in the 

perception of pain. Therefore it seems important to study the fronto-amygdalar relations in 

IBS patients. The inhibitory control of the mPFC on CeA would maintain an homeostatic 

state with an equilibrated sympatho-vagal balance and low glucocorticoids circulating 

levels. In the case of a deficit in PFC activity with a lack of inhibitory regulatory 

communications with the amygdala, a chronic imbalance of the ANS with an increase 

sympathetic activity should appear as we have observed in IBS patients exhibiting a low 

heart rate variability and a high score of anxiety (Pellissier, et al. 2010a). Moreover, there is a 

strong relation between the activity of the ANS and the immune system as recently shown 

by the cholinergic anti-inflammatory pathway (Huston and Tracey 2011). Hence, when the 

parasympathetic system is hypoactive as a consequence of anxiety for instance, it could 

facilitate inflammation which could be deleterious for health and well-being (Bonaz 2003). 

The hypoactivity of the PFC and the enhancement of amygdala (re)-activity are strongly 

influenced by stress as demonstrated by a number of studies. It has recently been shown an 

increase in the dendritic arborization, and synaptic connectivity in the LA/B neurons under 

chronic stress conditions (Vyas, et al. 2002; Vyas, et al. 2006). LA/B neurons from stressed 

animals display increased firing rates and greater responsiveness (Kavushansky and 

Richter-Levin 2006) since the mediators of stress i.e. norepinephrine, and glucocorticoids 

decrease GABA inhibition (Rodriguez Manzanares, et al. 2005), thereby allowing for 

increased excitability in LA/B. In the meantime, an atrophy and spine loss of neurons in the 

mPFC following stress and glucocorticoid exposition is observed (Czeh, et al. 2008) allowing 

an over-activation of amygdala under chronic stress exposition.  

6.3.3. Amygdala and early stress 

Environmental events during early postnatal life can influence the formation of neural 

circuits that provide limbic and cortical control over autonomic emotional motor output 

since a differential timing of hypothalamic and limbic forebrain synaptic inputs to 

autonomic neurons has been observed during the first 1–2 weeks postnatal (Rinaman, et al. 

2011). This provides a potential structural correlate for early experience-dependent effects 

on later responsiveness to emotionally evocative stimuli and an enhanced risk for the 

development of psychopathologies such as mood and aggressive disorders. MS is classically 

used as a model of brain-gut axis dysfunction (O'Mahony, et al. 2011) and early life trauma 

are often observed in IBS patients (Bradford, et al. 2012). The amygdala is functionally active 

early in life and demonstrates continued refinement, through increased cortical connections, 

throughout childhood and adolescence. The amygdala is particularly vulnerable to stressors 

early in life. Reduced hippocampal volumes (Woon, et al. 2010) and increased amygdala 

volumes (Tottenham, et al. 2010) have been associated with early life stress.  
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6.3.4. The maternal separation model (MS) 

Numerous studies have shown that the HPA axis of MS rodents shows hyperactivity in the 

PVN and amygdala (Plotsky and Meaney 1993; Coutinho, et al. 2002; Plotsky, et al. 2005; 

Schwetz, et al. 2005). Offspring of mothers that exhibit more licking and grooming of pups 

show reduced plasma ACTH and corticosterone responses to acute stress and decreased 

levels of hypothalamic CRF mRNA in correlation with the frequency of maternal licking and 

grooming during the first 10 days of life (Plotsky, et al. 2005). Thus, it is likely that a major 

part of the alterations associated with early life stress are related to CRF hyperproduction 

that account for amygdala hyperactivity. Maternal care during the first week of life is 

associated with increased GABAergic inhibition of amygdala activity (Diorio and Meaney 

2007). These data reflect the importance of early environmental factors in regulating the 

development of the hypothalamic CRF system in relation with amygdala activity and the 

vulnerability to stress. Moreover, there is a sex-specific difference in the effects of early life 

stress on HPA axis activity consistent with the higher prevalence of major depression with 

hypercortisolism in women than in men. Moreover, women who experienced early life 

stress are more likely to develop depression as well as IBS (Bradford, et al. 2012). Sex-

hormones influence amygdala development in human populations (Rose, et al. 2004). An 

alteration in the central CRF system has been evidenced in two different rat models of 

comorbid depression and functional GI disorders (e.g. IBS) represented by neonatal MS and 

the WKY rat, a genetically stress-sensitive rat strain, that display increased visceral 

hypersensitivity and alterations in the HPA axis. These rat strains express a greater amount 

of CRF and CRF1 mRNA in the amygdala (CeA) as well as in the PVN (Bravo, et al. 2011). 

They also present a positive correlation between increased central CRF and CRF1 receptor 

expression, with elevated anxiety-like behavior and colonic hypersensitivity (Gunter, et al. 

2000; Shepard and Myers 2008). An increase of CRF1 mRNA was observed in the PVN and 

amygdala while CRF2 mRNA, classically counteracting CRF1 in the CNS, was lower in the 

amygdala of MS rats. Such modifications, by affecting the HPA axis regulation, may 

contribute to behavioral changes associated with stress-related disorders, and alter the 

affective component of visceral pain modulation, which is enhanced in IBS patients (Bravo, 

et al. 2011). 

6.4. The alteration of amygdala control in IBS 

The amygdala has interconnections with the anterior cingulate cortex, the PFC, the 

hippocampus, the hypothalamus (e.g. PVN), the bed nucleus of the stria terminalis, the 

lateral septum, the thalamus, the periacqueductal gray, the PB, the LC, the raphe nuclei, and 

the dorsal vagal complex (area postrema, nucleus tractus solitarius and DMNV) (Knapska, 

et al. 2007). All these regions have been shown to be activated in experimental models of 

stress, inflammation, and pain as represented by c-fos expression and/or CRF receptor 

mRNA induction (Bonaz and Tache 1994a; Bonaz and Rivest 1998; Bonaz, et al. 2000; 

Porcher, et al. 2004; Sinniger, et al. 2004; 2005) or electrical stimulations (Mulak, et al. 2008). 
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In addition, brain imaging techniques (fMRI, PET), have contributed to the better 

understanding of IBS. An activation of most of the brain structures referenced above, and 

particularly the amygdala, has been observed in healthy volunteers following rectal pain 

while an abnormal brain processing of pain was observed in IBS and IBD patients (Baciu, et 

al. 1999; Bonaz, et al. 2002; Agostini, et al. 2011). In addition, brain structural changes of the 

HPA axis and limbic structures have been recently reported in IBS patients (Blankstein, et al. 

2010; Seminowicz, et al. 2010). Because psycho- or pharmacotherapy tends to result in 

normalization of activity of key structures such as the PFC including anterior cingulate 

cortex, hippocampus, or amygdala, either through a top-down or bottom-up effect (Quide, 

et al. 2012), the determination of psycho-physiological vulnerability in IBS patients should 

be a flag to consider the psychological needs in the follow-up of such patients in the 

prevention of relapses of such diseases (Pellissier, et al. 2010b).  

7. Therapeutic implications-treatment targeting amygdala activity 

reduction in IBS 

The effect of stress on amygdala functioning has therapeutic implications both with non-

pharmacological and pharmacological treatment to reduce stress perception. Psychological 

mind-body interventions including psychotherapy, cognitive behavioral therapy, 

hypnotherapy, relaxation exercises or mindfulness mediation have been shown to improve 

symptoms of IBS patients (Kearney and Brown-Chang 2008; Ford 2009; Whorwell 2009). 

Repetitive transcranial magnetic stimulation of the PFC, based on the central role of the 

mPFC in cognitive theory of mind, can cause changes in acute pain perception and has been 

used in a model of central sensitization syndrome such as fibromyalgia (Mhalla, et al. 2011; 

Short, et al. 2011) but no data have been currently published in IBS patients. Modulation of 

the ANS by restoring the sympatho-vagal balance (DeBenedittis, et al. 1994; Nishith, et al. 

2003; Gemignani, et al. 2006) as well as modifying coping strategies vigilance state and 

globally the restoration of a functional brain-gut axis, are at the origin of the efficacy of these 

treatments. Brain imaging techniques have shown modulation of brain activation, as for 

example in the amygdala, by such treatments (Goldin and Gross 2010; Lawrence, et al. 

2011). Conventional treatment as represented by anti-depressives, anxiolytics, drug 

targeting the central sensitization syndrome α2δ ligand (pregabalin, gabapentin); 

tachykinin receptor antagonists either directly and/or indirectly are supposed to target the 

hyperfunctioning of the amygdala (Ghaith, et al. 2010; Gale and Houghton 2011; Trinkley 

and Nahata 2011; Larauche, et al. 2012). In the context of the microbiota-brain-gut axis, 

probiotics, prebiotics, antibiotics such as rifaximin, an antibacterial agent that is virtually 

unabsorbed after oral administration and is devoid of systemic side effects, are of interest 

(Bercik, et al. 2011; Fukudo, et al. 2011; Fukudo and Kanazawa 2011). If targeting CRF 

signaling with CRF1 receptor antagonists, based on pre-clinical and/or clinical data (brain 

imaging) has been used successfully in humans to treat depression and anxiety (Kunzel, et 

al. 2003) their efficacy is still matter of debate in the treatment of IBS patients (Sweetser, et 

al. 2009). 
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8. Conclusion 

A growing body of evidence argues for an important role of stress, through the HPA axis, 

limbic system activity (e.g. the amygdala), and the ANS, i.e. the sympathetic and the 

parasympathetic (e.g. the vagus nerve) nervous system, in the initiation and perpetuation of 

IBS. Stress, pain, and immune activation are common risk factors involved in the 

pathogenesis of IBS which are able to act through this neuro-endocrine-immune axis. The 

amygdala, through its connections with the PFC, LC, hippocampus, HPA axis, and ANS is a 

key structure involved in the pathogeny of IBS. Animal models of activation of the CRFergic 

system in the amygdala, as represented by maternal separation stress or WKY rats, 

developed VHS as observed in most of IBS patients. Thereofore, a therapeutic targeting of 

the amygdala either through pharmacological or non-pharmacological approach should be 

of interest for the treatment of IBS. 
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