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1. Introduction 

The Classical Fracture Mechanics (CFM) quantifies velocity and energy dissipation of a 

crack growth in terms of the projected lengths and areas along the growth direction. 

However, in the fracture phenomenon, as in nature, geometrical forms are normally 

irregular and not easily characterized with regular forms of Euclidean geometry. As an 

example of this limitation, there is the problem of stable crack growth, characterized by the 

J-R curve [1, 2]. The rising of this curve has been analyzed by qualitative arguments [1, 2, 3, 

4] but no definite explanation in the realm of EPFM has been provided. 

Alternatively, fractal geometry is a powerful mathematical tool to describe irregular and 

complex geometric structures, such as fracture surfaces [5, 6]. It is well known from 

experimental observations that cracks and fracture surfaces are statistical fractal objects [7, 8, 

9]. In this sense, knowing how to calculate their true lengths and areas allows a more 

realistic mathematical description of the fracture phenomenon [10]. Also, the different 

geometric details contained in the fracture surface tell the history of the crack growth and 

the difficulties encountered during the fracture process [11]. For this reason, it is reasonable 

to consider in an explicit manner the fractal properties of fracture surfaces, and many 

scientists have worked on the characterization of the topography of the fracture surface 

using the fractal dimension [12, 13]. At certain point, it became necessary to include the 

topology of the fracture surface into the equations of the Classical Fracture Mechanics 

theory [6, 8, 14]. This new “Fractal Fracture Mechanics” (FFM) follows the fundamental 

basis of the Classical Fracture Mechanics, with subtle modifications of its equations and 

considering the fractal aspects of the fracture surface with analytical expressions [15, 16]. 

The objective of this chapter is to include the fractal theory into the elastic and plastic energy 

released rates 0G  and 0J , in a different way compared to other authors [8, 13, 14, 17, 18, 19]. 

The non-differentiability of the fractal functions is avoided by developing a differentiable 
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analytic function for the rugged crack length [20]. The proposed procedure changes the 

classical 0G , which is linear with the fracture length, into a non-linear equation. Also, the 

same approach is extended and applied to the Eshelby-Rice non-linear J-integral. The new 

equations reproduce accurately the growth process of cracks in brittle and ductile materials. 

Through algebraic manipulations, the energetics of the geometric part of the fracture process 

in the J-integral are separated to explain the registered history of strains left on the fracture 

surfaces. Also, the micro and macroscopic parts of the J-integral are distinguished. A 

generalization for the fracture resistance J-R curve for different materials is presented, 

dependent only on the material properties and the geometry of the fractured surface.  

Finally, it is shown how the proposed model can contribute to a better understanding of 

certain aspects of the standard ASTM test [15]. 

2. Literature review of fractal fracture mechanics 

2.1. Background of the fractal theory in fracture mechanics 

Mandelbrot [21] was the first to point out that cracks and fracture surfaces could be 

described by fractal models. Mecholsky et al. [12] and Passoja and Amborski [22] performed 

one of the first experimental works reported in the literature, using fractal geometry to 

describe the fracture surfaces. They sought a correlation of the roughness of these surfaces 

with the basic quantity D  called fractal dimension. 

Since the pioneering work of Mandelbrot et al. [23], there have been many investigations 

concerning the fractality of crack surfaces and the fracture mechanics theory. They analyzed 

fracture surfaces in steel obtained by Charpy impact tests and used the "slit island analysis" 

method to estimate their fractal dimensions. They have also shown that D  was related to 

the toughness in ductile materials. 

Mecholsky et al. [12, 24] worked with brittle materials such as ceramics and glass-ceramics, 

breaking them with a standard three point bending test. They calculated the fractal 

dimension of the fractured surfaces using Fourier spectral analysis and the "slit island" 

method, and concluded that the brittle fracture process is a self-similar fractal. 

It is known that the roughness of the fracture surface is related to the difficulty in crack 

growth [25] and several authors attempted to relate the fractal dimension with the surface 

energy and fracture toughness. Mecholsky et al. [24] followed this idea and suggested the 

dependence between fracture toughness and fractal dimension through 

  1/2
*

0ICK E D a  (1) 

where E is the elastic modulus of the material, 0a  is its lattice parameter, *D D d   is the 

fractional part of the fractal dimension and d is the Euclidean projection dimension of the 

fracture.  
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Mu and Lung [26] suggested an alternative equation, a power law mathematical relation 

between the surface energy and the fractal dimension. It will be seen later in this chapter that 

both suggestions are complementary and are covered by the model proposed in this work. 

2.2. The elasto-plastic fracture mechanics 

There have been several proposals for including the fractal theory into de fracture 

mechanics in the last three decades. Williford [17] proposed a relationship between fractal 

geometric parameters and parameters measured in fatigue tests. Using Williford’s proposal 

Gong and Lai [27] developed one of the first mathematical relationships between the J-R curve 

and the fractal geometric parameters of the fracture surface. Mosolov and Borodich [32] 

established mathematical relations between the elastic stress field around the crack and the 

rugged exponent of the fracture surface. Later, Borodich [8, 29] introduced the concept of 

specific energy for a fractal measurement unit. Carpinteri and Chiaia [30] described the 

behavior of the fracture resistance as a consequence of its self-similar fractal topology. They 

used Griffith’s theory and found a relationship between the G-curve and the advancing crack 

length and the fractal exponent. Despite the non-differentiability of the fractal functions, they 

were able to obtain this relationship through a renormalizing method. Bouchaud and Bouchaud 

[31] also proposed a formulation to correlate fractal parameters of the fracture surface. 

Yavari [28] studied the J-integral for a fractal crack and showed that it is path-dependent. He 

conjectured that a J-integral fractal should be the rate of release of potential energy per unit 

of measurement of the fractal crack growth. 

Recently, Alves [16] and Alves et al. [20] presented a self-affine fractal model, capable of 

describing fundamental geometric properties of fracture surfaces, including the local and 

global ruggedness in Griffith´s criterion. In their formulations the fractal theory was 

introduced in an analytical context in order to establish a mathematical expression for the 

fracture resistance curve, putting in evidence the influence of the crack ruggedness.  

3. Postulates of a fracture mechanics with irregularities 

To adapt the CFM, starting from the smooth crack path equations to the rugged surface 

equations, and using the fractal geometry, it is necessary to establish in the form of 

postulates the assumptions that underlie the FFM and its correspondence with the CFM. 

I. Admissible fracture surfaces 

Consider a crack growing along the x-axis direction (Figure 1), deviating from the x-axis 

path by floating in y-direction. The trajectory of the crack is an admissible fractal if and only 

if it represents a single-valued function of the independent variable x. 

II. Scale limits for a fractal equivalence of a crack 

The irregularities of crack surfaces in contrast to mathematical fractals are finite. Therefore, 

the crack profiles can be assumed as fractals only in a limited scale 0 0 0 maxl L L   [36]. The 
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lower limit 0l  is related to the micro-mechanics of the cracked material and the upper limit 

0 maxL is a function of the geometric size of the body, crack length and other factors. 

 

Figure 1. Rugged crack and its projection in the plan of energetic equivalence. 

III. Energy equivalence between the rugged crack surface and its projection 

Irwin apud Cherepanov et al. [36] realized the mathematical complexity of describing the 

fracture phenomena in terms of the complex geometry of the fracture surface roughness in 

different materials. For this reason, he proposed an energy equivalence between the rough 

surface path and its projection on the Euclidean plane.  

In the energetic equivalence between rugged and projected crack surfaces it is considered 

that changes in the elastic strain energy introduced by a crack are the same for both rugged 

and projected paths, 

 0L LU U  (2) 

where the subscript " 0 " denotes quantities in the projected plane. Consequently, the surface 

energy expended to form rugged fracture surfaces or projected surfaces are also equivalent, 

 0U U   (3) 

IV. Invariance of the equations 

Consider a crack of length L  and the quantities that describe it. Assuming the existence of a 

geometric operation that transforms the real crack size L  to an apparent projected size 0L , 

the length L  may be described in terms of 0L  by a fractal scaling equation, as presented in a 

previous chapter. 

It is claimed that the classical equations of the fracture mechanics can be applied to both 

rugged and projected crack paths, i.e., they are invariant under a geometric transformation 

between the rugged and the projected paths. In the crack wrinkling operation (smooth to 

rough) it is desired to know what will be the form of the fracture mechanics equations for 

the rough path as a function of the projected length 0L , and their behavior for different 

roughness degrees and observation scales.  
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V. Continuity of functions 

It is considered that the scalar and vector functions that define the irregular surfaces 

 ,A A x y
 

 are described by a model (as the fractal model) capable of providing analytical 

and differentiable functions in the vicinity of the generic coordinate points  , ,P P x y z , so 

that it is possible to calculate the surface roughness. Thus, it is always possible to define a 

normal vector in corners. 

VI. Transformations from the projected to rugged path equations 

As a consequence of the previous two postulates, it can be shown using the chain rule that 

the relationship between the rates for projected and rugged paths are given by 

 
   0

0 0

df L df L dL

dL dL dL
  (4) 

This result is used to transform the equations from the rugged to the projected path. 

4. Energies in linear elastic fracture mechanics for irregular media  

The study of smooth, rough, fractal and non-fractal cracks in Fracture Mechanics requires 

the development of their respective equations of strain and surface energies. 

4.1. The elastic strain energy UL for smooth, rugged and fractal cracks 

Consider three identical plates of thickness t , with Young’s modulus E´, subjected to a 

stress  , each of them cracked at its center with a smooth, a rugged and a fractal crack as 

shown in Figure 2. The area of the unloaded elastic energy due to the introduction of the crack 

with length lL  is 

 2
l l lA m L  (5) 

where lm   is the shape factor for the smooth crack. The accumulated elastic energy is 

 
2

2 'eU dV
E


    (6) 

Thus, the elastic energy released by the introduction of a smooth crack with length lL  is 

 
2 2

2 '
l l

l l
l

L
U m t

E


    (7) 

For an elliptical crack the unloaded region can be considered almost elliptical and the shape 

factor is 
lm  , thus 
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2 2

2 '
l l

l
l

L
U t

E


    (8) 

 

Figure 2. Griffith model for the crack growth introduced in a plate under  stress: a) flat crack and 

initial length lL  with increase ldL  in size; b) rugged crack and initial length L  with increase dL in size; 

c) fractal crack, showing increase dL  in size. 

Analogously, the area of the unloaded elastic energy due to the introduction of a rugged 

crack of length L  is given by 

 2*A m L  (9) 

where *m  is a shape factor for the rugged crack. Thus, the elastic energy released by the 

introduction of a rugged crack with length L  is 

 
2 2

*
2 '
r

L

L
U m t

E


    (10) 

Considering that the rugged crack is slightly larger than its projection, then 

 0L L  (11) 

Consequently, the change of elastic strain energy from the point of view of the projected 

length 0L  can be expressed as: 

 
2 2

0 0
0 *

2 'L

L
U m t

E


    (12) 

where 0 r   . 
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4.2. A self-affine fractal model for a crack - LEFM 

To take the roughness into account, it will be inserted in the CFM equations a self-affine 

fractal model developed in a previous chapter of this book. 

4.2.1. The relationship between strain energies for rugged UL and projected UL0 cracks in 

terms of fractal geometry 

The crack length of the self-affine fractal can be expressed as 

 

 2 2 1

0 0
0

0 0

1

H
H L

L L
l l


   

        
   

 (13) 

where 0H  is the vertically projected crack length and the unloading fractal area of the 

elastic energy can be expressed as a function of the apparent length, 

 2
0 0 0A m L  (14) 

And results that 

  
2 2 22

0 0
0 0 0

0 0 0

2 * 1 2
2 '

H

r
L

H l
U m t H L dL

E l L


                    

  (15) 

Therefore, the elastic energy released by the introduction of a crack length 0L  is 

 
2 2

0 0
0

0

*
2 'L

L
U m t

E


    (16) 

where 

2 2 2

0 0
0

0 0

1

H

r

H l

l L
 


   

        
   

  

Observe that equation (12) is recovered from equation (16) applying the limits 0 0 0H l L   

and 1.0H   with 0r   and 0' 'E E . 

To understand the effect of crack roughness on the change of elastic strain energy, one may 

consider postulates III and IV, thus 

 

2 2 22 2
0 0 0

0 0

*
1

2 '

H

r
Lo L

m L H l
U U

E l L


                      

 (17) 

It can be noticed that for 1H  , which corresponds to a smoother surface, the relationship 

between the strain energy and the projected length 0L  is more linear. While for 0H  , 
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which corresponds to a rougher surface, this relationship is increasingly non-linear. This is 

reasonable since the more ruggedness, more elastic strain per unit of crack length. 

4.2.2. Relationship between the applied stress on the rough and projected crack lengths 

Comparing (8), (10) and (12), one has 

 
0

*
L Ll L

m
U U U


 

     
 

 (18) 

Then, from postulate III, i.e., the following relationship is valid only for the situation of free 

loading without crack growth. 

 

22 2
0

0 0' '
r L

E E L

   
   

 
 (19) 

Using equation (13) in (19), one has the resilience as a function of the projected length 0L  

  
    

      
     

2 2 22 2
0 0 0

0 0 0

1
1

2

H
H l

E E l L
 (20) 

Or, the rugged length L  can be written in terms of the projected length 0L , thus 

 0
0

0

'

' r

E
L L

E



 

   
 

 (21) 

Since the elasticity modulus is independent of the crack path, one has 

 
0 0 rL L   (22) 

Substituting equation (13) in equation (22), one has the relationship between stresses on the 

rough and projected surfaces, 

 

1/2
2 2 2

0 0
0

0 0

1
2

H

r H l

l L




                  

 (23) 

This last result is still incomplete since it is not valid for crack propagation. For its correction 

it will be considered that the elastic energy released rate G  can be expressed as a function of 

0G  according to equation (4). 

4.2.3. The surface energy U0 for smooth, rugged and projected cracks in accordance with 

fractal geometry  

The surface energy of a smooth and a rugged crack are, respectively, given by 
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 2

2

l l l

l l l

U L t

U tL









 

 
 (24) 

and 

 
 2

2

L r

L r

U Lt

U tL









 

 
 (25) 

Using equation (11), the surface energy of the projected length 0L  is given by 

 
 0 0 0

0 0 0

2

2

U tL

U tL









 

 
 (26) 

where 0 r   . The surface energy equation (25) can be rewritten in terms of the projected 

length 0L  of a self-affine fractal crack 

 
2 2 2

0 0
0 0

0 0

2 1

H

r

H l
U tL

l L 


   
         

   
 (27) 

To see the influence of crack roughness on the surface energy, one may consider postulates 

III and IV, thus 

 

2 2 2

0 0 0
0

0 0

2
1

2

H

rL H l
U U

l L 



   

         
   

 (28) 

5. Stable or quasi-static fracture mechanics to the rough path 

In this section, a review of the conceptual changes introduced by Irwin (1957) in Griffith's 

theory (1920) is presented considering an irregular fracture surface, taking into account the 

postulates previously proposed. The purpose of this section is to use the mathematical 

formalism of Linear Elastic Fracture Mechanics for stable growth of smooth cracks, 

generalizing it to the case of an irregular rough crack. 

5.1. The Griffith energy balance in terms of fractal geometry 

According to Griffith´s energy balance, one has 

   0T i LdU d U U F U      (29) 

whilst 

 LF U U   (30) 
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Where UT is the total energy, iU is the initial potential elastic energy, F is the work done by 

external forces, LU  is the change of elastic energy stored in the body caused by the introduction 

of the crack length 0L  and U  is the energy released to form the fracture surfaces. 

One can now add the contributions of 0LU  and 0U  to reproduce Griffith´s energy 

balance in a fractal vision. In other words, 

 T i LU U U U F        (31) 

and 

 

2 2 2 2 2 22 2
0 0 0 0 0

0 0 0 0

2
( 1 1 ) 0

2 2

H H

o
i

l

L H l L H ld
U F

dL E l L l L

 
                                       

 (32) 

This new result is shown in Figure 3, which is analogous to the traditional Griffith energy 

balance graphs, but distorted due to the roughness of the fracture surface. Observe that for a 

reference total energy value the roughness of the crack surface tends to increase the critical 

size of the fracture 0CL  compared to a material with a smooth fracture  lC CL L . This is 

due to the roughness being a result of the interaction of the crack with the microstructure of 

the material. 

 

Figure 3. Griffith´s energy balance in the view of the fractal geometry of fracture surface roughness. 

5.2. The modification of Irwin in Griffith´s energy balance theory for smooth, 

rugged and projected cracks 

Irwin found from Griffith´s instability equation, given by (29), that this instability should 

take place by varying the crack length, so 
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   0i L

d
U U U F

dL      (33) 

which can be rewritten as 

 ( )L

dUd
F U

dL dL

   (34)  

since iU  is constant. On the left hand side of equation (34), LdF dL dU dL  is the amount 

of energy that remains available to increase crack extension by an amount dL . On the right 

hand side of equation (34), dU dL  is the surface energy that must be released to form the 

rugged crack surfaces. This energy is the crack growth resistance. 

Deriving equation (30) with respect to the projected crack length 0L , one has 

 
0 0

( )L

dUd
F U

dL dL

   (35) 

Considering postulate II, one can apply the derivation chain rule and obtain 

 
0 0

( )L

dUd dL dL
F U

dL dL dL dL

   (36) 

Considering the following cases: 

i. Fixed grips condition with F constant : since 2 2
0 0* 2 'L LU U m L E    decreases with 

the crack length, and using equations (10) and (25) in (36), one can derive 

 

2*
2 .

'
r

r

m L

E


  (37) 

Or, by using equations (17) and (26) in (35), one finds 

  
2 2 22

0 0 0
0

0 0

*
1 2 2 .

2 '

H

rm L H l
H

E l L




                  
 (38) 

ii. Condition of constant loading or stress, where necessarily 2 LF U , since 

2 2
0 0* 2 'L LU U m L E   increases with the work of external forces, and using 

equations (10) and (25) in (36), one can find 

 
2*

2 .
'
r

r

m L

E


  (39) 
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Or, by using equations (17) and (26) in (35), one has 

  
2 2 22

0 0 0
0

0 0

*
1 2 2 .

2 '

H

rm L H l
H

E l L




                  
 (40) 

Irwin defined the elastic energy released rate G  and the fracture resistance R  in equation 

(34), like 

 

 
( )Ld F U

G
dL


  (41) 

and 

 .
dU

R
dL

  (42) 

These definitions can be extended to the terms in equation (35), so 

0 0G R  0
0

0

( )Ld F U
G

dL


  (43) 

and 

 
0

0
0

.
dU

R
dL

  (44) 

Notice that the proposal made by Irwin extended the concept of specific energy eff  to 

the concept of R-curve given by equation (42), allowing to consider situations where the 

microstructure of the material interacts with the crack tip. In this way, it is assumed that 

the surface energy is dependent on the direction of crack growth.  

Finally, using equations (41) and (42) in (36), the Griffith-Irwin criterion is obtained, 

 
0 0

.
dL dL

G R
dL dL

  (45) 

5.3. Comparative analysis between smooth, projected and rugged fracture 

quantities 

Based on the results of the previous section, further analyses of the magnitudes of the 

Fracture Mechanics are performed in order to obtain a mathematical reformulation for an 

irregular or rugged Fracture Mechanics. 



 
Fractal Fracture Mechanics Applied to Materials Engineering 79 

5.3.1. Relationship between the elastic energy released rate rates for smooth, projected and 

rugged cracks 

Using the chain rule, it is possible to write 0G  in terms of G , 

 0
0

dL
G G

dL
  (46) 

The energetics equivalence between the rugged surface and its projection establishes that 

the energy per unit length along the rugged path is equal to the energy per unit length along 

the projected path. Notice that 

 
0

0

L LdU dU

dL dL
  (47) 

since 0 1dL dL  , therefore, 

 0 .G G  (48) 

The elastic energy released rates for the projected and rugged paths are, respectively 

 

2
0 0 0

0
0 0

*

'
LdU m L

G
dL E


   (49) 

and 

 

2*
.

'
rL m LdU

G
dL E


   (50) 

Combining these expressions and including, for comparison, the elastic energy released rate 

for a smooth path, one has for infinitesimal crack lengths, 

 0
0 0

*l
l

dL m dL
G G G

dL dL
 

  
 

 (51) 

Considering that the smooth crack length is equal to the projected crack length, one has 

 0
0

*
l

m dL
G G G

dL
 

  
 

 (52) 

Observe that the difference between the elastic energy released rate for the smooth, rugged 

and projected cracks is the ruggedness added on crack during its growth. Using a 

thermodynamic model for the crack propagation, it can be concluded that a rugged crack 

dissipates more energy than a smooth crack propagating at the same speed. 
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The elastic energy released rate 0G  can be written in terms of a fractal geometry, 

 

2 2 22
0 0

0 0
0 0

*
1 (2 )

'

H

rm H l
G L H

E l L


                   

 (53) 

5.4. The crack growth resistance R for smooth, projected and rough paths 

Considering a plane strain condition, crack growth resistance for a smooth crack is given by 

 
l

l
l

dU
R

dL

  (54) 

Substituting equation (24) in equation (54), one finds 

 2l lR   (55) 

Observe that if the fracture path is smooth, the specific surface energy l  is a cleavage 

surface energy and does not necessarily depend on the crack length. This model is only 

valid for brittle crystalline materials where the plastic strain at the crack tip does not absorb 

sufficient energy to cause dependence between fracture toughness and crack length. 

Similarly, for a rugged crack, the fracture resistance to propagation is given by 

 2 rR   (56) 

The concept of fracture growth resistance for the projected surface is given by 

 0
0

dU
R

dL

  (57) 

and substituting equation (26) in equation (57), one has 

 0 02R   (58) 

Again, this model is valid for ideally brittle materials where there is almost no plastic strain 

at the crack tip. It basically corresponds to the model presented by Griffith, with a modified 

interpretation introduced by Irwin with the G R  curve concept. 

5.5. Relationship between rugged R and projected 0R  fracture resistances  

Using the chain rule, and admitting Irwin´s energetic equivalence represented by equation 

(3), the projected fracture resistance can be written on the basis of the resistance of the real 

surface, 
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0

0

dL
R R

dL
  (59) 

where 0/dL dL  is derived from equation (13), 

 

2 2 2

0 0

0 0

2 2 2
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0 0

0 0

1 (2 )

1

2 1

H

H

H l
H

l LdL
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H l

l L





   
        

    
                 

 (60) 

Therefore, the crack growth resistance ( R -curve), which is defined for a flat projected 

surface, is given substituting equation (56) and equation (60) in equation (59), 

 

2 2 2

0 0

0 0
0

2 2 2

0 0

0 0

1 (2 )

2

2 1

H

r
H

H l
H

l L
R

H l

l L







   
        

   
                 

 (61) 

5.6. Final remarks about equivalent quantities of smooth, rugged and projected 

fracture surfaces 

It is important to emphasize that the energetic equivalence between the rugged surface 

crack path and its projection was considered such that the developed equations of the 

Fracture Mechanics for the flat plane path are still valid in the absence of any roughness.  

However, if a flat and smooth fracture lL  is considered with the same length of a projected 

fracture 0L , the energetic quantities and their derivatives have the following relationship, 

 0
0 0

0

LL
Ll L l

l

dUdU
U U G G

dL dL
      (62) 

and 

 
0

0 0
0

,
l

l l
l

dU dU
U U R R

dL dL

 
        (63) 

which have produced conflicting conclusions in the literature [37, 38, 46]. Since the energy 

for the smooth length 0
lL  is smaller than the energy for the projected 0L  or rough L  

lengths, one has 

 
0

Ll L l

dL
U U G G

dL
    (64) 
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and 

 
0

l l

dL
U U R R

dL      (65) 

In postulate III it was assumed that the rugged crack path satisfies the same energetic 

conditions of the plan path, but in the LEFM this roughness is not taken into account, 

causing discrepancies between theory and experiments. For example, it has not been 

possible to explain by an analytical function in a definitive way the growth of the G R  

curve. The proposed introduction of the term 0/dL dL  allows correcting this problem. 

6. The elastic-plastic fractal fracture mechanics 

The non-linear elastic plastic energy released rate 0J  for a crack of plane projected path can 

be extended from the Irwin-Orowan approach. They introduced the specific energy of 

plastic strain p  on the elastic energy released rate 0G  to describe the fracture phenomenon 

with considerable plastic strain at the crack tip. Thus, it is possible to define the elastic 

plastic energy released rate in an analogous way to the definition of the elastic energy 

released rate, 

 
( )Vo

o
o

d F U
J

dL


  (66) 

where VoU  is the volumetric strain energy given by the sum of the elastic and plastic ( plU ) 

contributions to the strain energy in the material. 

6.1. Influence of ruggedness in elastic plastic solids with low ductility  

Considering elastic plastic materials with low ductility where the effect of the plastic term is 

small compared to the elastic term, one can define a crack growth resistance as 

 
2 ( )

,Ro
Ro

K f v
J

E
  (67) 

where ( )f v  is a function that defines the testing condition. For plane stress   1f v  , and 

for plane strain   21f v v   and RoK  is the fracture toughness resistance curve. 

Due to the ruggedness, the crack grows an amount 0dL dL  and correcting equation (59), 

one has  

  2 .o e p
o o

dU dL dL
R

dL dL dL

      (68) 

Similarly, 
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  (69) 

The energy balance proposed by Griffith-Irwin-Orowan, for stable fracture, is 

 .o oJ R   (70) 

Therefore, for plane stress or plane strain conditions, one can write from equation (61) that, 
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Ro e p

o

K f vdL
J

dL E
 (71) 

Thus, 
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Knowing that fracture toughness is given by 
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,
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  (73) 

one has, 

 .Ro Co
o

dL
K K

dL
  (74) 

From the Classical Fracture Mechanics, the fracture resistance for the loading mode I, is 

given by 

 ,o
IRo o f o

L
K Y L

w


 
  

 
 (75) 

where o
o

L
Y

w

 
 
 

 is a function that defines the shape of the specimen (CT, SEBN, etc) and the 

type of test (traction, flexion, etc), and f  is the fracture stress. Considering the case when 

0 0CL L , then 0 0IR ICK K  and the fracture toughness for the loading mode I is given by 

 .oc
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L
K Y L

w


 
  

 
 (76) 

Therefore, from equation (72) the fracture toughness curve for the loading mode I is given 

by 
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 .IRo ICo
o

dL
K K
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  (77) 

Substituting equation (75) and equation (76) in equation (77), one has 
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Observe that according to the right hand side of equation (78), the ruggedness 0dL dL  is 

determined by the condition of the test (plane strain or stress), the shape of the sample (CT, 

SEBN, etc), the type of test (traction, flexion, etc) and kind of material. 

Considering the fracture surface as a fractal topology, one observes that the characteristics of 

the fracture surface listed above in equation (78) are all included in the ruggedness fractal 

exponent H. Substituting equation (60) in equation (71), one obtains 
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 (79) 

which is non-linear in the crack extension 0L . It corresponds to the classical equation (70) 

corrected for a rugged surface with Hurst's exponent H. Experimental results [1, 2] show 

that J0 and the crack resistance 0R  rise non-linearly and it is well known that this rising of 

the J-R curve is correlated to the ruggedness of the cracked surface [3, 4].  

6.2. The 0J  Eshelby-Rice integral for rugged and plane projected crack paths 

The J-integral concept of Eshelby-Rice is a non-linear extension of the definition given by 

Irwin-Orowan, for the linear elastic plastic energy released rate. In this context the potential 

energy 0  is defined as 

 

0

0 0 . ,
V C

WdV T uds   
 

 (80) 

where W the energy density integral in the in the volume 0V  encapsulated by the boundary 

C  with tractions T


 and displacements u


, and s is the distance along the boundary C , as 

shown in Figure 4. 

Accordingly, 

 
 

      
 
 

 0
0 0

0 0

.
V C

d d
J WdV T uds

dL dL
 (81) 
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where 0dL  is the incremental growth of the crack length. In the two-dimensional case, 

where the fracture surface is characterized by a crack with length 0L  and a unit thickness 

body, one has dV dxdy  and 

 0
0

0 0 0

. .
V C

d dx u
J W dy T ds

dL dL L

  
       

 


 (82) 

For a fixed boundary C , 0d dL d dx  , and the 0J  -integral for the plane projected crack 

path can be written only in terms of the boundary, 

 


 
 


0 . .
V C

u
J Wdy T ds

x
 (83) 

 

Figure 4. Boundary around to the rugged crack tip where is defined the J-Integral [43]. 

Now, the J-R Eshelby-Rice integral theory is modified to include the fracture surface 

ruggedness. Initially, equation (82) is rewritten, 
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From postulate IV, the new J-integral on the rugged crack path is given by 
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  (85) 

where the * symbol represents coordinates with respect to the rugged path. So, in an 

analogous way to the J-integral for the projected crack path given by equation (85), since 

*d dL d dx  , one has 
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Returning to equation (82) and considering postulate III along with the derivative chain rule 

and substituting equation (85), one has 

 0
0 0

*
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V C

d dL dx u dL
J W dy T ds

dL dL dL L dL

  
       

 


  (87) 

Comparing (84) with equation (87) and considering that the rugged crack is a result of a 

transformation in the volume of the crack, analogous to the “bakers´ transformation” of the 

projected crack over the Euclidian plane, it can be concluded that 
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  (88) 

which show the equivalence between the volume elements, 

 * * .dV dx dy dxdy    (89) 

Therefore, the ruggedness 0/dL dL  of the rugged crack path does not depend on the volume 

V, nor on the boundary C  and nor on the infinitesimal element length ds or dy . Thus, it 

must depend only on the characteristics of the rugged path described by the crack on the 

material. Finally, the integral in equation (84) can be written as 

 0
0
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V C

dx u dL
J W dy T ds

dL L dL

 
     

 


  (90) 

where the infinitesimal increment / cos idx dL    accompanies the direction of the rugged 

path L , as show in Figure 4. Thus, 

 cos . cos .i i

V C

u
J Wdy T ds

x
 

 
 


  (91) 

Observe that the J-integral for the rugged crack path given by equation (91) differs from the 

J-integral for the plane projected crack path given by equation (83) by a fluctuating term,

cos i  inside the integral. It can be observed that the energetic and geometric parts of the 

fracture process are separated and put in evidence the influence of the ruggedness of the 

material in the elastic plastic energy released rate, 

 0
0

.
dL

J J
dL

   (92) 

It must be pointed out that this relationship is general and the introduction of the fractal 

approach to describe the ruggedness is just a particular way of modeling. 
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6.3. Fractal theory applied to J-R curve model for ductile materials 

This section includes the formalism of fractal geometry in the EPFM to describe the 

roughness effects on the fracture mechanical properties of materials. For this purpose the 

classical expression of the elastic-plastic energy released rate was modified by introducing 

the fractality (roughness) of the cracked surface. With this procedure the classical expression 

(49) of LEFM, linear with the crack length, is changed into a non-linear equation (53), which 

reproduces with precision the quasi-static crack propagation process in ductile materials. 

Observe that the quasi-static crack growth condition is obtained with Griffith fracture 

criterion, doing 0 0J R  and 0 0 0 0/ /dJ dL dR dL . In this case, it is concluded that the J-R 

curve is given by Griffith criterion 2 effJ   in equations (92) and (59). Therefore, for a self-

affine crack with 0 0H l , one has 
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 (93) 

This model shows in unambiguous way how different morphologies (roughness) are 

correlated with the J-R curve growth. Given the energy equivalence between rough and 

projected surfaces for the crack path, the J-R curve increases due to the influence of the 

roughness, which has not been computed previously with the classical equations of EPFM. 

The J-integral on the rugged crack path is a specific characteristic of the material and can be 

considered as being proportional to CJ  [15], on the onset of crack extension, since in this 

case it has the rugged crack length greater than the projected crack length   0L L . Thus, 

 ~ .o C
o

dL
J J
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 (94) 

Substituting the fractal crack model proposed in equation (60), one has 
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 (95) 

corroborating that the surface specific energy is related to the critical fracture resistance. 

  ~ 2 .C e pJ    (96) 
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6.3.1. Case – 1. Ductile self-similar limit 

The local self-similar limit can be calculated applying the condition 0 0 0H L l   in 

equation (79), obtaining 
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 (97) 

or, with 2D H  , one has 
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This result corresponds to the one found by Mu and Lung [26, 37] for ductile materials. 

Equation (98) is shown in Figure 5, where J-R curves are calculated for different values of 

the fractal dimension D . 2 eff  = 210.0 /KJ m  is adopted and 0 0L l  is the crack length in 0l  

units. This figure shows very clearly how the surface morphology (characterized by D ) 

determines the shape of the J-R curve at the beginning of the crack growth. 

 

Figure 5. J-R curves calculated according to the projected crack length 0L , for a fracture of unit 

thickness, and fractal dimensions 1.0,1.1,1.3,1.5,1.7D   and 2.0  with 22 10 /e KJ m  . 

In Figure 6, J-R curves with fractal dimension 1.3D   are calculated according to the 

projected length 0L  for different measuring rulers 0l , showing how the morphology of 

rugged surface cracks is best described for small values of 0l , causing the pronounced rising 

of J-R curve. Figure 6 and equation (98) show that the initial crack resistance is correlated to 

the surface morphology characterized by dimension D , in accordance with the literature. 

The self-similar limit of J-R curve, given by equation (98), is valid only for regions near the 

onset of the crack growth in brittle materials ( 0 0H L ). This is due to the hardening of the 

material, which gives rise to ruggedness of the fracture surface.  
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In the case of ductile materials, the length of the work hardening zone 
0H  affects an 

increasingly greater area of the material as the crack propagates, but the self-similar limit 

 0 0 0H L l   is still valid. 

 

Figure 6. J-R curves calculated in function of the projected crack length 0L  with different ruler lengths 

0 0.0001,0.001,0.01,0.1l   and 1.0mm , for a fracture of unit thickness, fractal dimension 1.3D   

and 
22 10 /e KJ m  . 

However, in the case of brittle materials (ceramics), after the initial stage of hardening, the 

crack maintains this state in a region of length 0H , very short if compared to the crack 

length 0L , generating a self-similar fractal structure only when the crack length 0L  is small, 

in the order of 0l , i.e., 0 0 0H L l  . When the crack length 0L  becomes much larger than the 

initial size of the hardening region 0H  present at the onset of crack growth, the self-similar 

limit is not valid, and the self-affine (or global) limit of fracture becomes valid. 

6.3.2. Case – 2. Brittle self-affine limit 

It is easy verify that in stable crack growth, where 0 0J R , using equations (59) and (79), 

one has 0/ 1dL dL   when L  . The global self-affine limit of 0J  can be calculated 

applying the condition when the observation scale corresponds to a rather small amplitude 

of the crack, similar in size to the crack increment, i.e., when 0 0 0H l L  in equation (79), 

resulting the linear elastic expression 

 0 2 effJ   (99) 

where 0 0J G  and  

 2 .Ro e pG     (100) 



 

Applied Fracture Mechanics 90 

This result corresponds to a classic one in Fracture Mechanics, which is the general case 

valid for brittle materials as glass and ceramics. 

7. Experimental analyses  

7.1. Ceramic, metallic and polyurethane samples 

The analyzed ceramic samples were produced by Santos [19] and Mazzei [41]. The raw 

material used for its production was an alumina powder A-1000SG by ALCOA with 99% 

purity. Specimens of dimensions 52 8 4mm mm mm   were sintered at 1650 °C for 2  hours, 

showing average 7 mm grain sizes. Their average mechanical properties are shown in Table 

1 with elastic modulus E = 300 GPa and rupture stress 340f MPa  . 

The analyzed metallic samples were multipass High Strength Low Alloy (HSLA) steel weld 

metals and standard DCT specimens. HSLA are divided in two groups based on the 

welding process utilized and the microstructural composition. The first group (A1 and A2 

welds) is composed of C-Mn Ti-Killed weld metals and were joined by a manual metal arc 

process. The second group (B1 and B2 welds), joined by a submerged arc welding process, is 

also a C-Mn Ti-Killed weld metal, but with different alloying elements added to increase the 

hardenability. Mechanical properties of both welds and DCT metals are listed in Table 1.  

 

Material Sample 
f 

(MPa)

E 

(GPa)
JIC(exp)(KJ/m2)L0C(exp)(mm) KIC (MPa.m1/2) H (exp) 

Ceramic Alumina 340 300 0,030 0.4956 424,2477056 0,7975 0,0096 

 

 

 

Metals 

A1CT2 516,00 1,34 291,60 0,48256 635,3313677 0,71  0,01 

A2SEB2 537,00 3,63 174,67 0,36264 573,1747828 0,77  0,01 

B1CT6 771,00 16,64 40,61 0,22634 650,1446157 0,77  0,02 

B2CT2 757,00 1,96 99,22 0,26553 691,3971955 0,58  0,05 

DCT1 554,001,7197 227,00 0,40487 624,8021278 - 

DCT2 530,001,6671 211,47 0,3995 593,7576222 - 

DCT3 198,750,3902 318,00 1,00000 352,2752029 - 

Polymers

PU0,5 40,70
0.8  

0.0 
8,10 0,29951 39,47980593 0,47 ± 0,07 

PU1,0 40,70
0.8  

0.0 
3,00 0,23685 35,10799599 0,50 ± 0,05 

Table 1. Data extracted from experimental testing of J-R curves obtained by compliance method.  

The analyzed polymeric samples are a two-component Polyurethane, consisting of 1:1 

mixture of polyol and prepolymer. The polyol was synthesized from oil and the prepolymer 

from diphenyl methane diisocyanate (MDI). Their mechanical properties are shown in Table 1. 
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7.2. Fracture tests 

A standard three-point bending test was performed on alumina specimens, SE(B), notched 

plane. Low speed and constant prescribed displacement 1 mm/min was employed to obtain 

stable propagation. The R-curve was obtained using LEFM equations and fracture results 

are shown in Table 1. 

The fracture toughness evaluation of metallic samples was executed using the J-integral 

concept and the elastic compliance technique with partial unloadings of 15% of the 

maximum load. For weld metals the J-R curve tests were performed by the compliance and 

multi-test techniques. Tests were executed in a MTS810 (Material Test System) system at 

ambient temperature, according to standard ASTM E1737-96 [15]. A single edge notch 

bending SENB and compact tension CT were used. One J-R curve for each tested specimen 

was retrieved and fracture results are shown in Table 1. 

To obtain the fractured surfaces of polymeric materials, fracture toughness tests were 

performed by multiple specimen technique using the concept of J-R curve according to 

ASTM D6068-2002 [42]. However, these tests were different from the ones used for weld 

metals, due to the viscoelasticity of the polymers. The used nomenclatures PU0,5 and PU1,0 

mean the loading rate used during the test, 0,5 mm/min and 1,0 mm/min, respectively. 

Fracture results are shown in Table 1.  

7.3. Fractal analyses of fractured specimens 

The fractured surfaces of ceramic samples were obtained with a Rank Taylor Hobson 

profilometer (Talysurf model 120) and an HP 6300 scanner. The fractal analyses to obtain the 

Hurst dimensions were made by methods, such as Counting Box, Sand Box and Fourier 

transform. The fracture surface analysis of metallic and polymeric samples were executed 

using scanning electronic microscopy SEM and the analyses to obtain the Hurst exponents 

were made with the Contrast Islands Fractal Analysis. Fractal dimension results are shown 

in the last column of Table 1. 

7.4. G-R and J-R curve tests and fitting with self-similar and self-affine fractal 

models 

A characteristic load-displacement result in the Alumina ceramic sample is shown in Figure 

7. Observe that the stiffness of the material at the first deflection region is constant, 

corresponding to the elastic modulus of the material. However, as the crack propagates, the 

stiffness varies significantly.  

The corresponding G-R curve test is shown in Figure 8. It can be seen that at the onset of 

crack growth ( 0 0CL L ), the behavior of this material is self-similar, as previously 

discussed. However, the results in the wider range of crack lengths ( 0 0 0 maxCL L L  ) show 

that this material behave according to the self-affine model. Finally, at the end of G-R curve  
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( 0L  ) the behavior is explained by the influence of the shape function  0 /Y L w  used in 

the testing methodology [41]. 

 

Figure 7. Load (X) versus displacement (u) for a G-R curve test in a ceramic sample [41]. 

J-R curves obtained from standard metallic specimens provided by ASTM standard testing 

are shown in Figure 9 along with the fitting with the proposed fractal models. Fitting results 

with these samples, named DCT1, DCT2 and DCT3, are a consistent validation of the 

applied fractal models. The fitting results of the self-similar and self-affine models coincide 

and are not distinguishable in Figure 9.  

 

Figure 8. G-R curve fitted with the self-similar model (equation (97)) and the self-affine model 

(equation (100)) for the Alumina sample [41]. 
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Figure 9. J-R curve fitted with the self-similar model shown in equation (97) and the self-affine model 

shown in equation (93) for steel samples DCT1, DCT2 and DCT3 [43]. 

Typical testing results performed to obtain J-R curves of metallic weld materials are shown 

in Figure 10 and Figure 11. In all results, J-R curves measured experimentally were fitted 

using models given by equations (93) and (97), where the factor 2 e p   was obtained by 

adjusting the 0l  and  H  values for each different sample, by the self-similar and the self-

affine models.  

The J-R curves for the tested polymeric specimens are shown in Figure 12 and Figure 13. 

Reasonably good results were obtained despite the greater dispersion of data. 

  

Figure 10. J-R curve fitted with the self-similar model shown in equation (97) and the self-affine model 

shown in equation (93) for HSLA-Mn/Ti steel (sample A1CT2). 
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Figure 11. J-R curve fitted with the self-similar model shown in equation (97) and the self-affine model 

shown in equation (93) for HSLA-Mn/Ti steel (sample B2CT2) killed with titanium and other alloy 

elements to increase hardenability [43].  

 

 

Figure 12. J-R curve fitted with the self-similar model shown in equation (97) and the self-affine model 

shown in equation (93) for the poliurethane polymer PU0,5. 
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Figure 13. J-R curve fitted with the self-similar model shown in equation (97) and the self-affine model 

shown in equation (93) for the poliurethane polymer PU1,0. 

After the experimental J-R curves were fitted using equation (79) and equation (97), values 

of 2 eff , H  and 0l  were determined and are shown in Table 2 and Table 3. With 0 2R effJ  , 

the value of the crack size 0 eff
L   was calculated and it corresponded to the specific surface 

energy. Using the experimental values of 0,IC CJ L  and H  given in Table 1, the values of the 

constants in the last column of Table 2 and Table 3 were calculated. 

 

Mate-

rial 
Sample  22 /eff KJ m  H theo   0l mm

   
0

1/ 1

0 2

eff

H

L

l H




   

1

1
0

2

2

eff

H

C

H l


 

 
1H

C CJ L

= constant


 

Cera-

mic 
Alumi-na 0,0301871 1,000 0,2493645 0,2493645 1,00000 0,03018707 

Metals 

A1CT2 283,247 0,417  0,018 1,00944 0,459079 1,57411 445,862579 

A2SEB2 187,639 0,208  0,057 0,82912 0,396956 2,07868 390,042318 

B1CT6 40,514 0,573  0,038 0,51758 0,225086 1,89071 76,600193 

B2CT2 101,204 0,592  0,0041 0,64484 0,278764 1,68407 170,433782 

DCT1 230,843 0,426 0,91887 0,416893 1,65219 381,397057 

DCT2 209,127 0,461 0,87082 0,391328 1,65806 346,745868 

DCT3 317,819 0,393 2,18249 0,999062 1,00057 318,000000 

Poly-

mers 

PU0,5 17,4129 0,476 2,88612 1,291434 0,87464 15,230001 

PU1,0 2,95252 0,503 0,51653 0,229374 2,079 6,138287 

 

Table 2. Fitting data of J-R curves with the self- similar model [43]. 
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A good level of agreement is seen between measured Hurst’s exponents H  at Table 1 and 

theoretical ones shown in Table 2 and Table 3. Larger differences in metals can be attributed to 

the quality of the fractographic images, which did not present well defined “Contrast Islands”. 

 

Material Sample  22 /eff KJ m  H theo  0l mm
   

0

1/ 1

0 2

eff

H

L

l H




   

1

1
0

2

2

eff

H

C

H l


 

 
1H

C CJ L

= constant


 

Ceramic Alumina 0,0301871 1,000 0,2493645 0,2493645 1,00000 0,03018707 

Metals 

A1CT2 160,640 0,609 0,24422 0,105004 2,413408 387,700806 

A2SEB2 102,750 0,442 0,31002 0,140040 2,993092 307,535922 

B1CT6 22,980 0,700 0,08123 0,033873 2,757772 63,385976 

B2CT2 57,978 0,705 0,10304 0,042893 2,529433 146,651006 

DCT1 129,850 0,599 0,23309 0,100540 2,511844 326,184445 

DCT2 118,850 0,624 0,20167 0,086294 2,512302 298,592197 

DCT3 178,810 0,612 0,5282 0,226901 1,778386 318,000000 

Polymers 
PU0,5 7,500 0,664 0,56541 0,238775 1,618852 12,150370 

PU1,0 1,690 0,649 0,10898 0,046244 2,938220 4,971102 

Table 3. Fitting data of J-R curves with the self- affine model [43]. 

7.5. Complementary discussion 

The proposed fractal scaling law (self-affine or self-similar) model is well suited for the 

elastic-plastic experimental results. However, the self-similar model in brittle materials 

appears to underestimate the values of specific surface energy eff  and the minimum size of 

the microscopic fracture 0l , although not affecting the value of the Hurst exponent H . 

For a self-affine natural fractal such as a crack, the self-similar limit approach is only valid at 

the beginning of the crack growth process [39], and the self-affine limit is valid for the rest of 

the process. It can be observed from the results that the ductile fracture is closer to self-

similarity while the brittle fracture is closer to self-affinity. 

Equation (79) represents a self-affine fractal model and demonstrates that apart from the 

coefficient H , there is a certain "universality" or, more accurately, a certain "generality" in 

the J-R curves. This equation can be rewritten using a factor of universal scale, 0 0/l L  , as 
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which is a valid function for all experimental results shown in Figure 14. It shows the 

existent relation between the energetic and geometric components of the fracture resistance 
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of the material. The greater the material energy consumption in the fracture, straining it 

plastically, the longer will be its geometric path and more rugged will be the crack. 

 

 

Figure 14. Generalized J-R curves for different materials, modelled using the self-affine fractal 

geometry, in function of the scale factor 0 0l L  of the crack length [43]. 

In the self-similar limit  0 0 0l L H , equation (97) is applicable and the energetic and 

geometric components are put in evidence in the equation below, 
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From equation (102), an expression can be derived which results in a constant value 

associated to each material, 

        


11
0 0 0 0(2 )(2 ) ( )HH

e p material

macroscopic microscopic

J L H l const  (103) 

It is possible to conclude that the macroscopic and microscopic terms on the left and right-

hand sides of equation (103) are both equal to a constant, suggesting the existence of a 

fracture fractal property valid for the beginning of crack growth, and justified 

experimentally and theoretically. These constant values were calculated for each point in 

each J-R curve for the tested materials. The average value for each material is listed in the 

last column of Table 2 and Table 3. Observe that this new property is uniquely determined 

by the process of crack growth, depending on the exponent H , the specific surface energy 

2 e p   and the minimum crack length 0l . 
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This new constant can be understood as a "fractal energy density" and it is a physical 

quantity that takes into account the ruggedness of the fracture surface and other physical 

properties. Its existence can explain the reason for different problems encountered when 

defining the value of fracture toughness ICK . This constant can be used to complement the 

information yielded by the fracture toughness, which depends on several factors, such as the 

thickness B  of the specimen, the shape or size of the notch, etc. To solve this problem, 

ASTM E1737-96 [15] establishes a value for the crack length a  (approximately 

0.5 / 0.7a W   and, 0.5B W , where W  is the width of the specimen) for obtaining the 

fracture toughness ICK , in order to maintain the small-scale yielding zone. 

As shown in equation (103), a relationship exists between the specific surface energy 2 eff  

and the minimum crack size 0l  in the considered observation scale 0 0/l L  . In Figure 15, 

it can be observed that the consideration of a minimum size for the fracture 01l  on a grain 

should mean the effective specific energy of the fracture 12 eff  in this scale. In a similar way, 

the consideration of a minimum size of fracture in a different scale, like one that involves 

several polycrystalline grains 02 03,l l  etc.., should take into account the value of an effective 

specific energy in this other scale, 2 32 ,2eff eff  , etc., in such a way that 

 

Figure 15. Microstructural aspects of the observation scale with different 0l  ruler sizes, for the fractal 

scaling of fracture [43]. 

 1 21 1
1 1 1 2 2 22 (2 ) 2 (2 ) ,H H

ef o eff oH l H l const       (104) 

although 01 02 03l l l   and 1 2 32 2 2eff eff eff    . So, the constant does not depend on the 

single rule of measurement 0l  used in the fractal model, but it depends on the kind of 

material used in the testing. 

Another interpretation of equation (102) can be made by splitting the elastic and plastic 

terms, 
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For the particular situation where 0 ICJ J  and 0 0CL L   , it can be derived from equation 

(97), 
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and from equation (72), 
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Therefore, using the fact that once the experimental value of ICJ is determined and the 

fitting of J-R curve has already yielded the values 02 ,e p l   and H  for the material, the 

value 0CL  can be calculated. 

Fracture Mechanics science was originally developed for the study of isotropic situations 

and homogeneous bodies.  

At the microscopic level, the elastic material is modeled considering Einstein’s solid 

harmonic approximation where Hooke's law is employed for the force between the chemical 

bonds of the atoms or molecules [48]. Therefore, the elastic theory is used to make linear 

approximations and it does not involve micro structural effects of the material. 

At the mesoscopic level the equation of energy used for the fracture does not take into 

account effects at the atomic scale involving non-homogeneous situations [47]. Based on the 

arguments of the last paragraphs, it becomes clear why Herrmman et al. [49] needed to 

include statistical weights, as a crack growth criterion, for the break of chemical bonds in 

fracture simulations, as a form of portraying micro structural aspects of the fracture (defects) 

when using finite difference and finite element methods in computational models. 

At the macroscopic level, on the other hand, Griffith’s theory uses a thermodynamic energy 

balance. It is important to remember that the linear elastic theory of fracture developed by 

Irwin and Westergaard and the Griffith’s theory are differential theories for the macroscopic 

scale, which means they are punctual in their local limit. These two approaches involve the 

micro structural aspects of the fracture, since they take a larger infinitesimal local limit than 

the linear elastic theory at the atomic and mesoscopic scales. This infinitesimal macroscopic 

scale is big enough to include 1015 particles as the lower thermodynamic limit, where the 

physical quantity Fracture Resistance (J-R Curve) portrays aspects of the interaction of the 

crack with the microstructure of the material.  
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In this chapter, Classical Fracture Mechanics was modified directly using fractal theory, 

without taking into account more basic formulations, such as the interaction force among 

particles, or Lamé’s energy equation in the mesoscopic scale as a form to include the 

ruggedness in the fracture processes. 

The use of the fractality in the fracture surface to quantify the physical process of energy 

dissipation was approached with two different proposals. The first was given by Mu and 

Lung [26, 37], who proposed a phenomenological exponential relation between crack length 

and the elastic energy released rate in the following form 

 1
0 ,D

IC IG G    (108) 

where   is the length of the measurement rule. The second proposal was given by 

Mecholsky et al. [24] and Mandelbrot et al. [23], who suggested an empirical relation 

between the fractional part of the fractal dimension *D  and fracture toughness ICK , 

  1/2
~ *ICK A D  (109) 

where 0 0A E l  is a constant and 0E  is the stiffness modulus and 0l  is a parameter that has 

a unit length (an atomic characteristic length). The elastic energy released rate is then given by, 

 0 0 *G El D  (110) 

where 2
0 /C ICG K E  is the critical energy released rate. 

The authors cited above used the Slit Island Method in their measurements of the fractal 

dimension D  and it is important to emphasize that both proposals have plausible 

arguments, in spite of their mathematical differences. Observe that in the proposal of Mu 

and Lung [26, 37] the fractal dimension appears in the exponent of the scale factor, while in 

the proposal of Mecholsky et al. [24] and Mandelbrot et al. [23] the fractal dimension appears 

as a multiplying term of the scale factor. 

The mathematical expression proposed in this work, equation (93) and equation (97), for the 

case 0 0J G , is compatible with the two proposals above and can be seen as a unification of 

these two different approaches in a single mathematical expression. In other words, the two 

previous proposals are complementary views of the problem according to the expression 

deduced in this chapter. 

A careful experimental interpretation must be done from results obtained in a J-R curve test. 

The authors mentioned above worked with the concept of G , valid for brittle materials, and 

not with the concept of J valid for ductile materials. The experimental results show that for 

the case of metallic materials the fitting with their expressions are only valid in the initial 

development of the crack because of the self-similar limit, while self-affinity is a general 

characteristic of the whole fracture process [39]. 
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The plane strain is a mathematical condition that allows defining a physical quantity called 

ICK , which doesn't depend on the thickness of the material. The measure of an average 

crack size along the thickness of the material, according to ASTM E1737-96 [15], is taken as 

an average of the crack size at a certain number of profiles along the thickness. In this way, 

any self-affine profile, among all the possible profiles that can be obtained in a fracture 

surface, are statistically equivalent to each other, and give a representative average for the 

Hurst exponent. 

The crack height (corresponding to the opening crack test CTOD) follows a power law with 

the scales, 0 0h v l L       and can be written as, 

 

1

0 0

0 0

H
H L

h l


  

   
 

 (111) 

This relation shows that, while the measurement of the number of units of the crack length 

0 0hN L l   in the growth direction grows linearly, the number of units of the crack height 

units 0 0vN H l   grows with a power of 1 H . If it is considered that the inverse of the 

number of crack increments in the growth direction 1
0 0hN l L    is also a measure of 

strain of the material, as the crack grows, and considering that the number of crack height 

increments can be a measure of the amount of the piling up dislocation, in agreement with 

equation (111), then the normal stress is of the type [44, 45] 

 ~ H    (112) 

Observe that this relation shows a homogeneity in the scale of deformations, similar to the 

power law hardening equation [34]. This shows that the fractal scaling of a rugged fracture 

surface is related to the power law of the hardening. It is possible that the fractality of the 

rugged fracture surface is a result of the accumulation of the pilled up dislocations in the 

hardening of the material before the crack growth. 

In all three situations (metallic, polymer and ceramic) the presence of microvoids, or other 

microstructural defects, cooperate with the formation of ruggedness on the fracture surface. 

This ruggedness on the way it was modeled records the "history" of crack growth being 

responsible for the difficulty encountered by the crack to propagate, thus defining the crack 

growth resistance. In EPFM literature, the rising of J-R curve for a long time has been 

associated with the interposition of plane stress and plane strain conditions generating the 

unique morphology of the fracture surface ruggedness [1, 2]. In metals this rising has been 

associated with the growth and coalescence of microvoids [2]. However, the Fractal EPFM 

has proposed that the morphology of the fracture surface, characterized by parameters of 

fractal geometry, explains in a simple and direct way the rising of the J-R curves.  

The success of fracture fractal modeling between the J-R curve and the exponent H can be 

attributed to the following fact: a fracture occurs only after a process of hardening in the 
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material, even minimal. Such a process follows a power law [35], self-similar [33], of the 

stress applied,   with the strain  , as shown in equation (166). It is therefore possible to 

associate the elasto-plastic energy released rate J  which is an energetic quantity with the 

applied stress  , which is an energy density, and the fracture length 0L  with strain, and 

/l l    and the ruggedness exponent H  with the strain hardening exponent " n " [15]. As 

the strain hardening occurs before the onset of crack growth, it is evident that its physical 

result appears registered in the fracture surface in terms of ruggedness, created in the 

process of crack growth. This process of crack growth admits a fractal scaling in terms of the 

projected surface 0L , so it is possible that the effect of its prior work hardening is 

responsible for the further self-affinity of fracture valid at the beginning of crack growth. 

This is because in the limit of the beginning of crack growth, the fractal scaling relationship 

is a self-similar power law, analogous to the power law hardening relationship [8, 33]. 

The technical standards ASTM E813 [40] and ASTM E1737-96 [15] suggest an exponential 

fitting of the type 

 2
0 1 0

CJ C L   (113) 

for the J-R curves. They do not supply any explanation for the nature of the coefficients for 

this fitting. However, by comparing equation (113) with equation (97), it can be concluded 

that   1
1 02 2 H

effC H l    and 2 1C H  , which explains the physical nature of this 

parameters; 

8. Conclusions  

The theory presented in this chapter introduces fractal geometry (to describe ruggedness) in 

the formalism of classical EPFM. The resulting model is consistent with the experimental 

results, showing that fractal geometry has much to contribute to the advance of this 

particular science. 

It was shown that the rising of the J-R curve is due to the non-linearity in Griffith-Irwin-

Orowan's energy balance when ruggedness is taken into account. The idea of connecting the 

morphology of a fracture with physical properties of the materials has been done by several 

authors and this connection is shown in this chapter with mathematical rigor.  

It is important to emphasize that the model proposed in this chapter illuminates the nature 

of the coefficients for the fitting proposed by the fractal model, which is the true influence of 

ruggedness in the rising of the J-R curve. The application of this model in the practice of 

fracture testing can be used in future, since the techniques for obtaining the experimental 

parameters, 0 ,l H , and eff  can be accomplished with the necessary accuracy.  

The method for obtaining the J-R curves proposed in this chapter does not intend to 

substitute the current experimental method used in Fracture Mechanics, as presented by the 

ASTM standards. However, it can give a greater margin of confidence in experimental 
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results, and also when working with the microstructure of the materials. For instance, in 

search of new materials with higher fracture toughness, once the model explains micro and 

macroscopically the behavior of J-R curves.  

It is well known that the fracture surfaces in general are multifractal objects [9] and the 

treatment presented here applies only to monofractals surfaces. However, for purposes of 

demonstrating the ruggedness influence on the phenomenology of Fracture Mechanics, 

through the models presented in this chapter, the obtained results were satisfactory. The 

generalization by multifractality is a matter to be discussed in future work. 

Author details 

Lucas Máximo Alves 

GTEME – Grupo de Termodinâmica, Mecânica e Eletrônica dos Materiais,  

Departamento de Engenharia de Materiais, Universidade Estadual de Ponta Grossa, Uvaranas,  

Ponta Grossa – PR, Brazil 

Luiz Alkimin de Lacerda 

LACTEC – Instituto de Tecnologia para o Desenvolvimento, Departamento de Estruturas Civis, 

Centro Politécnico da Universidade Federal do Paraná, Curitiba – PR, Brazil 

9. References 

[1] Kraff, J.M.; Sullivan, A.M.; Boyle, R.W. (1962) Effect of Dimensions on Fast Fracture 

Instability of Notched Sheets. In: Proceedings of the Cracks Propagation Symposium 

Cranfield. England: The College of Aeronautics, Cranfield. 1: pp.8-28. 

[2] Ewalds, H.L.; Wanhill, R.J.H. (1986) Fracture Mechanics. Netherlands: Delftse Uitgevers 

Maatschappij, Third Edition, Co-Publication of Edward Arnold Publishers, London 

1993. 

[3] Hübner, H.; Jillek, W. (1977) Subcritical Crack Extension and Crack Resistance In 

Polycrystaline Alumina. J. Mater. Sci. 12(1): 117-125. 

[4] Swanson, P.L.; Fairbanks, C.J.; Lawn, B.R.; Mai, Y-M.; Hockey, B.J. (1987) Crack-

Interface Grain Bridging as a Fracture Resistance Mechanism In Ceramics: I, 

Experimental Study on Alumina, J. Am. Ceram.  Soc. 70(4): 279-289. 

[5] Mandelbrot, B.B. (1982) The Fractal Geometry of Nature, San Francisco, Cal-USA, New 

York: W. H. Freeman and Company. 

[6] Underwood, E.E.; Banerji, K. (1992) Quantitative Fractography,. Engineering Aspectes 

of Failure and Failure Analysis. In: ASM - Handbook Fractography - The Materials 

Information Society. ASTM 1996.  12: pp. 192-209 

[7] Dauskardt, R. H.; Haubensak, F.; Ritchie, R.O. (1990) On the Interpretation of the Fractal 

Character of Fracture Surfaces; Acta Metall. Matter. 38(2): 143-159. 

[8] Borodich, F. M. (1997) Some Fractal Models of Fracture. J. Mech. Phys. Solids. 45(2): 239-

259. 



 

Applied Fracture Mechanics 104 

[9] Xie, H.; Wang, J-A.; Stein, E. (1998) Direct Fractal Measurement and Multifractal 

Properties of Fracture Surfaces, Physics Letters A. 242: 41-50. 

[10] Herrmann, H.J.; Stéphane, R. (1990) Statistical Models For the Fracture of Disordered 

Media, Random Materials and Processes. In: Series Editors: H. Eugene Stanley and 

Etienne Guyon editors. Amsterdam: North-Holland. 

[11] Rodrigues, J.A.; Pandolfelli, V.C (1998) Insights on the Fractal-Fracture Behaviour 

Relationship. Materials Research. 1(1): 47-52. 

[12] Mecholsky, J. J.; Passoja, D.E.; Feinberg-Ringel, K.S. (1989) Quantitative Analysis of 

Brittle Fracture Surfaces Using Fractal Geometry, J. Am. Ceram. Soc. 72(1): 60-65. 

[13] Tanaka, M. (1996) Fracture Toughness and Crack Morphology in Indentation Fracture of 

Brittle Materials. Journal of Materials Science. 31: 749-755. 

[14] Xie, H. (1989) The Fractal Effect of Irregularity of Crack Branching on the Fracture 

Toughness of Brittle Materials. International Journal of Fracture. 41: 267-274. 

[15] ASTM E1737 (1996) Standard Test Method For J-Integral Characterization of Fracture 

Toughness. pp.1-24.  

[16] Alves, L.M. (2005) Fractal Geometry Concerned with Stable and Dynamic Fracture 

Mechanics. Journal of Theoretical and Applied Fracture Mechanics. 44(1): 44-57. 

[17] Williford, R. E. (1990) Fractal Fatigue. Scripta Metallurgica et Materialia. 24: 455-460. 

[18] Chelidze, T.; Gueguen, Y. (1990) Evidence of Fractal Fracture, (Technical Note) Int. J. 

Rock. Mech Min. Sci & Geomech Abstr. 27(3):  223-225. 

[19] Dos Santos, S.F. (1999) Aplicação do Conceito de Fractais para Análise do Processo de 

Fratura de Materiais Cerâmicos, Dissertação de Mestrado, Universidade Federal de São 

Carlos, São Carlos. 

[20] Alves, L.M.; Silva, R.V.; Mokross, B.J. (2001)  The Influence of the Crack Fractal 

Geometry on the Elastic Plastic Fracture Mechanics. Physica A: Statistical Mechanics 

and Its Applications. 295(1/2): 144-148. 

[21] Mandelbrot, B.B. (1977) Fractals: Form Chance and Dimension, San Francisco, Cal-USA: 

W. H. Freeman and Company. 

[22] Passoja, D.E.; Amborski, D.J. (1978) In Microsstruct. Sci. 6: 143-148. 

[23] Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. (1984) Fractal Character of Fracture 

Surfaces of Metals, Nature (London), 308 [5961]: 721-722. 

[24] Mecholsky, J.J.; Mackin, T.J.; Passoja, D.E. (1988) Self-Similar Crack Propagation In 

Brittle Materials. In: Advances In Ceramics, Fractography of Glasses and Ceramics, the 

American Ceramic Society, Inc. J. Varner and V. D. Frechette editors. Westerville, Oh: 

America Ceramic Society 22: pp. 127-134. 

[25] Rodrigues, J.A.; Pandolfelli, V.C. (1996) Dimensão Fractal e Energia Total de Fratura.  

Cerâmica 42(275). 

[26] Mu, Z.Q.; Lung, C.W. (1988) Studies on the Fractal Dimension and Fracture Toughness 

of Steel, J. Phys. D: Appl. Phys. 21: 848-850. 

[27]  Gong, B.; Lai, Z.H. (1993) Fractal Characteristics of J-R Resistance Curves of Ti-6Al-4V 

Alloys, Eng. Fract. Mech. 44(6): 991-995. 

[28] Yavari, A. (2002) The Mechanics of Self-Similar and Self-Afine Fractal Cracks, Int. 

Journal of Fracture. 114: 1-27. 



 
Fractal Fracture Mechanics Applied to Materials Engineering 105 

[29] Borodich, F. M. (1994) Fracture energy of brittle and quasi-brittle fractal cracks. Fractals 

in the Natural and Applied Sciences(A-41), Elsevier, North-Holland, 61–68. 

[30] Carpinteri, A.; Chiaia, B. (1996) Crack-Resistance as a Consequence of Self-Similar 

Fracture Topologies, International Journal of Fracture, 76: 327-340. 

[31] Bouchaud, E.; Bouchaud, J.P. (1994) Fracture Surfaces: Apparent Roughness, Relevant 

Length Scales, and Fracture Toughness. Physical Review B, 50(23): 17752–17755. 

[32] Mosolov, A.B.; Borodich, F.M. (1992) Fractal Fracture of Brittle Bodies During 

Compression, Sovol. Phys. Dokl., May. 37(5): 263-265. 

[33] Mosolov, A.B. (1993) Mechanics of Fractal Cracks In Brittle Solids, Europhysics Letters, 

10 December. 24(8): 673-678. 

[34] Anderson, T.L. (1995) Fracture Mechanics, Fundamentals and Applications. CRC Press, 

2th Edition. 

[35] Kanninen, M.F.; Popelar, C.H. (1985) Advanced Fracture Mechanics, the Oxford 

Engineering Science Series 15, Editors: A. Acrivos, et al. Oxford: Oxford University 

Press. Chapter 7, p. 437.  

[36] Cherepanov, G.P.; Balankin, A.S.; Ivanova, V.S. (1995) Fractal fracture mechanics–A 

review. Engineering Fracture Mechanics, 51(6): 997-1033. 

[37] Lung, C.W.; Mu, Z.Q. (1988) Fractal Dimension Measured with Perimeter Area Relation 

and Toughness of Materials, Physical Review B, 38(16): 11781-11784. 

[38] Lei, W.; Chen, B. (1995) Fractal Characterization of Some Fracture Phenomena, Eng. 

Fract. Mechanics. 50(2): 149-155. 

[39] Mandelbrot, B.B. (1991) Self-affine Fractals and Fractal Dimension. In: Family, 

Fereydoon. and Vicsék, Tamás editors. Dynamics of Fractal Surfaces. Singapore: World 

Scientific. pp.19-39. 

[40] ASTM E813, (1989) Standard Test Method For Jic, A Measure of Fracture Toughness. 

[41] Mazzei, A.C.A. (1999) Estudo sobre a determinação de curva-R de compósitos cerâmica-

cerâmica. Tese de Doutorado, DEMA-UFScar. 

[42] ASTM D6068 - 10 (2002) Standard Test Method for Determining J-R Curves of Plastic 

Materials,  crack growth resistance, fracture toughness, JR curves, plastics, 96. 

[43] Alves, L.M.; Da Silva, R.V.; De Lacerda, L.A. (2010) Fractal Modeling of the J-R Curve 

and the Influence of the Rugged Crack Growth on the Stable Elastic-Plastic Fracture 

Mechanics, Engineering Fracture Mechanics, 77, pp. 2451-2466. 

[44] Zaiser, M.; Grasset, F.M.; Koutsos, V.; Aifantis, E.C. (2004) Self-Affine Surface 

Morphology of Plastically Deformed Metals, Phys. Rev. Lett. 93: 195507. 

[45] Weiss, J. (2001) Self-Affinity of Fracture Surfaces and Implications on a Possible Size 

Effect on Fracture Energy. International Journal of Fracture. 109: 365–381. 

[46] Mishnaevsky Jr, L. (2000) Optimization of the Microstructure of Ledeburitic Tool Steels: 

a Fractal Approach. Werkstoffkolloquium (MPA, University of  Stuttgart). 

[47] Fung, Y.C. (1969) A first course in continuum mechanics. N. J: Prentice-Hall, INC, 

Englewood Criffs. 

[48] Holian, B.L.; Blumenfeld, R.; Gumbsch, P. (1997) An Einstein Model of Brittle Crack 

Propagation. Phys. Rev. Lett. 78: 78–81, DOI: 10.1103/PhysRevLett.78.78. 



 

Applied Fracture Mechanics 106 

[49] Herrmann, H.J., Kertész, J.; De Arcangelis, L. (1989) Fractal Shapes of Deterministic 

Cracks, Europhys. Lett. 10(2): 147-152. 


