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1. Introduction 

Like sharp-notch fatigue, fretting fatigue strength is mostly determined by whether small 

cracks propagate, which originate at the local high stress area. Hence, applying fracture 

mechanics is expected to be effective in evaluating fretting strength (Asai, 2010; Attia, 2005; 

Edward, 1984; Kondo et al., 2004; Makino et al., 2000; Nicholas et al., 2003). In these 

methods, the fretting fatigue limit is predicted by evaluating whether the stress intensity 

factor range ΔK is greater than its threshold value ΔKth. Kondo (Kondo et al., 2004) 

developed a model for evaluating micro-crack propagation, which is shown in Fig. 1. In this 

model, when ΔK is lower than ΔKth at a certain crack depth, the crack is thought to stop 

propagation and to remain as a non-propagating crack (О). On the other hand, when ΔK is 

larger than ΔKth along the entire crack length, it is thought to propagate to failure. The 

objective of this study is to evaluate fretting fatigue strength quantitatively using this model 

under various test conditions including different material strengths, contact pressure, and 

mean stress by overcoming the following difficulties. 

The following two major difficulties need to be addressed when quantitatively applying the 

micro-crack propagation model. 

1. Small crack and mean stress effects on ΔKth, 

2. Mixed modes of tensile and shear ΔK. 

Regarding the small crack effects on ΔKth, El Haddad (El Haddad et al., 1979) proposed the 

correlation factor, a0, for the crack length, a, and the threshold of a long crack, ΔKth, l, as 

expressed in Eq. (1),  

  th th, l 0/ .K K a a a     (1) 
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The empirical rule proposed by Murakami (Murakami & Endo, 1986) is also well known, 

where ΔKth is proportional to one-third power of the square root of the micro-crack surface 

area, equivalent to crack length. Although these approaches are effective in estimating ΔKth 

for micro cracks, there are few data available for the mean stress effects on micro-crack ΔKth 

(Usami & Shida, 1979), especially under a high negative stress ratio (R), which is 

indispensable in evaluating the fretting fatigue strength.  

 

Figure 1. Schematic of small-crack propagation model at fretting fatigue 

 

Figure 2. Schematic view of fretting crack propagation 

Mixed modes of tensile and shear ΔK should be considered because most fretting fatigue 

cracks incline under multi-axial stress fields caused by the contact pressure and tangential 

force (Lamacq et al., 1996; Qian & Fatemi, 1996; Zhang & Fatemi, 2010). According to Mutoh 

(Mutoh, 1997), the crack path of fretting fatigue is classified into two stages, as shown in Fig. 

2. Stage I is an initial crack stage where a crack inclines greatly against the normal direction, 

and stage II is where a crack is thought to propagate in the direction perpendicular to the 

maximum principal stress amplitude. As many researchers state (Dubourg & Lamacq, 2000; 

Faanes, 1995; Mutoh & Xu, 2003), maximum tangential stress theory is considered to be 

effective for expressing the crack propagation in stage II; hence, one problem is how to 

model its propagation in stage I. To solve this problem, Pook‘s failure mechanism map 

(Pook, 1985) in the ΔKI－ΔKII plane is informative for separating crack propagation patterns 

into shear and tensile modes. Although it was proposed to define equivalent stress intensity 

factors, such as ∆ + ∆  based on the strain energy release rate, and (ΔKI4+8ΔKII4)1/4 from 

Tanaka (Tanaka, 1974), there seems to be no unified model applicable to various test results 

(Hannes & Alfredsson, 2012). Summarizing the studies on mixed modes, what makes it 
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difficult to explain the crack propagation in stage I are the difficulties in experimentally 

obtaining the mode II thresholds (Murakami et al., 2002) and quantitatively estimating the 

actual ΔK II considering the crack surface friction effects (Bold et al., 1992). However, from 

the standpoint of practical use, it is thought useful to apply the maximum tangential stress 

theory in stage I if its estimation is satisfactorily accurate. 

 

Figure 3. Schematic view of fretting fatigue tests 

In this study, fretting fatigue tests under different contact conditions; plane-contact (PC) and 

line-contact (LC), shown in Fig. 3, were carried out using two 12% Cr steel samples with 

different static strengths and the effects of the material strength and mean stress were 

investigated. Fretting fatigue strength was evaluated quantitatively by applying the micro-

crack propagation model under various test conditions while considering the above-

mentioned difficulties. The practical effectiveness is discussed in applying the maximum 

tangential stress theory in stage I by obtaining non-propagating crack lengths of run-out 

specimens and ΔKth from fretting pre-cracks under various R, including negative mean stress. 

2. Fretting test method 

The test materials were two 12% Cr steel samples (A and B) that had different static strengths, 

as shown in Table 1. Tensile and 0.2% yield strengths of sample B were approximately 40% 

higher than those of sample A. Figure 4 shows the shapes of the test specimens and a contact 

pad. Two kinds of tests were undertaken using rectangular-cross-section specimens (5 mm × 5 

mm) for PC conditions and circular-cross-section specimens (8 mm in diameter) for LC 

conditions. Sample A was used for the contact pad. Heat treatments were applied to the 

specimens at 600°C × 4 h to relieve the residual stress caused by machining. 

After first applying an axial mean load, the contact force was applied using cramping bolts, 

and axial alternative loads were then applied. The contact force was measured and adjusted 

by the cylindrical load cell with an uncertainty of 5% to the target value during the tests. 

Contact pressure was 80 MPa for PC conditions, and LC loads were 60, 150, 300, and 450 

N/mm, which respectively corresponded to 584, 923, 1306, and 1569 MPa of the average 

elastic contact pressure calculated from Hertz’s formula. Mean stresses were 0 and 400 MPa 

for all test cases and –100 MPa for PC conditions of sample A. Tests were carried out using 

an electro-magnetic-resonance machine in air at ambient temperature. The frequencies were 

about 125 Hz for LC and about 110 Hz for PC, which were determined by the stiffness of the 

specimens and the machine. 
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Table 1. Mechanical properties of materials 

 

Figure 4. Shapes of specimens and test apparatus: (a) specimen for LC tests, (b) specimen for PC tests, 

(c) contact pad, and (d) test apparatus 

Plain fatigue tests were also carried out without contact pads using run-out fretting 

specimens at 2×107 cycles, and the size of fretting non-propagating cracks, which were the 

cause of plain fatigue fracture in most cases, were investigated. In addition to the crack 

length, the plain fatigue tests were aimed at obtaining ΔKth from the fretting pre-crack under 

constant R, –3, –1, 0, 0.5, by increasing the applied stress step by step until the specimens 

broke. In these tests, the number of run-out cycles was defined as 107 and maximum and 

minimum applied nominal stresses were not to exceed 0.2% yield strength. The crack-profile 

path from the initial point was also measured at the fracture surface by using a laser 

microscope to analyze the behavior of the crack propagation. When the specimen did not 

break from the fretting non-propagating crack, its depth was measured by polishing the 

crack surface until it disappeared. 

3. Fretting fatigue test results 

3.1. Fretting fatigue strength 

Figure 5 shows the stress amplitude σa against the number of cycles (S–N) diagrams for PC 

and LC conditions. Figure 6 shows the effect of the contact pressure on fretting fatigue 

0.2% proof

stress

Tensile

strength

Elongation

(%)

Reduction of

area

Vickers

hardness

Sample A 610 745 26.3 65.5 238

Sample B 842 1037 15.4 51.0 329
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strength when mean stresses σm were 0 and 400 MPa, indicating failure- and non-failure-

stress amplitudes at 2×107 cycles, respectively. The fatigue limits for LC conditions 

decreased as the contact pressure increased and minimized at a certain contact pressure. The 

minimum strength pressure, MSP, when fretting fatigue strength minimized, depended on 

the material strength, i.e., MSP of sample B (higher static strength) was higher than that of 

sample A. The average Hertz’s contact pressure at MSP almost corresponded to about 1.5 

times 0.2% proof stress σ0.2 for both samples A and B. Under PC, sample B exhibited 10-25% 

higher fretting-fatigue strength than sample A. On the other hand, the minimum strengths 

of samples A and B differed little (about 5%) under LC conditions; this tells us that a high- 

static-strength material does not necessarily improve the fretting fatigue strength when local 

high contact pressure arises. Fretting fatigue strength depended on the mean stress in a high 

contact pressure region; the strength over MSP increased more drastically at σm=0 MPa than 

that at σm =400 MPa. 

 

Figure 5. S-N diagram of fretting tests: (a) PC, (b) LC for sample A, and (c) LC for sample B 

Figure 7 shows an observed contact surface near the contact edge under LC conditions at 

150 N/mm-pressure. The crack edge was located about 0.12 mm inside the contact edge. The 

width of the wear region was about 0.5 mm, greater than the elastic contact width calculated 

from Hertz’s formula (about 0.16 mm). This was caused by plastic deformation at the 

contact edge under high local pressure. 
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Figure 6. Effect of contact pressure on fretting fatigue strength at mean stress, (a) 0 MPa, and (b) 400 

MPa. (Open: not broken; closed: broken in less than 2×107cycles 

 

Figure 7. Side view around contact edge of failure specimen. (Sample A: LC, 150 N/mm, σm=0 MPa, 

σa=130 MPa, Nf=9.23×106) 

3.2. Dimensions of non-propagating cracks 

Figure 8(a) shows an example of a non-propagating crack at the fracture surface. Its depth a 

and surface length l, projected in the plane perpendicular to the axial direction, were 

obtained from the fracture surfaces. The value of a/l was almost 0.15, as shown in Fig. 8(b). 

The relationship between non-propagating crack length aeq and stress amplitude is 

summarized in Fig. 9, where equivalent crack length aeq was calculated from Eq. (2).  

 aeq=a/Q, Q=1+4.593(a/l)1.65 . (2) 

The value of aeq corresponds to half the center crack length of the infinite plate under 

uniform stress field. Figure 9 suggests the following three characteristics: 

 The value of aeq for sample B (higher static strength) is smaller than that of sample A on 

the same σa under PC. 
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 Higher mean stress leads to smaller aeq at the fatigue limit under PC 

 Under LC, the relations of σa－aeq are almost the same under various contact pressures 

and mean stresses 

 

Figure 8. (a) Example of non-propagating crack and (b) aspect ratio of non-propagating cracks 

 

 

Figure 9. Non-propagating crack depth obtained from fretting fatigue tests: (a) PC, (b) LC (sample A), 

and (c) LC (sample B) 
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3.3. Profile path of crack propagation 

Figure 10 shows profile paths of crack propagation from the initial crack measured using a 

laser-microscope, where the stress amplitude is shown in parentheses for each case. The 

angle of crack inclination against the normal direction was about 50-70° in stage I and about 

20° at the mixed mode region in stage II, as also shown in Fig. 10. 

Non-propagating cracks under PC conditions were almost all located in stage II except one 

case (sample B at 400 MPa-mean stress) when no profile data were obtained because the 

run-out specimen was not fractured from the fretting pre-crack. On the other hand, under 

LC conditions, all non-propagating cracks were located near the boundary between stages I 

and II. The boundary crack depth between stages I and II, d1, depended on the mean stress, 

contact pressure, and material strength. The following explains why this occurred. 

 The values of d1 of sample B (higher static strength) were smaller than those of sample 

A under the same test conditions. 

 The values of d1 under PC condition were smaller than those under LC conditions at the 

same mean stress. 

 400 MPa-mean stress led to lower d1 than 0 MPa-mean stress under LC conditions. 

 When mean stress was –100 MPa in the PC condition, d1 was extremely small (less than 

5 μm). 

 

Figure 10. Non-propagating and propagating crack profiles obtained from fretting fatigue tests: (a) PC 

(sample A), (b) LC (sample A), (c) PC (sample B), (d) LC (sample B), and (e) schematic view of fretting crack 
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These results regarding d1 and its inclined angles can be described by considering crack 

propagation under mixed modes in stage I, but the details are to be discussed in future 

work. The objective with this study was to quantitatively evaluate the micro-crack 

propagation in stages I and II by applying the maximum tangential stress theory. 

4. Discussions 

4.1. Analysis condition for calculating stress intensity factor 

The relationship between crack depth and the stress intensity factor was calculated by 

carrying out three-dimensional elastic Finite Element (FE) analysis. Figure 11 shows the 

analysis models under PC and LC conditions where an inclined elliptical surface crack 

was introduced. The aspect ratio (the ratio of crack depth to surface length) was 0.15 

determined from the results shown in Fig. 8(b). The crack depths were 0.03, 0.06, 0.1, and 

0.2 mm (aeq=0.025, 0.05, 0.083, and 0.17 mm) and the oblique angle against the normal 

direction, α, was 20° on the basis of the test results in the mixed mode region of stage II. 

Furthermore, to investigate the effect of α for a small crack, analysis was done when α=0, 

20, 50, 70° at aeq= 0.025, and 0.05 mm. A crack was introduced 0.1 mm inside the contact 

edge to prevent the edge effect in contact analysis and to be consistent with the test results 

shown in Fig. 7. The friction coefficient was 0.8, determined from gross slip tests. 

Calculated accuracy was compared with the analytical solution through analysis without 

contact. 

The stress intensity factor ranges ΔKI and ΔKII were calculated using the extrapolation 

method of stress distribution from the deepest point of the crack. By substituting ΔKI and 

ΔKII into Eq. (3), tensile ΔKθ and shear ΔKτ were obtained in the local coordinate system at 

any evaluation angle θ. 

 

θ

τ

θ θ θ θΔ Δ Δ

θ θ θ θΔ Δ Δ

I II

I II

3 1 3 3 3 3
cos cos sin sin

4 2 4 2 4 2 4 2

1 1 3 1 3 3
sin sin cos cos

4 2 4 2 4 2 4 2

K K K

K K K

   
       

   
   

      
   

 (3) 

Alternating axial loads over one cycle were applied after applying the mean axial load and 

the contact force. The stress intensity factor range ΔKθ is the difference of Kθ at the maximum 

and minimum loads, and the mean value Kθ, mean is the average of Kθ at these loads. 

Elasto-plastic analysis was also done under LC conditions to investigate the effects of local 

plastic deformation using the non-crack model whose minimum mesh size was 10 μm at the 

contact edge. Cyclic stress–strain test data were used in the calculation to consider the cyclic 

softening effects of test materials, where the cyclic 0.2% yield strengths were about 82% of 

the static ones for both samples A and B. The alternating force was applied after applying 

the mean stress and contact pressure in three cycles to obtain the convergence stress 

distribution. 
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Figure 11. FE analysis model with crack of (a) PC and (b) LC (1/8 symmetry) 

4.2. Analysis results on stress intensity factor 

Figure 12 shows the variation of ΔKθ and ΔKτ against β, defined as the angle of the 

evaluation direction against the normal direction, when a crack was 0.03 mm deep under PC 

conditions (p=80 MPa, σa=100 MPa, and σm=0 MPa). The angle β is 20° when ΔKθ maximizes, 

which slightly depends on the crack α. This angle of β corresponds well to the inclined crack 

angle confirmed by tests at the mixed mode in stage II, as shown in Fig. 10. This supports 

the maximum tangential stress theory that the fretting fatigue crack propagates in a 

direction perpendicular to the maximum principal stress amplitude in stage II. When β is 50-

70°, corresponding to the inclined angle of the initial crack in stage I, ΔKτ is not zero. This 

suggests that both ΔKτ and ΔKθ affect crack propagation in stage I, unlike in stage II. As 

shown in Fig. 12(b), Kθ, mean is negative, and its absolute value decreases with β when β is less 

than about 60°. 

 

Figure 12. Calculated stress intensity factors for oblique cracks as function of β: (a) ΔKθ and ΔKτ , and 

(b) mean value of Kθ (PC, p=80 MPa, σm=0 MPa, σa=100 MPa, aeq=0.025 mm) 

Next, Figs. 13(a) and (b) show the relationships between aeq and ΔKθmax and mean value 

Kθmax, mean when σm=0 MPa and σa=100 MPa. The value of ΔKθmax is the maximum value of 
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ΔKθ with the variation of β and Kθmax, mean is the mean Kθ when ΔKθ is ΔKθmax. When the crack 

is short, ΔKθmax is strongly affected by the contact and, as the crack grows, it asymptotically 

reaches the value calculated under the uniform stress distribution without fretting effects. 

ΔKθmaxs at α=0° and 20° without contact were confirmed to coincide within 3% of error with 

the solution of the Raju-Newman equation (Raju & Newman, 1981). The values of ΔK at 

α=70° were found to be about 30% smaller than those at α=0° under both contact and non-

contact conditions. The absolute value of Kθmax, mean decreases as a crack grows, as shown in 

Fig. 13(b). This is because the compression stress caused by the contact force decreases as the 

distance from the surface increases. 

 

Figure 13. Relationship between aeq and (a) ΔKθmax and (b) Kθmax, mean calculated using FE analysis (PC, 

p=80 MPa, σm=0 MPa, σa=100 MPa) 

 

Figure 14. Axial stress distribution from the surface with non-crack model calculated by (a) elastic and 

(b) elasto-plastic analyses (LC, P=150 N/mm, σm=0 MPa, σa=100 MPa) 

The stress distributions calculated using elastic and elasto-plastic analyses are compared in 

Fig. 14 for non-crack models under LC conditions for sample A when P=150 N/mm, σm=0 
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MPa, and σa=100 MPa. This figure shows the maximum and minimum axial stress 

distributions along the line from the surface of the contact edge. While high compressive 

stress arises when using the elastic analysis, the minimum stress almost saturates when 

calculated using the elasto-plastic analysis. Using the polynomial approximation of the 

elasto-plastic stress distributions without a crack, ΔK and Kmean were calculated using the 

American Society of Mechanical Engineers (ASME) section XI method (ASME, 2001). The 

values of ΔK and K mean against aeq are shown in Fig. 15, where the solid diamond were 

calculated by the elastic analysis with a crack at α=20° using the stress extrapolation method 

and the dashed lines were calculated from the elasto-plastic analysis using the above- 

mentioned ASME method. As shown in Fig. 15(a), ΔKs are almost the same in two 

calculations except aeq=0.025 mm, where local stress is higher from elastic analysis than that 

from elasto-plastic analysis because the former does not take into account the yield effects. 

On the other hand, Kmeans are different from the two analyses, especially when aeq is small. 

Since Kmean affects ΔKth, it is necessary to evaluate stress redistribution using elasto-plastic 

analysis considering the actual yield behavior under LC conditions. 

 

Figure 15. Comparison of (a) ΔK and (b) K mean calculated using elastic analysis with crack model and 

elasto-plastic analysis with non-crack model (LC, P=150 N/mm, σm=0 MPa, σa=100 MPa) 

4.3. Qualitative evaluation of small crack propagation 

Figure 16(a) shows a schematic view of the material strength’s effect on ΔK under PC. The 

value of ΔKth in the small crack region increases as the material strengthens: ΔKth of sample 

B was higher than that of sample A. On the other hand, ΔK from the applied stress does not 

depend on the material strength when the local plastic deformation is ignorable. From this 

evaluation, the fatigue limit of sample B was higher than that of sample A, which correlates 

well with the experimental results. Supposing that a crack stops propagating when ΔK is 

smaller than ΔKth, the non-propagating crack depth of sample B is estimated to be smaller 

than that of sample A under the same stress amplitude. This also agrees well with the 

experimental results shown in Fig. 9(a). 
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Figure 16. Schematics of small-crack propagation model under PC condition on effects of (a) material 

strength, and (b) mean stress. 

 

Figure 17. Effects of LC pressure on (a) ΔK, and (b) K mean cacalculated using elasto-plastic analysis with 

non-crack model (LC, σm=0 MPa, σa=100 MPa, sample A) 

Figure 16(b) schematically shows the effect of mean stress under PC. Because higher mean 

stress results in smaller ΔKth, larger σm leads to smaller fatigue strength and a smaller non-

propagating crack at the fatigue limit from this model. This was also confirmed to 

correspond well with the results shown in Fig. 9(a). 

The fretting fatigue strength minimizes at a certain contact pressure under LC conditions, at 

150 N/mm for sample A, as shown in Fig. 6. The relations of aeq－ΔK and aeq－Kmean are 

shown in Fig. 17 for sample A at various contact pressures when σm =0 and σa= 100 MPa. As 

Fig. 17(a) shows, ΔK increases with the contact pressure, but ΔKs differ little between 150 

and 300 N/mm. On the other hand, Kmean decreases monotonically with the increase in the 

LC pressure. This is due to two conflicting effects, the increase in ΔK accelerates crack 

propagation and negative large Kmean delays its propagation as the contact pressure 
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increases, that is, 150 N/mm-pressure results in the minimum fretting fatigue strength for 

sample A. 

4.4. ΔKth from small fretting pre-cracks 

Figure 18 shows ΔKs obtained from plain fatigue tests by using fretting pre-crack 

specimens, where open marks mean non-fracture and closed marks mean fracture. In this 

figure, ΔKths for long crack are also shown. Estimated ΔKths for small cracks, as boundaries 

between open and closed marks, were confirmed to depend on the crack length as a slope of 

1/3 in the double logarithmic plots under various R. This slope of 1/3 agrees well with 

Murakami’s empirical rule (Murakami & Endo, 1986). Some data slightly deviated from the 

approximate line, which was probably caused by inclined pre-crack effects and residual 

compressive stress due to previous fretting tests. 

Threshold values for small cracks are modelled as Eq. (4) using ΔKth, 0.1, ΔKth at aeq=0.1mm on 

the 1/3 slope line, and threshold for long cracks, ΔKth,l. The variation of ΔKth, 0.1 is shown in 

Fig. 19 as a function of R for samples A and B obtained from plain fatigue tests using fretting 

pre-crack specimens. It was confirmed that the values of ΔKth, 0.1 for sample B (higher static 

strength) are higher than those of sample A under all R. 

 

 1/3

th,s th, 0.1 eq

th th,s th,s th,l

th th,l th,s th,l

/ 0.1 ,

, when ,

, when .

K K a

K K K K

K K K K

  

     

     
 (4) 

 

Figure 18. The value of ΔKth obtained by plain fatigue tests using fretting pre-crack specimens for (a) 

Sample A and (b) Sample B under various stress ratios  
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Figure 19. The value of ΔKth, 0.1 obtained by tests for steels A and B under various stress ratios as a 

function of 1-R 

4.5. Quantitative evaluation of small crack propagation 

Micro-crack propagation behavior using the experimental and analytical results under 

various contact pressures and mean stresses is discussed. Figure 20 shows the evaluation 

results of fretting fatigue crack propagation under PC conditions when mean stresses are 

0, 400, and –100 MPa for sample A and 0, and 400 MPa for sample B. In this figure, Kmax, 

Kmin, and ΔK were calculated based on the maximum tangential stress theory at α=20° 

using the minimum stress, leading to fracture in the experiments. The value of ΔKth was 

evaluated using Eq. (4) and test results shown in Fig. 19 corresponding to the calculated 

R. The analysis results are in good agreement with the test results in all cases since the 

calculated ΔK under the fracture condition is greater than ΔKth through almost the entire 

crack length. 

The results are shown in Fig. 21 under LC conditions for sample A evaluated using the 

micro-crack propagation model when mean stress was 0 and 400 MPa and P=60, 150, 300 

N/mm. In this figure, Kmax, Kmin, and ΔK were calculated using the ASME method with 

elasto-plastic stress distribution without crack, as discussed in Section 4.2, under minimum 

stress leading to fracture. The analysis results also quantitatively agree well with the tests 

under LC conditions. 

Finally, the length of non-propagating cracks is quantitatively discussed. The ratios of ΔK to 

ΔKth calculated using the above-mentioned model are summarized in Fig. 22 using non-

propagating crack length observed in the experiments. Under PC conditions, the ratios of 

ΔK to ΔKth were almost 1, as shown in Fig. 22(a). This indicates that the micro crack 

propagation model estimates non-propagating crack length with considerable accuracy. 

Under LC conditions, the ratios were 0.8-1.4, as shown in Fig. 22(b), which is also 

satisfactorily accurate. The test results can be successfully explained using the micro-crack 
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propagation model, as shown in Figs. 20-22. Therefore, the maximum tangential stress 

theory is effective for satisfactorily evaluating fretting fatigue strength in stage I as well as in 

stage II for practical use. 

 

 
 

Figure 20. Evaluation results on ΔK, K max and K min using minimum stress leading to fracture in 

experiments under PC at p=80 MPa when σm= (a)(d) 0 MPa, (b)(e) 400 MPa, (c)(f) -100 MPa for sample A, 

and σm= (g)(i) 0 MPa, (h)(j) 400 MPa for sample B 
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Figure 21. Evaluation results on ΔK, K max and K min using minimum stress leading to fracture in 

experiments under LC for sample A when (a)(d) P=60 N/mm, σm= 0 MPa, (b)(e) P=150 N/mm,  

σm= 0 MPa, (c)(f) P=150 N/mm, σm= 400 MPa, (g)(i) P=300 N/mm, σm= 0 MPa, and (h)(j) P=300 N/mm,  

σm= 400 MPa 



 
Applied Fracture Mechanics 

 

194 

 

Figure 22. Stress intensity factor ratios of ΔK to ΔK th of non-propagating cracks for (a) PC and (b) LC 

5. Conclusion 

Fretting fatigue tests were undertaken in LC conditions as well as PC conditions using 12% 

Cr steel samples with parameters of mean stress, contact pressure, and material strength. 

The strengths were evaluated quantitatively by applying the micro-crack propagation 

model under various test conditions considering small crack and mean stress effects on ΔKth 

and mixed modes of tensile and shear ΔK. Crack propagation behavior was also examined 

quantitatively by obtaining non-propagating crack lengths of run-out specimens and ΔKth 

from fretting pre-cracks under several R, including negative mean stress. The results 

obtained are as follows. 

1. Test results concerning the fretting fatigue strength could be successfully explained 

using the micro-crack propagation model by applying the maximum tangential stress 

theory in both stages I and II under PC conditions at different mean stresses for samples 

A and B. Under LC conditions, where high contact pressure arises, it was found that 

elasto-plastic analysis is necessary for calculating ΔK and Kmean considering the actual 

yield behavior, and the proposed method is effective for expressing test results when 

σm=0 and 400 MPa under 60, 150, and 300 N/mm contact pressure for sample A.  

2. Cracks were confirmed to propagate in stage II at the angle where the maximum stress 

intensity factor range Kθmax occurred by observing the propagation profile. This model 

also confirmed the experimental results that the depth of non-propagating cracks 

decreases as the mean stress and the material strength increase. 

3. Under PC at 80-MPa pressure, sample B (the static strength of which was about 40% 

higher than that of sample A) exhibited 10-25% higher fretting-fatigue strength than 

sample A. Under LC conditions, the fretting fatigue strength decreased as contact 

pressure increased and minimized when Hertz's average contact pressure was about 1.5 

times 0.2% proof stress. This behavior is explained as two conflicting effects; the 

increase in ΔK accelerates crack propagation and negative large Kmean delays its 

propagation as the contact pressure increases. 
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4. Crack propagation data in stage I, such as inclined angles and the boundary depth from 

stages I to II, were obtained under various test conditions, which is expected to be 

clarified quantitatively by analyzing mixed mode effects . 
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