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1. Introduction

The use of deformable mirrors (DMs) in adaptive optics (AO) systems allows for
compensation of various external and internal optical disturbances during image aquisition.
For example, an astronomical telescope equipped with a fast deformable secondary mirror
can compensate for atmospheric disturbances and wind shake of the telescope structure
resulting in higher image resolution [1-4]. In microscopy, deformable mirrors allow to
correct for aberrations caused by local variations of the refractive index of observed specimen.
Especially confocal and multi-photon microscopes particularly benefit from the improved
resolution for visualization of cellular structures and subcellular processes [5, 6]. In addition,
results of applied adaptive optics for detection of eye diseases and in vitro retinal imaging
on the cellular level show promising examination and treatment opportunities [7-9].

In many AO systems, the deformable mirror is assumed to have negligible dynamical
characteristics in comparison to the dynamic disturbances compensated by the deformable
mirror. Unfortunately, this assumption is not always valid and active shape control of
deformable mirrors must be employed to enhance the dynamic properties of the deformable
mirror. For example, adaptive secondary mirrors for the Multi Mirror Telescope (MMT), the
Large Binocular Telescope (LBT), and the Very Large Telescope (VLT) with diameters around
1 m have their first natural resonant frequencies below 10 Hz. In order to be able to use these
systems for compensation of atmospherical disturbances with typical frequencies up to 100
Hz, active shape control is employed pushing the bandwith of these DMs to 1kHz [10-13].

With up to 1170 voice coil actuators and co-located capacitive position sensors, the new
generation of continuous face-sheet deformable mirrors requires fast and precise shape
control. Thereby, the main idea for robust control of the mirror surface is the use of
distributed voice coil actuators in combination with local position sensing by capacitive
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100 Adaptive Optics Progress

sensors. The use of voice coil actuators allows for large stroke and exact positioning of
the mirror while it is floating in a magnetic field. By changing the spatial properties of the
magnetic field, the mirror shell can be deformed into a desired shape to compensate for
optical aberrations measured by the AO system. Thereby, a low-contact bearing combined
with little intrinsic damping of the mirror shell draws the need for adequate damping
in closed loop operation. For the MMT deformable mirror, this problem is tackled by a
40 ym air-gap between the mirror shell and a reference plate behind the shell. The induced
viscous damping is sufficient to operate the mirror within the designed specifications [11].
However, recent deformable mirrors for the LBT and VLT shall operate within a larger
air-gap to provide more stroke. As a side effect, the requirement for a larger air-gap
reduces the natural viscous damping and electronic damping is needed to achieve the same
control bandwidth [14]. Therefore, the LBT and VLT type deformable secondary mirrors are
controlled by local PD-control for each actuator/sensor pair in combination with feedforward
force compensation [15]. Each actuator is driven by a dedicated local position controller
running at 40-70 kHz. The shape command for the mirror unit is generated by a higher level
wavefront control loop running at about 1kHz. For small set-point changes of the mirror
shell, this control concept is well-suited and has proven to be applicable in practice [16].

For high speed deformations over large amplitudes (e.g. chopping of deformable secondary
mirrors), disadvantages of local PD-control must be considered. First of all, there is a
shape-dependent stiffness and damping variation of the mirror shell. In particular, each
deformation of the shell requires a specific amount of external force by the distributed
actuators [11]. If local control instead of global control is used for position control of the
shell, then robust and subsequently conservative controller design is necessary for all local
control loops. Secondly, interaction of neighboring actuators has to be studied carefully. The
control loop gains have to be chosen such that only little interaction with neighboring control
loops is caused. Otherwise, the local control concept can lead to instability of the shell.

In order to further investigate practical concepts for DM shape control, there have been
studies on MIMO optimal feedback control [17-19]. Certainly, the closed loop performance
of a global optimal feedback control concept is superior to local PD-control. But still, the
computational load of a global MIMO controller may not be suitable for large deformable
mirrors with more than thousand actuators. Only in [17], the circular symmetry of the mirror
shell is used to reduce the controllers complexity. Thereby, it is shown that symmetry can
effectively reduce computational loads without loosing control performance. Although, even
when symmetry is fully exploited, the computational effort for a global feedback control
concept of future deformable mirrors is considerably high.

The most difficult task for control of deformable mirrors clearly is not the stabilization of
the shell in a static shape, but changing the mirrors deflection in a predefined time and
maintaining system stability. Instead of using a pure feedback controller for this task,
model-based feedforward control concepts are proposed as in [20, 21]. In the past, the
concept of model-based feedforward control has successfully been applied to various classes
of dynamical systems. This technique is widely used in control practice as an extension
of a feedback control loop to separately design tracking performance by the feedforward
part and closed-loop stability and robustness by the feedback part. By using model-based
feedforward control for shape control a deformable mirror, the feedback control loop is only
needed to stabilize the shell in steady state and along precomputed trajectories. Thereby,
the feedback loop can be designed to achieve high disturbance rejection. The computational
load for feedforward control is comparably low because the feedforward signals may not be
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computed in the feedback loop frequency (40-70kHz for the LBT and VLT type DMs), but
only when a new set-point is commanded (about 1kHz for the LBT and VLT type DMs).

Since typical deformable mirrors do not significantly change their dynamical behavior
over time, model-based time-invariant feedforward control can efficiently reduce load on
implemented feedback controllers. Studies on model-based feedforward control of large
deformable mirrors show that either with poorly tuned feedback control or even without
feedback control, high speed and high precision deformations of deformable mirrors can be
achieved [20, 21].! The required dynamical model of the DM can be identified based on
internal position measurements of excited DM actuators. In [22], a practical identification
procedure for small scale membrane DMs with static interferometric measurements and
dynamic measurements from a laser vibrometer are presented, additionally. It is shown
that together with an identified dynamical model, feedforward control can be employed for
small scale membrane DMs also, significantly improving the settling time of the membrane
mirror.

In the following, shape control of small and large deformable membrane mirrors by
model-based feedforward and feedback control in a two-degree-of-freedom structure are
described in a generalized framework. For this purpose, a scalable physical model of
deformable membrane mirrors is derived based on force and momentum equilibriums of a
differential plate element in Section 2. A series solution of the resulting homogeneous partial
differential equation (PDE) is used to derive the modal coordinates of the inhomogeneous
PDE including external actuator forces. This series solution can be employed to analyze
and simulate the spatio-temporal behaviour of deformable mirrors and allows the design of
a model-based shape controller in Section 4. The controller design section is devided into
three parts. In Section 4.1, a trajectory generator for computation of differentiable reference
trajectories describing the transient set-point change of the deformable mirror surface is
described. In Section 4.2, a static and a dynamic feedforward controller are deduced from
the inverse system dynamics of the mirror model, aftwards. Finally, a feedback controller
is designed in Section 4.3 as a linear quadratic regulator based on a reduced dynamical
mirror model in modal coordinates. After transforming the modal feedback controller into
physical coordinates, its decentralized structure is implemented and its usability for future
deformable mirrors is discussed.

2. Mirror modeling

Deformable membrane mirrors with non-contacting actuators are often represented by static
models approximating the nonreactive deformation of the mirror surface. Thereby, both
Kirchoff and van Karman theory is used to describe plate deformations smaller than the
plate thickness [23-26] and deformations close to the thickness of the mirror plate [27-29],
respectively. Additionally, finite element methods are used to model deformable mirrors, in
particular for the development large deformable secondary mirrors in astronomy [30-36]. In
order to describe actuator influence functions, radially symmetric Gauss functions or splines
are commonly used [2, 37], also. A more detailed static analysis is performed in [38] and [39]
for a circularly clamped deformable mirror using a Kirchoff plate model. Additionally, in

!In this context, feedback control is mainly needed to account for model uncertainties and to reject external
disturbances (e.g. mechanical vibrations, wind loads).
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Figure 1. Schematics of a circular deformable mirror with deflection w(r, 6, t), inner radius rq, outer radius r,, plate thickness
h, and external forces g(r, 6, t) acting on marked actuator positions over the mirror area S

[40] a deformable mirror with a free outer edge is modeled based on a Kirchoff plate model
and resulting actuator influence functions for point forces are given.

Unfortunately, many of these modeling approaches only concentrate on the static
characteristics of the deformable mirror and neglect dynamic properties like temporal
eigenfrequencies and spatial characteristics of inherent eigenmodes. For model-based
controller design addressed here, particularly these eigenfrequencies and eigenmodes are
of substantial interest and can be found with the following modeling approach.

At first, circular deformable membrane mirrors with considerable out-of-plane stiffness and
possible finite inner radius r; and outer radius r; centered at the origin of the r — 0 plane are
considered. Hereby, r, 6 are polar coordinates. The plate is modelled as an isotropic Kirchoff
plate with constant thickness / as shown in Figure 1.

For dynamic analysis, large deflections of the plate are not considered and nonlinear effects
such as tensile stresses of the plate are neglected [28, 41, 42]. Secondly, it is assumed that a
native curvature of the shell can be neglected due to only small deflections perpendicular to
the surface.? The time varying deflection of the plate is measured by w(r, 6, t) relative to the
undeflected reference and t € R is the time. External forces caused by non-contacting voice
coil actuators are represented by ¢(r,0,t) and are defined by

M1
q(r,0,t) = Y —uw(t)8(r — rm)8(0 — Om), (1)

m=1Tm

where u, (t) corresponds to the actuator force at position (7, 0y) and 6(r — 7,)0(0 — Om)
describe the point-shaped force transmission.

The governing forces for a differential element of the plate are derived in Carthesian
coordinates for simplicity. The differential element hdxdy is effected by various shear forces,
bending and twisting moments, and external loads as illustrated in Figure 2. The bending
moments per unit length My, M, arise from distributions of normal stresses oy, 0y, while
the twisting moments per unit length My, Myx (shown as double-arrow vectors) arise from

2 As discussed in [43], a possibly large radius of curvature and a large diameter of the deformable mirror spherical
face-sheet (e.g. 2m) in comparison to the considered deflections (usually around 100um) allows to approximate the
spherical shell by a Kirchhoff plate. Similar assumptions are drawn in [44] for a comparable system.
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shearing stresses Ty, Tyx. The shear forces per unit length Qx, Qy arise from shearing stresses
Txz, Tyz [41].

gdxdy

Qy +

M, dy

dy

Figure 2. lllustration of shear forces, bending and twisting moments, and external loads affecting a differential plate element
hdxdy of the deformable mirror.

Of particular interest are the resulting three equations of motion

P 0 02
—Qydy + (Qx + anx dx> dy — Qydx + <Qy + agyydy) dx + gdxdy = phdxdya—:zu,
(2a)
My + de dx — Mydx + Mydy — ( My + ——=dx | dy — Qydxdy =0, (2b)
oM
(Mx + %dx) dy — Mydy — Mxdx + (Myx + ayyx dy) dx — Qxdxdy =0, (20)

with x,y,t € R. Rotary-inertia effects of plate elements as well as higher-order contributions
to the moments from loading g have been neglected in the moment equations (2b) and (2c).
By canceling terms, the equations of motion reduce to

Qx 0Qy  duw
ox "oy 1T ()
oy ox X0 b
OMy  OMyx _
ay ax - QX - O (3C)

By solving the last two equations for Qy and Qy and substituting in the first equation, a
single equation in terms of various moments can be achieved reading

azMx azMxy azMxy azMy 82w

a2 dxdy dyox * Y2 +q:phﬁ. @)
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In [41], the relationship between the moments and the deflection is described and it is shown
that the bending moments per unit length read

M, = —D(gZTZf _H/B;TZU)/ (5a)
My = —D(gZTZZU —|—1/E;27Z;), (5b)
My, = —Myx = D(1— 1/)88;—;;, (5¢)
3
D= mf—}ivz) (5d)
with Young’s modulus E and Poisson’s ratio v. By using the relationship My, = —Myy the
biharmonic partial differentail equation (PDE)
D(aa?:+28$g)y2+§;)) —q:—pha;TZ] (6)

is derived.

Using (1) for a point actuated circular plate, Equation (6) can be written in polar coordinates

as
DV (r,0, ) + (Ag + kg v4) 2000 w6t % ) 50— 0 N5(0 = 60)
O 47t % ot P n T, " m)s
)
with the biharmonic operator V* given by
? 1o 1R\
4 22 _ (2, -2 4 Y
AR S (8r2 r8r+r2892> ®)

The parameters A; and x; are used to characterize additionally included viscous and
Rayleigh damping and need to be identified in practice.

In order to fully describe the spatio-temporal behavior of deformable mirrors, the biharmonic
equation (7) must be completed by physically motivated boundary conditions of the mirror
plate. Typical boundary conditions for deformable mirrors are illustrated in Figure 3 (a)-(c)
and can either be a clamped edge at r = r; reading

w(ry,0,t) =0 (9a)
ow(r,0,t)

=0, 9b
ar r=r ( )
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or a simply supported edge at r = r; reading

w(r1,0,t) =0 (10a)
v Q®w(r,0,t)  *w(r,0,t) vow(r,b,t)
2 062 W Tr A n O (10b)

or a free edge at r = rq reading

v Qw(r,0,t)  Pw(r,6,t) vow(r,b,t) B
}’_2 892 87’2 ; or r=rq =0 (11a)
(v—2) °w(r,0,t) S w(r,6,t) N (3 —v) w(r,6,t)
r2 draf? ar3 r3 062
10%w(r,60,t) 1 ow(r,6,t) B
_; or? + 7’_2 or r=rq =0 (11b)

In order to include a flexible support at r = r; (see Figure 3 (d)), boundary conditions (11)
can be extended by a righting moment c reading

ow(r,0,t) v w(r,0,t) *w(r,6,t) vow(r,6,t) B
o TR e T a2 Tr o eV (122)
(v —2) Pw(r,6,t) B 3w(r,0,t) n (3 —v) Q*w(r,6,t)
r2 01062 ord 3 062
10%w(r,0,t) 1 ow(r,6,t)
r o or2 2 or —— 0 (12p)
|
(@) (b) © (d)

Figure 3. Schematics of four typical boundary conditions for deformable membrane mirrors showing (a) a clamped edge, (b) a
simply supported edge, (c) a free edge, and (c) a spring supported edge type.

The PDE (7) and the boundary conditions (9)-(11) fully describe both the temporal and
the spatial behavior of the modelled deformable mirror. In order to quantify the resulting
eigenfrequencies and eigenfunctions for a given mirror geometry and material properties,
the PDE will be analyzed further in the following section.
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3. Fundamental solution and modal analysis

One way to analyze PDE (7) is to discretize the PDE in its spatial coordinates (r,6).
Thereby, the spatial differential operator V* and the boundary conditions (9)-(11) can be
approximated by finite difference or finite element methods and the PDE is reduced to a
finite set of coupled ordinary differential equations (ODE). The Eigenfrequencies and the
eigenvectors of the resulting generalized eigenvalue problem correspond to the spatially
discretized eigenfunctions of the PDE. Thereby, the spatial discretization has strong influence
on the remaining temporal system dynamics and can even mislead to wrong results if
performed insufficiently. The typically large set of ordinary differential equations requires
high computing power for dynamic simulation and is ill-suited for model-based controller
design, in general.

Another way to analyze PDE (7) is a modal transformation based on the eigenfunctions of
PDE (7) fulfilling the homogeneous boundary conditions (9)-(11). The modal transformation
leads to an infinite set of ordinary differential equations in modal coordinates describing only
the temporal evolution of the eigenfunctions of PDE (7). Thereby, all spatial and temporal
properties are preserved and a reduced set of the ODEs can be used for dynamic simulation
and controller design.

The eigenfuntions Wy (r,0) of PDE (7) can be derived by separation of variables with
r: w(r6,t)= Z Wi (7, 0) fir (1), (13)
k=1

where the eigenfunctions Wy(r,0) describe the spatial characteristics and the modal
coefficients fi(t) describe the time-varying amplitude. At the same time, equation (13) can
be used to perform a transformation from modal coordiantes fi(t) to physcial coordinates
w(r,0,t) and back, which will be needed for feedback controller design in Section 4.3.

After inserting (13) in the homogeneous PDE (7) with g(r,6) = 0, an analytical description
of the eigefunctions Wy (r,0,t) can be found as described in [23] reading

Wi(r,0) = (Awi(Br) + AxYi(Br) + A (Br) + AgKi(Br)) cos(k0)
+ (BixJk(Br) + Box Yk (Br) + Bar Ik (Br) + By Ky (Br)) sin(k6). (14)

Here, Ji, Yk, Ix, Ky are Bessel functions and modified Bessel functions of first and second kind.
The eigenfunctions fulfill the relation

VAW (r,60) = BW(r,6) (15)

and are self-adjoint due to the biharmonic operator V4.

After inserting the fundamental solution (14) in the boundary conditions (9)-(11), the free
parameters Ay, ..., Ag and By, ..., By can be found by computing a non-trivial solution of
the resulting homogeneous equations
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A B
A B

AC(.Bk) A;’i =0, As (5k) Bi’; =0, (16)
Agk By

where Ac(B) and As(B) are [4 x 4] matrices containing linear combinations of Bessel
functions depending on the eigenvalue Bj for the cosine and sine parts of Wi(r,0). A
computation of matrices Ac and As should be performed using computer algebra software
since the matrix elements are rather extensive.

where A.(B) and As(B) are [4 x 4] matrices containing linear combinations of Bessel
functions depending on the eigenvalue B; for the cosine and sine parts of Wi(r,0). A
computation of matrices A and As should be performed using computer algebra software
since the matrix elements are rather extensive.

In order to compute a non-trivial solution of the homogeneous equations (16), the parameter
B needs to determined such that A and A contain a non-trivial kernel. This can be achieved
by numerically searching for zeros in the determinant of the matrices A, and As and leads
to infinitely many eigenvalues By related to the eigenfunction Wj(r, 6).

In Figure 4, the consine parts of the first 21 analytical eigenfunctions Wi (r,0), k =1,...,21
of a deformable mirror with clamped inner radius and free outer radius are shown based on
the calculations given before. The eigenfunctions Wi (r, ) and eigenvalues f; were compared
with a detailed finite element model of the same mirror and show excellent compliance.

Figure 4. First 21 eigenfunctions of a deformable mirror model (7) with clamped edge boundary conditions (9) at the inner
radius r; and free edge boundary conditions (11) at the outer radius r, ordered by increasing eigenfrequency.
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In the following, a modal decomposition of PDE (7) is used to analyze the mirror dynamics
and to derive model-based feedforward control commands in modal coordinates. The modal
decomposition of (7) is performed by inserting relation (13) in (7) and using property (15)
yielding

) M
3 (DB + O+ w0+ p1(0) W) = 3 20 s(r —r)o(o — o). 17

m=1 Im

A multiplication with any eigenfunction W; and integration over domain S on both sides
gives

[ Wir,0) Y- (DBEA(t) + (ha + kaBfe ) +ph (1) Wil 0)dS =
S

k=1

Mo
// Wi(r,6) Y rnit)é(r—rm)é((?—@m)ds.
S

m=1

(18)

Changing order of summation and integration, using the orthonormality property of the
eigenfunctions Wi (r,0), and considering the sifting property of the Dirac delta function §
on the right hand side of Equation (18) leads to an infinite set of second order ordinary
differential equations

) Ag +raBt Dp4 M
0+ S + 0 = o L W b (), (19)
£0)=0, f(0)=0, jeN.

For each j, the resulting ODE (19) describes the temporal evolution of the corresponding
eigenfunction W;(r,0) by the modal coefficient f;(t). For simplicity, homogeneous initial
conditions are assumed describing a flat and steady mirror surface.

Since there is no coupling between different modal coefficients fi(t) and f;(t), j # k,
the ODEs (19) can be used for dynamic simulation of a mirror surface described by a
specific eigenfunction W;(r,6) or a linear combination of eigenfunctions. Any physically
relevant mirror deformation can be decomposed into a linear combination of the orthonormal
eigenfunctions Wi (r,0) and all relevant dynamic properties of the deformable mirror can be
covered with this approach. The decoupled description of the mirror dynamics in modal
coordinates (19) allows for simplified system analysis and is the foundation for the following
controller design.

Based on the derived normalized eigenfunctions Wy (r,0), an analytical solution of the
biharmonic equation (7) with initial conditions w(r,6,0) = 0 and w(r,8,0) = 0 can be derived
in spectral form reading
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Wi (r,0) Wi (rm, Om )8k (t — T) um (T)d7, (20)

J/

E oo M 1
wire )= [ ¥ ) =
2o k=1m=1 Ck

G(7,0,rm,0mt—T)

with

gk(t 1 T) 1 efﬁ(/\dJrKd,B%+€k) . e*ﬁ()\dJrKdﬁ%*gk)/ ék — \/(Ad 4+ Kd‘B%)Z _/ 4D‘01’1‘3% ]

Equation (20) can be used to compute the actuator influence functions for any input signal
Um(t), m = 1...M. Thereby, not only the resulting static deformation of the mirror can
be computed, but also the transient motion of the plate for time-varying input forces.?
Additionally, relation (20) can be used to compute the frequency responses of a deformable
mirror at different actuator locations as shown in Figure 5 for a deformable mirror with
clamped inner edge, free outer edge, and co-located force actuators and position sensors.

The infinite sum of eigenfunctions Wy(r,6) in Equation (20) can be approximated with a
finite k using only a limited number of eigenfunctions. The right number of eigenfunctions
can either be driven by a sufficient static coverage of mirror deformations with linear
combinations of k eigenfunctions Wi (r, 8), or by considering a certain number of eigenvalues
B in order to sufficiently describe the mirror dynamics up to a certain eigenfrequency.

Obviously, the frequency responses shown in Figure 5 reveal essential variations of local
mirror dynamics depending on the co-located actuator/sensor position. From a control point
of view, this behavior illustrates the difficulty of designing a decentralized controller that can
be used for every actuator/sensor pair of the DM.

4. Model-based controller design

In a typical AO system, the requirement of changing the mirror shape within a predefined
time T from an initial deformation Awj to a final deformation Awj is derived from the
higher-ranking AO control loop (see Figure 6). This control loop runs at a fixed cycle time and
sends mirror deformations Aw* () to the shape controller in order to correct for measured
optical disturbances in the AO system (not shown in Figure 6). The step inputs Aw*(t)
for the model-based shape controller in Figure 6 are in general ill-suited for model-based
feedforward control and need to be filtered beforehand. The transition time T for changing
the mirror shape from its initial shape Aw; to its new desired shape Aw; is assumed to be
smaller than the cycle time of the higher-ranking AO control loop. This requirement assures
that the closed loop mirror dynamics can be neglected with respect to the higher-ranking AO
control loop when designing the AO loop controller.

For model-based shape control of deformable mirrors, the control scheme shown in Figure
6 can be used. It consists of a deformable mirror with multiple inputs u = [ul Uy ... u M]

3 In Equation (20) and for the following analysis, it is assumed that the eigenfunctions W (r,0) are normalized with
respect to the L, scalar product (Wi, W) = 1.
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(force actuators), multiple outputs y = [y1 y2 ... yam | (position sensors), and an underlying
shape controller in a two-degree-of-freedom control structure. The control structure contains

an online trajectory generator Z;km]., a static and a dynamic model-based feedforward
-1

controller iat

and Z;yln, and a model-based feedback controller X ,;;.

There are two control objectives adressed by the control structure shown in Figure 6. One
is achieving good tracking performance along a spatio-temporal trajectory y; describing
the evolution of the mirror shape from an initial shape Aw] to a new commanded mirror
shape Awj; in a predefined time T. The second control objective is the stabilization of the
deformable mirror shell by feedback control X ;,; along the generated trajectory y,; and in its
final position Aw; with respect to external disturbances and model uncertainties.

*

4.1. Design of the trajectory generator Ztm]-

x
traj
reaches its final value Aw; ]within a fixed transition time T. In Figure 7, the piecewise
constant input Aw* and filtered output signal y, are illustrated for a single set-point change.
Since the deformable mirror consists of many inputs and outputs, the signals Aw* and y,
are vectorial variables containing deformation values either in modal or physical coordinates.
The choice of units can be driven by the higher-ranking AO control loop and is only of minor
importance for the following section.*

The trajectory generator X}, . generates a continuously differentiable output signal y,; that

T —rT T T
_ s0f -
o
S,
) 0 ]
©
2 50l Actuator/Sensor 21
a
£ Actuator/Sensor 110
< 100 Actuator/Sensor 537 S
-150 | | ] | i L1
10° 10’ 10° 10°

Frequency [Hz]

U

10 10’ 10 10
Frequency [Hz]

Figure 5. Bode diagram of the analytical local transfer functions of a deformable mirror at different co-located actuator/sensor
positions (normalized).

4 A linear forward or backward transformation can be used to transform physical coordinates w(r, 6, t) into modal
coordinates fi(t) using the orthonormal eigenfunctions Wi (r,6) in 13.
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Model-based y-1 7
Shape Controller [T “stat d
=1
Ll = o
w* s Y4 U
traj O Zctrl O Actuators
Required Mirror
Deforgation Y Deformable Mirror l J l J

(MIMO System)

Deformable Mirror Sensors
Shape Control

Figure 6. Two-degree-of-freedom structure for shape control of deformable mirrors modeled as a multi-input multi-ouput

(MIMO) system with co-located non-contacting force actuators and position sensors consisting of a trajectory generator Z;‘m]-,
-1

a static and a dynamic model-based feedforward controller £,

; and Zd‘yln, and a feedback controller £;,;.

w'(t)

Ya(t)

*
w,
1t0 t

*

Figure 7. lllustration of a general input signal Aw* () and the resulting output signal y;(t) of the trajectory generator szj

within a fixed transition time T = t, — #;.

There are several ways to generate the output signal y; based on the step input Aw*, e.g.
finite impuls response (FIR) filters, sigmoid basis functions, or segmented polynomials.
In [20] and [21] a detailed introduction to this topic is given with respect to control of
deformable mirrors. A more general and comprehensive discussion on trajectory generation
can be found in [45]. Here, a polynomial ansatz function is used to generate the output signal
yg for simplicity.

Depending on the required smoothness of v, the reference trajectory y, is described by

a0 Ya(t) = Aw] + (Aw; — Awy)x(t —ty), te€ftot], =ty +T, (21)

traj *
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with

0 ift < (t —to)

(2n4+1)! & (—1)"" o \ig2n—i+1
K(t) = n!(tl—to)Z”“i;O i!(n—i)!(Zn—i+1)(t1 fo)'t (22)

ifogtg(tl—fo)

1 ift > (H —tp).

The transition time T must be chosen shorter than the higher-ranking AO loop cycle time
but long enough to comply with input constraints of the force actuators. The shorter the
transition time T is chosen, the higher the required input forces u will be in order to drive
the mirror from one deformation to another one. The required smoothness of the trajectory
Y4 depends on the parameter n and should be chosen n > 3 in order to be able to apply the
model-based feedforward control scheme presented in the next section.

4.2. Design of the model-based feedforward controller Zs_t;t and Z;yln

The basic idea of model-based feedforward control is the application of a desired input signal
u,(t) such that the system response y(t) follows a desired output behavior y,(t) (see Figure
6). The transient deformation of the deformable mirror is described by the planned output
y4(t) and leads to a new steady shape Awj; using an inverse model of the system dynamics
of the DM. The design of the desired response y,(t) is performed in the on-line trajectory
generator X; i described in Section 4.1.

As shown in Figure 6, the feedforward control concept is seperated into a static and a

i and Z;yln. The feedforward component Z;yln contains the dynamic

inverse of the relevant mirror dynamics and is based on the modal system dynamics (19)

dynamic component ¥

reading
) A+ Kap} i 1 MU
_g(t)+--——;ﬁ——i,g(t)+--Eﬁljyu):: 2 Wilrm, On) tm(t), (23)
—_— N~~~ ~ m=1
2d;w; w? b

] ]

By transforming the desired output behavior y; into modal coordinates f;(t) with relation
(13), the left hand side of Equation (23) is fully defined by the desired modal output behavior
fx(f) and the first two time derivatives of fi(t). Thus, the dynamic part of the required input
command u; achieving the planned output behavior f;(t) can be computed as

Z%:u%@:%@@+%wﬂ”ﬂ%@) (24)

for a limited number of j = 1,...,N dynamic eigenmodes. Since viscous and Rayleigh
damping typically increase for higher order eigenmodes, it is not necessary to consider

all eigenmodes in the dynamic feedforward component Z;yln. Instead, it is sufficient to
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Figure 8. Measured step responses of the first and second eigenfunctions of an Alpao DM88 deformable membrane mirror
without feedforward control showing a settling time above 5-10 ms

consider only the static components of the inverse system dynamics (23) and compute a
static command u5i% (t) as

_ 1
Sam un (1) = o (WF(0). (25)
]
Afterwards, the final feedforward command u; can be computed as

ug(t) = u™" () + 1 (8). (26)

Regarding the computational complexity, in [20] is shown that the computational demands
of feedforward control scale quadratically with the number of system inputs and outputs.
However, since the control signal only needs to be computed with the frequency of the outer
AO-loop (e.g. 1kHz in modern astronomical AO systems), there are currently no burdens
for a practical implementation in existing systems.

In Figure 8 and Figure 9 measurement results of a setpoint change without and with
feedforward control for an Alpao deformable mirror with 88 voice coil actuators is shown.
In the experiment, the first two eigenfunctions of the deformable mirror are excited by a
modal step input (spatially distributed step command for all 88 actuators at the same time)
and a model-based feedforward control input u; (spatially distributed time-varying signal
for all 88 actuators) based on a polynomial of degree n = 3 and identified modal damping
and eigenfrequencies in (24). Clearly, overshoot and settling time of the feedforward scheme
show considerable improvements to a pure step command. Thereby, no feedback control

is implemented at this stage and only the trajectory generator Z;‘r aj and the inverse modal

system dynamics Z;yln are used to generate the control command u = u; (see Figure 6).

Feedforward control of deformable membrane mirrors has also been demonstrated at the P45
adaptive secondary prototype of the Large Binocular Telescope adaptive secondary mirror
in [21] with similar results. In addition, a flatness based feedforward control is proposed
therein in case of zero dynamics in the differential equation (19).

In order to further improve the system response to feedforward control and in order to
add additional disturbance rejection capabilities to the DM control scheme, a model-based
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Figure 9. Measured responses of the first and second eigenfunctions of an Alpao DM88 deformable membrane mirror with
feedforward control showing a settling time of 2 ms

feedback controller is designed in the following section and its sparse structure for local
implementation is discussed.

4.3. Design of the model-based feedback controller X,

Feedforward control combined with suitable trajectory generation methods improve the
input output behavior of deformable mirrors significantly. However, in case of model
uncertainties or external disturbances, the tracking performance shown in Figure 9 can
be affected considerably. For this reason, active position feedback is integrated in modern
deformable mirrors measuring the local mirror position at each actuator generating an error
compensation command.

Due to the spatially distributed mirror dynamics, global instead of local position control of
deformable mirrors is the most promising solution for error compensation and disturbance
rejection. However, the computational complexity for high order spatial control of the
deformable element typically exceeds available computing power. For this reason, existing
deformable membrane mirrors for large telescopes incorporate local feedback instead of
global feedback control and neglect some of the global dynamics of the deformable mirror
[10, 13, 14, 46-48]. As a side effect, dynamic coupling of separately controlled actuators
through the deformable membrane can lead to instability of the individually stable loops
and draws the need for carefully designing the control parameters of the local feedback
loops.

In the following, an advanced control concept for position control of large deformable mirrors
is derived based on the detailed dynamical model of the deformable mirror (7), suitable
boundary conditions (9)-(12), and its represenation in modal coordinates (23). The presented
controller design differs from existing ones since it incorporates a detailed mirror model and
comprises a decentralized structure at the same time.

For feedback controller design, the first N relevant modal differential equations (23) are
combined in state space form as

y(#) =Cx(t), (27)
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withx(t) = [f1(t) fa(t) ... fn(t) f fo fN(t)]l and system matrices

0 0 O 0 1 0 0 0 T
L;Tﬁi‘ 0 0 0 Ad:—’,idﬁ% 0 0 0
0O 0 O 0 0 1 0 0
0 28 o 0 0 AdmE g 0
0 028 .0 0 0 Autubs 0
O o0 0 ... 0 0 1
0 0 o .2 0 0 o . Arhub]
[ Wi(ry,61) ... Wi(rm,0m) |
Wa(r1,601) ... Walrm,Om)
i : :
B = _h WN(T’l,Gl) WN(T’M,GM) ’ (29)
P 0 0
0 . 0o |
Wl(rl,f)l) WN(T'l,Gl) 0...0
W1 (7’2, 92) WN(TQ, 92) 0...0
C= _ _ . N (30)

Wl(TM,QM) WN(T’M,QM) 0...0

A global multi-input multi-ouput linear quadratic regulator is designed for controlling the
system along the planned trajectory x;(t) using the optimization criterion

J= [ Gel) = xa(8)" Q (x(8) = x4(1)) + () Ru(t)dt, Q)
0

with Q being a positive definite and R being a positive semi-definite matrix. Assuming the
pair (A, Q) is observable, a minimization of (31) can be achieved by the state feedback

T o u(t) = =K (x(8) = x4(¢)) (32)
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with
K=R!'BTP. (33)
The matrix P is the symmetric, positive definite solution of the matrix Ricatti equation
ATP+PA—PBR'BTP+Q =0 (34)

and can be computed efficiently in modern mathematical computing languages (e.g. Matlab).
By choosing Q = CT¢iCand R = Icy, the optimization criterion for a deformable mirror with
M inputs and M outputs simplifies to

m=1

T M
J= [ X (cht) +eady(t)) a (35)
0

and a decentralized controller can be computed via (33) and (34). The particular choice
of weight matrices Q and R is the essential step for a decentralized controller in the LOR
framework. The coefficients c; and c, are used to tune the closed loop disturbance rejection
and robustness until certain settling time and gain margins are achieved.

Since the controller K requires modal signals x(t), a feedback controller K, in physical

coordinates can be computed performing an inverse modal transformation I'"! from (13)
reading

K, =T K. (36)

with the feedback law

u(t) = =Ky ([2(8) #(5)]" = [xa(t) 2a(D]7) - (37)

For comparison, the closed loop transfer functions at selected co-located actuator/sensor
locations with active LQ feedback are shown in Figure 10. In comparison to the open
loop transfer functions in Figure 5, all relevant low and high frequency resonances are
fully damped in the closed loop case and the resulting bandwidth of the deformable mirror
exceeds 1kHz. In order to tune the resulting performance for existing deformable mirrors, a
variation of parameters c; and ¢, can be performed easily in practice.
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Figure 10. Bode diagram of the closed loop local transfer functions at different co-located actuator/sensor positions using
decentralized LQR control (normalized).

In Equation (37), it can be seen that the columns of K;, contain information about how
much displacement and velocity feedback is required for a certain actuator in vector u(t).
A visualization of entries in K, shown in Figure 11 reveals that only a limited amount
of displacement and velocity information around each actuator is needed to compute the
feedback signal u(t). This property can be used to truncate the spatial extension of the
global LQ regulator and leads to a decentralized control scheme.

For a deformable mirror with 672 actuators and sensors, the corresponding normalized
entries of the state feedback matrix K, are visualized in Figure 11. Clearly, a choice of ¢; =
1000 and ¢, = 0.1 results in a fully decentralized structure of K. Comparing the position
and velocity feedback entries of K, in Figure 11, dynamic effects of boundary conditions and
actuator position can be seen. Consequently, a model-free decentralized control law for all
actuators seems unreasonable and the suggested linear quadratic regulator approach should
be considered when designing deformable mirror controllers for astronomical telescopes or
comparible application areas. Depending on the truncation area, the computational demands
of this control concept scale linearly with the number of actuators and show the applicability
of global LQ - control for shape control of large deformable mirrors in general.

Although controller K requires full state information, the state feedback controller can be
transformed into an output feedback controller using loop transfer recovery (LTR) and results
in an output controller X ;,; as shown in Figure 6. The ouput controller can be implemented
on existing hardware as a finite impulse response (FIR) filter for each actuator/sensor pair
where the number of filter coefficients is mainly driven by the acceptable approximation
error of the loop transfer recovery approach.
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Figure 11. Vislization of the decentralized spatial structure of the feedback matrix K, for selected co-located actuator/sensor
pairs.

5. Conclusion

Control of deformable mirrors becomes relevant when the mirror dynamics are slower
or equivalent with the dynamics of optical disturbances that shall be compensated by
the deformable mirror. Active shape control of deformable mirrors can thereby increase
the mirrors bandwidth and make it suitable for the AO task, again. When designing a
model-based shape controller for a deformable mirror in a two-degree-of-freedom control
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structure, there are three components to be considered (see Figure 6): First, a trajectory

generator ¥;,,; providing continuous reference trajectories y, for fast setpoint changes of the

-1
sta

control commands for driving the mirror along the precomputed trajectory based on inverse
system dynamics. Finally, a feedback controller X ;,; responsible for compensation of model
errors in the feedforward part and rejection of external disturbances.

DM shape. Second, a static and dynamic feedforward controller X, , and Z;yln generating

In this chapter, model-based design steps for all three components were shown supported by
experimental and simulation results. The key for decentralized controller design is the right
choice of weighting matrices Q and R in the LQOR framework. Followed by a loop transfer
recovery approach, the state feedback controller can be transformed into an ouput feedback
controller that can be implemented as FIR filters on existing hardware.

Future astronomical optical telescopes, e.g. the European Extremely Large Telescope
(E-ELT) or the Giant Magellan Telescope (GMT), will include deformable mirrors with many
thousand actuators and position sensors. Due to the inherent slow dynamics of the large
deformable mirror shells, active shape control of these elements is inevitable. Model-based
shape control in a two-degree-of-freedom structure can greatly improve the performance of
these elements and should be considered for comparible AO systems with high performance
requirements, also.
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