
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 2 

 

 

 
 

© 2012 Alves, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Foundations of Measurement Fractal  

Theory for the Fracture Mechanics 

Lucas Máximo Alves 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/51813 

1. Introduction 

A wide variety of natural objects can be described mathematically using fractal geometry as, 
for example, contours of clouds, coastlines , turbulence in fluids, fracture surfaces, or rugged 
surfaces in contact, rocks, and so on. None of them is a real fractal, fractal characteristics 
disappear if an object is viewed at a scale sufficiently small. However, for a wide range of 
scales the natural objects look very much like fractals, in which case they can be considered 
fractal. There are no true fractals in nature and there are no real straight lines or circles too. 
Clearly, fractal models are better approximations of real objects that are straight lines or 
circles. If the classical Euclidean geometry is considered as a first approximation to irregular 
lines, planes and volumes, apparently flat on natural objects the fractal geometry is a more 
rigorous level of approximation. Fractal geometry provides a new scientific way of thinking 
about natural phenomena. According to Mandelbrot [1], a fractal is a set whose fractional 
dimension (Hausdorff-Besicovitch dimension) is strictly greater than its topological 
dimension (Euclidean dimension). 

In the phenomenon of fracture, by monotonic loading test or impact on a piece of metal, 
ceramic, or polymer, as the chemical bonds between the atoms of the material are broken, it 
produces two complementary fracture surfaces. Due to the irregular crystalline arrangement 
of these materials the fracture surfaces can also be irregular, i.e., rough and difficult 
geometrical description. The roughness that they have is directly related to the material 
microstructure that are formed. Thus, the various microstructural features of a material 
(metal, ceramic, or polymer) which may be, particles, inclusions, precipitates, etc. affect the 
topography of the fracture surface, since the different types of defects present in a material 
can act as stress concentrators and influence the formation of fracture surface. These various 
microstructural defects interact with the crack tip, while it moves within the material, 
forming a totally irregular relief as chemical bonds are broken, allowing the microstructure 
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to be separated from grains (transgranular and intergranular fracture) and microvoids are 
joining (coalescence of microvoids, etc..) until the fracture surfaces depart. Moreover, the 
characteristics of macrostructures such as the size and shape of the sample and notch from 
which the fracture is initiated, also influence the formation of the fracture surface, due to the 
type of test and the stress field applied to the specimen. 

After the above considerations, one can say with certainty that the information in the 
fracture process are partly recorded in the "story" that describes the crack, as it walks inside 
the material [2]. The remainder of this information is lost to the external environment in a 
form of dissipated energy such as sound, heat, radiation, etc. [30, 31]. The remaining part of 
the information is undoubtedly related to the relief of the fracture surface that somehow 
describes the difficulty that the crack found to grow [2]. With this, you can analyze the 
fracture phenomenon through the relief described by the fracture surface and try to relate it 
to the magnitudes of fracture mechanics [3 , 4 , 5 , 6 , 7, 8, 9 - 11, 12, 13]. This was the basic 
idea that brought about the development of the topographic study of the fracture surface 
called fractography. 

In fractography anterior the fractal theory the description of geometric structures found on a 
fracture surface was limited to regular polyhedra-connected to each other and randomly 
distributed throughout fracture surface, as a way of describing the topography of the 
irregular surface. Moreover, the study fractographic hitherto used only techniques and 
statistical analysis profilometric relief without considering the geometric auto-correlation of 
surfaces associated with the fractal exponents that characterize the roughness of the fracture 
surface. 

The basic concepts of fractal theory developed by Mandelbrot [1] and other scientists, have 
been used in the description of irregular structures, such as fracture surfaces and crack [14 ], 
in order to relate the geometrical description of these objects with the materials properties 
[15 ].  

The fractal theory, from the viewpoint of physical, involves the study of irregular structures 
which have the property of invariance by scale transformation, this property in which the 
parts of a structure are similar to the whole in successive ranges of view (magnification or 
reduction) in all directions or at least one direction (self-similarity or self-affinity, 
respectively) [36]. The nature of these intriguing properties in existing structures, which 
extend in several scales of magnification is the subject of much research in several 
phenomena in nature and in materials science [16 , 17  and others]. Thus, the fractal theory 
has many contexts, both in physics and in mathematics such as chaos theory [18], the study 
of phase transitions and critical phenomena [19, 20, 21], study of particle agglomeration [22], 
etc.. The context that is more directly related to Fracture Mechanics, because of the physical 
nature of the process is with respect to fractal growth [23, 24, 25, 26]. In this subarea are 
studied the growth mechanisms of structures that arise in cases of instability, and 
dissipation of energy, such as crack [27, 28] and branching patterns [29]. In this sense, is to 
be sought to approach the problem of propagation of cracks. 
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The fractal theory becomes increasingly present in the description of phenomena that have a 
measurable disorder, called deterministic chaos [18, 27, 28]. The phenomenon of fracture 
and crack propagation, while being statistically shows that some rules or laws are obeyed, 
and every day become more clear or obvious, by understanding the properties of fractals 
[27, 28]. 

2. Fundamental geometric elements and measure theory on fractal 

geometry 

In this part will be presented the development of basic concepts of fractal geometry, 
analogous to Euclidean geometry for the basic elements such as points, lines, surfaces and 
fractals volumes. It will be introduce the measurement fractal theory as a generalization of 
Euclidean measure geometric theory. It will be also describe what are the main 
mathematical conditions to obtain a measure with fractal precision. 

2.1. Analogy between euclidean and fractal geometry 

It is possible to draw a parallel between Euclidean and fractal geometry showing some 
examples of self-similar fractals projected onto Euclidean dimensions and some self-affine 
fractals. For, just as in Euclidean geometry, one has the elements of geometric construction, in 
the fractal geometry. In the fractal geometry one can find similar objects to these Euclidean 
elements. The different types of fractals that exist are outlined in Figure 1 to Figure 4. 

2.1.1. Fractais between 0 1D   (similar to point) 

An example of a fractal immersed in Euclidean dimension 1 1I d    with projection in 
0d  , similar to punctiform geometry, can be exemplified by the Figure 1. 

 
Figure 1. Fractal immersed in the one-dimensional space where 0,631D  . 

This fractal has dimension 0,631D  . This is a fractal-type "stains on the floor." Other fractal 
of this type can be observed when a material is sprayed onto a surface. In this case the global 
dimension of the spots may be of some value between 0 1D  . 

2.1.2. Fractais between 1 2D   (similar to straight lines) 

For a fractal immersed in a Euclidean dimension 1 2I d   , with projectionin 1d  , 
analogous to the linear geometry is a fractal-type peaks and valleys (Figure 2). Cracks may 
also be described from this figure as shown in Alves [37]. Graphs of noise, are also examples 
of linear fractal structures whose dimension is between 1 2D  . 
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Figure 2. Fractal immersed in dimension d = 2. rugged fractal line. 

2.1.3. Fractals between 2 3D   (similar to surfaces or porous volumes) 

For a fractal immersed in a Euclidean dimension, 1 3I d    with projection in 2d  , 
analogous to a surface geometry is fractal-type "mountains" or "rugged surfaces" (Figure 3). 
The fracture surfaces can be included in this class of fractals. 

 
Figure 3. Irregular or rugged surface that has a fractal scaling with dimension D  between 2 3D  . 

 
Figure 4. Comparison between Euclidean and fractal geometry. ,D d  and 

f
D  represents the topological, 

Euclidean and fractal dimensions, of a point, line segment, flat surface, and a cube, respectively 
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Making a parallel comparison of different situations that has been previously described, one 
has (Figure 4) 

2.2. Fractal dimension (non-integer) 

An object has a fractal dimension,  , 1D d D d I    , where I  is the space Euclidean 
dimension which is immersed, when: 

    0 0
DF L F L    (1) 

where 
0
L  is the projected length that characterizes an apparent linear extension of the fractal

 , is the scale transformation factor between two apparent linear extension,  0F L  is a 

function of measurable physical properties such as length, surface area, roughness, volume, 
etc., which follow the scaling laws, with homogeneity exponent is not always integers, 
whose geometry that best describe, is closer to fractal geometry than Euclidean geometry. 
These functions depend on the dimensionality, I , of the space which the object is 
immersed. Therefore, for fractals the homogeneity degree n  is the fractal dimension D  
(non-integer) of the object, where   is an arbitrary scale. 

Based on this definition of fractal dimension it can be calculates doing: 
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taking the logarithm one has 
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From the geometrical viewpoint, a fractal must be immersed into a integer Euclidean 
dimension, 1I d  . Its non-integer fractal dimension, D , it appears because the fill rule of 
the figure from the fractal seed which obeys some failure or excess rules, so that the 
complementary structure of the fractal seed formed by the voids of the figure, is also a fractal. 

For a fractal the space fraction filled with points is also invariant by scale transformation, 
i.e.: 

 ( ) 1
( )

( ) ( )
o

o
o o

F L
P L

F L N L


   (4) 

Thus, 

    0 0ouD DP L N L     (5) 

where  0P L  is a probability measure to find points within fractal object 
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Therefore, the fractal dimension can be calculated from the fllowing equation: 

  0ln

ln

N L
D


   (6) 

If it is interesting to scale the holes of a fractal object (the complement of a fractal), it is 
observed that the fractal dimension of this new additional dimension corresponds to the 
Euclidean space in which it is immersed less the fractal dimension of the original. 

2.3. A generalized monofractal geometric measure 

Now will be described how to process a general geometric measure whose dimension is 
any. Similarly to the case of Euclidean measure the measurement process is generalized, 
using the concept of Hausdorff-Besicovitch dimension as follows. 

Suppose a geometric object is recovered by  -dimensional, geometric units, Du , with 
extension, k  and k  , where   is the maximum  -dimensional unit size and   is a 
positive real number. Defining the quantity: 

  , ,{ }D k k
k

M      (7) 

Choosing from all the sets  k , that reduces this summation, such that: 

  
{ }

, inf
k

D k
k

M 


    (8) 

The smallest possible value of the summation in (8) is calculated to obtain the adjustment 
with best precision of the measurement performed. Finally taking the limit of   tending to 
zero,  0  , one has: 

 
0

( ) ( , )limD DM M


  


  (9) 

The interpretation for the function  DM   is analogous to the function for a Euclidean 
measure of an object, i.e. it corresponds to the geometric extension (length, area, volume, 
etc.) of the set measured by units with dimension,  . The cases where the dimension is 
integer are same to the usual definition, and are easier to visualize. For example, the 
calculation of  DM   for a surface of finite dimension, 2D  , there are the cases: 

- For 1 2D     measuring the "length" of a plan with small line segments, one gets 

DM   , because the plan has a infinity “length”, or there is a infinity number of line 
segment inside the plane. 

- For, 2 2D     measuring the surface area of small square, one gets 2 0D dM A A  . 
Which is the only value of   where DM  is not zero nor infinity (see Figure 5.) 

- For 3 2D     measuring the "volume" of the plan with small cubes, one gets 0DM  , 
because the "volume" of the plan is zero, or there is not any volume inside the plan. 
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Figure 5. Measuring,  DM   of an area A  with a dimension, 2D   made with different measure 
units Du  for 1,2,3D  . 

Therefore, the function, DM  possess the following form 

 

0
( )D

para D

M M para D

para D


 



 
 
 

. (10) 

That is, the function DM  only possess a different value of 0  and   at a critical point D   
defining a generalized measure  

2.4. Invariance condition of a monofractal geometric measure 

Therefore, for a generalized measurement there is a generalized dimension which the 
measurement unit converge to the determined value, M , of the measurement series, 
according to the extension of the measuring unit tends to zero, as shown in equations 
equações (9) and (10), namely: 

    , ,{ } D
D k k Do

k

M M          (11) 

where ( )
0D

M d  is the Euclidean projected extension of the fractal object measured on  -

dimensional space 

Again the value of a fractal measure can be obtain as the result of a series. 

One may label each of the stages of construction of the function  DM   as follows: 

i. the first is the measure itself. Because it is actually the step that evaluates the extension of 
the set, summing the geometrical size of the recover units. Thus, the extension of the set 
is being overestimated, because it is always less or equal than tthe size of its coverage. 

ii. The next step is the optimization to select the arrangement of units which provide the 
smallest value measured previously, i.e. the value which best approximates the real 
extension of the assembly. 

iii. The last step is the limit. Repeat the previous steps with smaller and smaller units to 
take into account all the details, however small, the structure of the set. 
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As the value of the generalized dimension is defined as a critical function,  DM   it can 
be concluded, wrongly, that the optimization step is not very important, because the fact of 
not having all its length measured accurately should not affect the value of critical point. 
The optimization step, this definition, serves to make the convergence to go faster in 
following step, that the mathematical point of view is a very desirable property when it 
comes to numerical calculation algorithms. 

2.5. The monofractal measure and the Hausdorff-Besicovitch dimension 

In this part we will define the dimension-Hausdorf Besicovicth and a fractal object itself. The 
basic properties of objects with "anomalous" dimensions (different from Euclidean) were 
observed and investigated at the beginning of this century, mainly by Hausdorff and 
Besicovitch [32,34]. The importance of fractals to physics and many other fields of 
knowledge has been pointed out by Mandelbrot [1]. He demonstrated the richness of fractal 
geometry, and also important results presented in his books on the subject [1, 35, 36]. 

The geometric sequence, S is given by: 

 0,1,2,....k
k

S S onde k   (12) 

represented in Euclidean space, is a fractal when the measure of its geometric extension, 
given by the series,  kM   satisfies the following Hausdorf-Besicovitch condition: 
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
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


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 
 , (13) 

where: 

 d  is the geometric factor of the unitary elements (or seed) of the sequence represented 
geometrically. 
 : is the size of unit elements (or seed), used as a measure standard unit of the extent of the 
spatial representation of the geometric sequence. 

 N  : is the number of elementary units (or seeds) that form the spatial representation of 
the sequence at a certain scale 
 : the generalized dimension of unitary elements 
D : is the Hausdorff-Besicovitch dimension. 

2.6. Fractal mathematical definition and associated dimensions  

Therefore, fractal is any object that has a non-integer dimension that exceeds the topological 
dimension ( D I , where I  is the dimension of Euclidean space which is immersed) with 
some invariance by scale transformation (self-similarity or self-affinity), where for any 
continuous contour that is taken as close as possible to the object, the number of points DN , 
forming the fractal not fills completely the space delimited by the contour, i.e., there is 
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always empty, or excess regions, and also there is always a figure with integer dimension, I

, at which the fractal can be inscribed and that not exactly superimposed on fractal even in 
the limit of scale infinitesimal. Therefore, the fraction of points that fills the fractal regarding 
its Euclidean coverage is different of a integer. As seen in previous sections - 2.2 - 2.5 in 
algebraic language, a fractal is a invariant sequence by scale transformation that has a 
Hausdorff-Besicovitch dimension. 

According to the previous section, it is said that an object is fractal, when the respective 
magnitudes characterizing features as perimeter, area or volume, are homogeneous 
functions with non-integer. In this case, the invariance property by scaling transformation 
(self-similar or self-affinity) is due to a scale transformation of at least one of these functions. 

The fractal concept is closely associated to the concept of Hausdorff-Besicovitch dimension, 
so that one of the first definitions of fractal created by Mandelbrot [36] was: 

“Fractal by definition is a set to which the Haussdorf-Besicovitch dimension exceeds strictly 
the topological dimension". 

One can therefore say that fractals are geometrical objects that have structures in all scales of 
magnification, commonly with some similarity between them. They are objects whose usual 
definition of Euclidean dimension is incomplete, requiring a more suitable to their context 
as they have just seen. This is exactly the Hausdorff-Besicovitch dimension. 

A dimension object, D , is always immersed in a space of minimal dimension 1I d  , which 
may present an excessive extension on the dimension d , or a lack of extension or failures in 
one dimension 1d  . For example, for a crack which the fractal dimension is the dimension 
in the range of 1 2D   the immersion dimension is the dimension 2I   in the case of a 
fracture surface of which the fractal dimension is in the range 2 3D   the immersion 
dimension is the 3I  . When an object has a geometric extension such as completely fill a 
Euclidean dimension regular, d , and still have an excess that partially fills a superior 
dimension 1I d  , in addition to the inferior dimension, one says that the object has a 
dimension in excess, ed  given by ed D d   where D  is the dimension of the object. For 
example, for a crack which the fractal dimension is in the range 1 2D   the excess 
dimension is 1ed D  , in the case of a fracture surface of which the fractal dimension is in 
the range of 2 3D   the excess dimension is 2ed D  . If on the other hand an object 
partially fills a Euclidean regular dimension, 1I d   certainly this object fills fully a 
Euclidean regular dimension, d , so that it is said that this object has a lack dimension 

1fld I D d D     , where 1e fld d  . For example, for a crack which the fractal dimension 
is the range of 1 2D   the lack dimension is 2fld D  . In the case of a fracture surface of 
which the fractal dimension is the range of 2 3D   the lack dimension is 3fld D  . 

2.7. Classes and types of fractals  

One of the most fascinating aspects of the fractals is the extremely rich variety of possible 
realizations of such geometric objects. This fact gives rise to the question of classification, 
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and the book of Mandelbrot [1] and in the following publications many types of fractal 
structures have been described. Below some important classes will be discussed with some 
emphasis on their relevance to the phenomenon of growth. 

Fractals are classified, or are divided into: mathematical and physical (or natural) fractals 
and uniform and non-uniform fractals. Mathematical fractals are those whose scaling 
relationship is exact, i.e., they are generated by exact iteration and purely geometrical rules 
and does not have cutoff scaling limits, not upper nor lower, because they are generated by 
rules with infinity interactions (Figure 6a) without taking into account none phenomenology 
itself, as shown in Figure 6a. Some fractals appear in a special way in the phase space of 
dynamical systems that are close to situations of chaotic motion according to the Theory of 
Nonlinear Dynamical Systems and Chaos Theory. This approach will not be made here, 
because it is another matter that is outside the scope of this chapter. 

 
Figure 6. Example of branching fractals, showing the structural elements, or elementary geometrical 
units, of two fractals. a) A self-similar mathematical fractal. b) A statistically self-similar physical fractal. 

Real or physical fractals (also called natural fractals) are those statistical fracals, where not 
only the scale but all of fractal parameters can vary randomly. Therefore, their scaling 
relationship is approximated or statistical, i. e., they are observed in the statistical average 
made throughout the fractal, since a lower cutoff scale, min , to a different upper cutoff scale 

max  (self-similar or self-affine fractals), as shown in Figure 6b. These fractals are those which 
appear in nature as a result of triggering of instabilities conditions in the natural processes 
[24] in any physical phenomenon, as shown Figure 6b. In these physical or natural fractals the 
extension scaling of the structure is made by means of a homogeneous function as follows: 

   ~ d DF    , (14) 

where d  is the Euclidean dimension of projection of the fractal and D  is the fractal 
dimension of self-similar structure. 
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It is true that the physical or real fractals can be deterministic or random. In random or 
statistical fractal the properties of self-similarity changes statistically from region to region 
of the fractal. The dimension cannot be unique, but characterized by a mean value, similarly 
to the analysis of mathematical fractals. The Figure 6b shows aspects of a statistically self-
similar fractal whose appearance varies from branch to branch giving us the impression that 
each part is similar to the whole. 

The mathematical fractals (or exact) and physical (or statistical), in turn, can be subdivided 
into uniform and nonuniform fractal. 

Uniforms fractals are those that grow uniformly with a well behaved unique scale and 
constant factor,  , and present a unique fractal dimension throughout its extension. 

Non-uniform fractals are those that grow with scale factors 'i s  that vary from region to 
region of the fractal and have different fractal dimensions along its extension. 

Thus, the fractal theory can be studied under three fundamental aspects of its origin: 

1. From the geometric patterns with self-similar features in different objects found in nature. 
2. From the nonlinear dynamics theory in the phase space of complex systems. 
3. From the geometric interpretation of the theory of critical exponents of statistical 

mechanics. 

3. Methods for measuring length, area, volume and fractal dimension 

In this section one intends to describe the main methods for measuring the fractal dimension 
of a structure, such as: the compass method, the Box-Counting method, the Sand-Box 
Method, etc. 

It will be described, from now, how to obtain a measure of length, area or fractal volume. In 
fractal analysis of an object or structure different types of fractal dimension are obtained, all 
related to the type of phenomenon that has fractality and the measurement method used in 
obtaining the fractal measurement. These fractal dimensions can be defined as follows. 

3.1. The different fractal dimensions and its definitions 

A fractal dimension fD  in general is defined as being the dimension of the resulting 
measure of an object or structure, that has irregularities that are repeated in different scales 
(a invariance by scale transformation). Their values are usually noninteger and situated 
between two consecutive Euclidean dimensions called projection dimension d  of the object 
and immersion dimension, 1d  , i.e. 1fd D d   . 

In the literature there is controversy concerning the relationship between different fractal 
dimensions and roughness exponents. The term "fractal dimension" is used generically to 
refer to different fractional dimensions found in different phenomenologies, which results in 
formation of geometric patterns or energy dissipation, which are commonly called fractals 
[1]. Among these patterns is the growth of aggregates by diffusion (DLA - Diffusion Limited 
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Aggregation), the film growth by ballistic deposition (BD), the fracture surfaces (SF), etc.. 
The fractal dimensions found in these phenomena are certainly not the same and depend on 
both the phenomenology studied as the fractal characterization method used. Therefore, to 
characterize such phenomena using fractal geometry, a distinction between the different 
dimensions found is necessary. 

Among the various fractal dimensions one can emphasize the Hausdorff-Besicovitch 
dimension, HBD , which comes from the general mathematical definition of a fractal [32, 
33,34]. Other dimensions are the dimension box, BD , the roughness dimension or exponent 
Hurst, H , the Lipshitz-Hölder dimension,  , etc.. Therefore, a mathematical relationship 
between them needs to be clearly established for each phenomenon involved. However, is 
observed, then that relationship is not unique and depends not only on phenomenology, but 
also the characterization method used. 

Therefore, the phenomenological equation of the fracture phenomenon can also, in theory, 
provide a relationship between fractal dimension and roughness exponent of a fracture 
surface, as happens to other phenomenologies. In this study, there was obtained a fractal 
model for a fracture surface, as a generalization of the box-counting method. Thus, will be 
discussed the relationship between the local and global box dimension and the roughness 
dimension, which are involved in the characterization of a fracture surface, and any other 
dimension necessary to describe a fractal fracture surface. 

3.1.1. Compass methods and divider dimension, DD  

The divider dimension DD  is defined from the measure of length of a roughened fractal 
line, for example, when using the compass method. This measure is obtained by opening a 
compass with an aperture   and moving on the line fractal to obtain the value of the line 
length rugosa (see Figure 7). The different values of the rough line length due to the 
compass aperture determines the dimension divider. 

 
Figure 7. Compass method applied to a rugged line. 

For a fractal rough line the divider dimension can be defined as: 
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where 
0
L  is the projected length obtained from the rugged fractal length L   

 
Figure 8. Compass method applied on a line noise or a rough self-affine fractal. 

Several methods for determining the fractal dimension based on the compass method, 
among them stand out the following methods: the Coastlines Richardson Method, the Slit 
Island Method, etc. 

3.2. Methods of measurement for determining the fractal dimension of a structure 

There are basically two ways to recover an object with boxes for fractal dimension measuring. 
In the first method, boxes of different sizes extending from a minimum size min  until to a 
maximum size max , from a fixed origin recovering the whole object at once time. In the 
second case, one side of the recovering box is kept fixed, and with a minimum size ruler, min , 
then recovers the figure by moving the boundary of that recovering from the minimum min  
to maximum size max  of the object. The first method is known as a method Box-Counting 
exemplified in Figure 9 and the second method is known as Sand-box, shown in Figure 10. The 
advantage of the second over the first is that it detects the changes in dimension D  with the 
length of the object. If the object under consideration has a local dimension for boxes with size 

0  , unlike the global dimension,   , it is said that the object is self-affine fractal. 
Otherwise the object is said self-similar. These two main methods of counts of structures 
which may lead to determination of the fractal dimension of an object [38]. 

3.2.1. Box-counting method by static scaling of the elements in a fractal structure  

The Box-Counting method, comes from the theory of critical phenomena in statistical 
mechanics. In statistical mechanics there is an analogous mathematical method to describing 
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phenomena which have self-similar properties, permitting scale transformations without 
loss of generality in the description of physical information of the phenomenon ranging 
from quantities such as volume up to energy. However, in the case described here, the Box-
Counting method is performed filling the space occupied by a fractal object with boxes of 
arbitrary size  , and count the number  N   of these boxes in function its size, (Figure 9 
and Figure10). This number  N   of boxes is given as follows: 

   DN C   (16) 

Plotting the data in a log log  graph one obtains from the slope of the curve obtained, the 
fractal dimension of the object. 

In the Box-Counting method (Figure 9), a grid that recover the object is divided into 

0 /k kn L   boxes of equal side k  and how many of these boxes that recovering the object 
is counted. Then, varies the size of the boxes and the counting is retraced, and so on. Making 
a logarithm graph of the number kN  of boxes that recovering the object in function of the 
scale for each subdivision  0/k k L  , one obtains the fractal dimension from the slope of 
this plot. Note that in this case the partition maximum is reached when, 

 0 0 0/ /kN L k L l    , where max 0L L  is the projected crack length 0l   is the 
length of the shortest practicable ruler. 

 
Figure 9. Fragment of a crack on a testing sample showing the variation of measurement of the crack 
length L  with the measuring scale, 0/k k L   for a partition, k variável   and 0kL L  (fixed), with 
sectioning done for counting by one-dimensional Box-Counting scaling method. 
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Therefore, the number  k kN   depending on the size, k , of these boxes is given as follows: 

  
max

D

k
k kN


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In the Figure 9 is illustrated the use of this method in a fractal object. Are present different 
grids, or meshes, constructed to recover the entire structure, whose fractal dimension one 
wants to know. The grids are drawn from an original square, involving the whole space 
occupied by the structure. At each stage of refinement of the grid  0L  (the number of equal 
parts in the side of the square is divided) are counted the number of squares  0N L  which 
contain part of the structure. Repeatedly from the data found, is constructed the graph of 

 0 0log logL N L . If the graph thus obtained is a straight line, then the fractal behavior of 
the structure has self-similarity or statistical self-affinity whose dimension D  is obtained by 
calculating the slope of the line. For more compact structure, it is recommended to make a 
statistical sampling, that is, the repeat the counting of the squares  0N L  for different 
squares constructed from the gravity center (counting center) of the in the structure. Thus, 
one obtains a set of values  0N L  for another set of values 0L . These data must be 
statistically treated to obtain the value of fractal dimension, " "D .  

From the viewpoint of experimental measurement, one can consider using different 
methods of viewing the crack to obtain the fractal dimension, such as optical microscopy, 
electron microscopy, atomic force microscope, etc.., Which naturally have different rules k  
and therefore different scales of measurement k ,. 

The fractal dimension is usually calculated using the Box-Counting shown in Figure 9, i.e. 
by varying the size of the measuring ruler k  and counting the number of boxes, kN  that 
recover the structure. In the case of a crack the fractal dimension is obtained by the 
following relationship: 

 
ln

ln( / )o o

N
D

l L
   (18) 

The description of a crack according to the Box-Counting method follows the idea shown in 
Figure 9, which results in: 

 
ln 57

1.096
ln(1 / 40)

D     . (19) 

The same result can be obtained using the Box-Sand method, as shown in Figure 10. 

3.2.2. The sand-box counting method of the elements by static scaling of a fractal structure 

The Sand-box method consists in the same way as the Box-Counting method, to count the 
number of boxes,  N u , but with fixed length, u , as small as possible, extending gradually 
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up the boundary count until to reach out to the border of the object under consideration. 
This is done initially by setting the counting origin from a fixed point on the object, as 
shown in Figure10. This method seems to be the most advantageous, as well as to establish a 
coordinate system, or a origin for calculating the fractal dimension, it also allows, in certain 
cases, to infer dynamic data from static scaling, as shown by Alves [47]. 

 
Figure 10. Fragment of a crack on test specimen showing the variation of measurement of the crack 
length L  with the measuring scale, 0/k k L   for a partition kL variável , and 0k l   (fixed), with 
sectioning done for counting by one-dimensional Sand-Box scaling method. 

In the Sand-Box method (Figure10), the figure is recovered with boxes of different sizes kL , 
no matter the form, which can be rectangular or spherical, however, fixed at a any point " O

" on figure called origin, from which the boxes are enlarged. It is counted the number of 
elementary structures, or seeds, which fit within each box. Plotting the graph of 

 minlog logk k kN L    in the same manner as in the above method the fractal dimension 
is obtained. Note that in this case the maximum partition is achieved when 

  min 0 0kN L k L l    , where 0L L   is the projected crack length and 0min l   it is 
the length of the lower measuring ruler practicable. 

3.2.3. The global and local box dimensions 

To define the box dimension, BD , is assumed that all the space containing the fractal is 
recovered with a grid (set of  -dimensional units juxtaposed in the same shape and size,  ) 
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with maximum size, max , which inscribes the fractal object. Defining the relative scale,   
on the grid size, max , as being given by: 

 
max




 � (20) 

countting the number of boxes ( )N   that have at least one point of the fractal. The box 
dimension is therefore defined as: 

 
0

ln ( )
lim

lnB
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D






   (21) 

At this point, there are two ways to obtain the actual value of the measure, or taking the 
limit when 0   and allows that the dimension D  fits the end value of ( )N  , or it is 
considered a linear correlation in value of ln ( ) lnN   , which D  is the slope of the line, 
and this defines the measure independently of the scale. 

In the case of numerical estimation, one can not solve the limit indicated in the equation 
(21). Then, BD  is obtained as a slope, ln ( ) lnN   when   it is small. The value ( )N   is 
obtained by an algorithm known as Box-Counting. 

Self-affine fractals requiring different variations in scale length for different directions. 
Therefore, one can use the Box-Counting method with some care being taken, in the sense 
that the box dimension BD  to be obtained has a crossing region between a local and global 
measure of the dimensions. From which follows that for each region is used the following 
relationships: 
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for a global measurement 
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where 0sL  is the threshold saturation length which the fractal dimension changes its 
behavior from local to global stage. 

For measurement, generally, for any self-affine fractal structure the local fractal dimension is 
related to the Hurst exponent, H , as follow,  

 11Bl qD d H     (24) 

At this point, one observes that for a profile the relationship 2BlD H   commonly used, 
only serves for a local measurements using the box counting method. While for global 
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measures one can not establish a relationship between BgD  and H . For the global fractal 
dimension, gD d  and 1I d   the Euclidean dimension where the fractal is embedded 
one has 

 1Bgd D d    (25) 

Some textbooks on the subject show an example of calculation of local and global fractal 
dimension of self-affine fractals, obtained by a specific algorithm [18, 22, 23, 26, 38,39]. 

In crossing the limit of fractal dimension local lD  to global gD , there is a transition zone 
called the "crossover", and the results obtained in this region are somewhat ambiguous and 
difficult to interpret [39]. However, in the global fractal dimension, the structure is not 
considered a fractal [42 , 43]. 

3.2.4. The Relationship between box dimension and HausdorffBesicovitch dimensions 

The mathematical definition of generalized dimension of Haussdorff-Besicovitch need a 
method that can measure it properly to the fractal phenomenon under study. Some authors 
[23, 40, 44, 45] have discussed the possibility of using the Box-Counting method as one of 
the graphical methods which obtains a box dimension BD , very close to generalized 
Haussdorff Besicovitch, HBD , i.e. [44]: 

 B HBD D  (26) 

In this sense the box dimension, BD  is obtained for self-asimilar fractals that may be 
rescaled for the same variation in scales lengths in all directions by using the relationship: 

   0
0

0

BD
L

N L
l

 
   
 

 (27) 

where 0l  is the grid size used and 0L  is the apparent size of the fractal to be characterized. 

The analytical calculation of the Hausdorff dimension is only possible in some cases and it is 
difficult to implement by computation. In numerical calculation, is used another more 
appropriate definition, called box dimension, BD , which in the case of dynamic systems, 
has the same value of the Haussdorff dimension, D  [44]. Thus, it is common to call them 
without distinction as fractal dimensions, D  as will be shown below. 

All the definitions related to fractal exponents that are shown here, and all numerical 
evaluation of these, always calculates the inclination of some amount   against on a 
logarithmic scale. 

The two definitions of, Hausdorff-Besicovitch Dimension, HD  and Box-Dimension, BD  are 
allocated the same amount, but in a way somewhat different from each other. In inaccurate 
way, one can think that the connection between the two is done considering that: 
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    ~ ,d
DM D N    (28) 

by analogy with equation (13), i.e. approximating to the geometric extension of the object by 
the number of boxes (of the same size) necessary to recover it. But, since the definition of the 
box dimension there is no optimization step, and its value is directly dependent on  N   
(which is not the case with the Hausdorff dimension) in practice one has often the geometric 
extension is overestimated, particularly for   large, i. e. upper limit  1   and thus 

BD D . However, for the lower limit, i.e. 0  , the Hausdorff-Besicovitch dimensions, 

HD  and the box dimension, BD  are equal, becoming valid the measure of geometric 
extension process,  DM   at box counting algorithm. 

Considering from (28) that: 

    ~ 1DN d D d      , (29) 

and that 

    max max~ 1DN d D d       (30) 

Therefore, dividing (29) by (30) has: 
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taking max  the total grid extension that recover the object, one has: 

 max 1   (32) 

From as early as (31) 

    1DN d D d       (33) 

Substituting (33) in (28) has: 

   ~ ,D
DM D     (34) 

This equation is analogous to the fundamental Richardson relationship for a fractal length. 

4. Crack and rugged fracture surface models 

The two main problematics of mathematical description of Fracture Mechanics are based on 
the following aspects: the surface roughness generated in the process and the field 
stress/strain applied to the specimen. This section deals with the fractal mathematical 
description of the first aspect, i.e., the roughness of cracks on Fracture Mechanics, using 
fractal geometry to model its irregular profile. In it will be shown basic mathematical 
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assumptions to model and describe the geometric structures of irregular cracks and generic 
fracture surfaces using the fractal geometry. Subsequently, one presents also the proposal 
for a self-affine fractal model for rugged surfaces of fracture. The model was derived from a 
generalization of Voss [48] (1) equation and the model of Morel [49] for fractal self-affine 
fracture surfaces. A general analytical expression for a rugged crack length as a function of 
the projected length and fractal dimension is obtained. It is also derived the expression of 
roughness, which can be directly inserted in the analytical context of Classical Fracture 
Mechanics. 

The objectives of this section are: (i) based geometrical concepts, extracted from the fractal 
theory and apply them to the CFM in order to (ii) construct a precise language for its 
mathematical description of the CFM, into the new vision the fractal theory. (iii) eliminate 
some of the questions that arise when using the fractal scaling in the formulation of physical 
quantities that depend on the rough area of fracture, instead of the projected area, in the 
manner which is commonly used in fracture mechanics. (iv) another objective is to study the 
way which the fractal concept can enrich and clarify various aspects of fracture mechanics. 
For this will be done initially in this section, a brief review of the major advances obtained 
by the fractal theory, in the understanding of the fractography and in the formation of 
fracture surfaces and their properties. Then it will be done, also, a mathematical description 
of our approach, aiming to unify and clarify aspects still disconnected from the classical 
theory and modern vision, provided by fractal geometry. This will make it possible for the 
reader to understand what were the major conceptual changes introduced in this work, as 
well as the point from which the models proposed progressed unfolding in new concepts, 
new equations and new interpretations of the phenomenon. 

4.1. Application of fractal theory in the characterization of a fracture surface  

In this section one intends to do a brief history of the fractography development as a fractal 
characterization methodology of a fractal fracture surface. 

4.1.1. Geometric aspects and observations extracted from the quantitative fractography of 

irregular fracture surface  

The technique used for geometric analysis of the fracture surface is called fractography. 
Until recently it was based only on profilometric study and statistical analysis of irregular 
surfaces [50]. Over the years, after repeated observations of these surfaces at various 
magnifications, was also revealed a variety of self-similar structures that lie between the 
micro and macro-structural level, characteristic of the type of fracture under observation. 
Since 1950 it is known that certain structures observed in fracture surfaces by microscopy, 
showed the phenomenon of invariance by magnification. Such structures recently started to 
be described in a systematic way by means of fractal geometry [51, 25]. This new approach 
allows the description of patterns that at first sight seem irregular, but keep an invariance by 
                                                                 
1 Voss present a fractal description for the noise  in the Browniano mouvement 
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scale transformation (self-similarity or self-affinity). This means that some facts concerning 
the fracture have the same character independently of the magnification scale, i.e. the 
phenomenology that give rise to these structures is the same in different observation scales. 

The Euclidean scaling of physical quantities is a common occurrence in many physical 
theories, but when it comes to fractality appears the possibility to describe irregular 
structures. The fracture for each type of material has a behavior that depends on their 
physical, chemical, structural, etc. properties. Looking at the topography and the different 
structures and geometrical patterns formed on the fracture surfaces of various materials, it is 
impossible to find a single pattern that can describe all these surfaces (Figure 11), since the 
fractal behavior of the fracture depends on the type of material [52]. However, the fracture 
surfaces obtained under the same mechanical testing conditions and for the same type of 
material, retains geometric aspects similar of its relief [53] (see Figure 12). 

This similarity demonstrates that exist similar conditions in the fracture process for the same 
material, although also exist statistically changinga from piece to piece, constructed of the 
same material and under the same conditions [54; 55]. Based on this observation was born 
the idea to relate the surface roughness of the fracture with the mechanical properties of 
materials [50]. 

 
Figure 11. Various aspects of the fracture surface for different materials: (a) Metallic B2CT2 sample, (b) 
Polymeric, sample PU1.0, with details of the microvoids formation during stable crack propagation, (c) 
Ceramic [56]. 

4.1.2. Fractal theory applied to description of the relief of a fracture surface  

Let us now identify the fractal aspects of fracture surfaces of materials in general, to be 
obtained an experimental basis for the fractal modeling of a generic fracture surface. The 
description of irregular patterns and structures, is not a trivial task. Every description is 
related to the identification of facts, aspects and features that may be included in a class of 
phenomena or structure previously established. Likewise, the mathematical description of 
the fracture surface must also have criteria for identifying the geometric aspects, in order to 
identify the irregular patterns and structures which may be subject to classification. The 
criteria, used until recently were provided by the fractográfico study through statistical 
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analysis of quantities such as average grain size, roughness, etc. From geometrical view 
point this description of the irregular fracture surface, was based, until recently, the 
foundations of Euclidean geometry. However, this procedure made this description a task 
too complicated. With the advent of fractal geometry, it became possible to approach the 
problem analytically, and in more authentic way. 

  
Figure 12. Fracture surfaces of different parts mades with the same material, a) Lot A9 b) Lot A1 [56 1999]. 

Inside the fractography, fractal description of rugged surfaces, has emerged as a powerful 
tool able to describe the fracture patterns found in brittle and ductile materials. With this 
new characterization has become possible to complement the vision of the fracture 
phenomenon, summarizing the main geometric information left on the fracture surface in 
just a number, " D ", called fractal dimension. Therefore, assuming that there is a close 
relationship between the physical phenomena and fractal pattern generated as a fracture 
surface, for example, the physical properties of these objects have implications on their 
geometrical properties. Thinking about it, one can take advantage of the geometric 
description of fractals to extract information about the phenomenology that generated it, 
thereby obtaining a greater understanding of the fracture process and its physical 
properties. But before modeling any irregular (or rough) fracture surface, using fractal 
geometry, will be shown some of the difficulties existing and care should be taken in this 
mathematical description. 

4.2. Fractal models of a rugged fracture surface  

A fracture surface is a record of information left by the fracture process. But the Classical 
Fracture Mechanics (CFM) was developed idealizing a regular fracture surface as being 
smooth and flat. Thus the mathematical foundations of CFM consider an energy equivalence 
between the rough (actual) and projected (idealized) fracture surfaces [57]. Besides the 
mathematical complexity, part of this foundation is associated with the difficulties of an 
accurate measure of the actual area of fracture. In fact, the geometry of the crack surfaces is 
usually rough and can not be described in a mathematically simple by Euclidean geometry 
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[52]. Although there are several methods to quantify the fracture area, the results are 
dependent on the measure ruler size used [56]. Since the last century all the existing 
methods to measure a rugged surface did not contribute to its insertion into the analytical 
mathematical formalism of CFM until to rise the fractal geometry. Generally, the roughness 
of a fracture surface has fractal geometry. Therefore, it is possible to establish a relationship 
between its topology and the physical quantities of fracture mechanics using fractal 
characterization techniques. Thus, with the advent of fractal theory, it became possible to 
describe and quantify any structure apparently irregular in nature [1]. In fact, many theories 
based on Euclidean geometry are being revised. It was experimentally proved that the 
fracture surfaces have a fractal scaling, so the Fracture Mechanics is one of the areas 
included in this scientific context. 

4.2.1. Importance of fracture surface modeling 

The mathematical formalism of the CFM was prepared by imagining a fracture surface flat, 
smooth and regular. However, this is an mathematical idealization because actually the 
microscopic viewpoint, and in some cases up to macroscopic a fracture surface is generally a 
rough and irregular structure difficult to describe geometrically. This type of mathematical 
simplification above mentioned, exists in many other areas of exact sciences. However, to 
make useful the mathematical formalism developed over the years, Irwin started to consider 
the projected area of the fracture surface [57] as being energetically equivalent to the rugged 
surface area. This was adopted due to experimental difficulties to accurately measure the 
true area of the fracture, in addition to its highly complex mathematics. Although there are 
different methods to quantify the actual area of the fracture [56], its equationing within the 
fracture mechanics was not considered, because the values resulting from experimental 
measurements depended on the "ruler size" used by various methods. No mathematical 
theory had emerged so far, able to solve the problem until a few decades came to fractal 
geometry. Thus, modern fractal geometry can circumvent the problem of complicated 
mathematical description of the fracture surface, making it useful in mathematical modeling 
of the fracture. 

In particular, it was shown experimentally that cracks and fracture surfaces follow a 
fractional scaling as expected by fractal geometry. Therefore, the fractal modeling of a 
irregular fracture surface is necessary to obtain the correct measurement of its true area. 
Therefore, fracture mechanics is included in the above context and all its classical theory 
takes into account only the projected surface. But with the advent of fractal geometry, is also 
necessary to revise it by modifying its equations, so that their mathematical description 
becomes more authentic and accurate. Thus, it is possible to relate the fractal geometric 
characterization with the physical quantities that describe the fracture, including the true 
area of irregular fracture surface instead of the projected surface. Thought this idea was that 
Mandelbrot and Passoja [58] developed the fractal analysis by the "slit island method ". 
Through this method, they sought to correlate the fractal dimension with the physical well-
known quantities in fracture mechanics, only an empirical way. Following this pioneering 
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work, other authors [3 , 4 , 5 , 6, 7 , 8, 11, 12, 13, 59 ] have made theoretical and geometrical 
considerations with the goal of trying to relate the geometrical parameters of the fracture 
surfaces with the magnitudes of fracture mechanics, such as fracture energy, surface energy, 
fracture toughness, etc.. However, some misconceptions were made regarding the 
application of fractal geometry in fracture mechanics. 

Several authors have suggested different models for the fracture surfaces [60-63]. Everyone 
knows that when it was possible to model generically a fracture surface, independently of the 
fractured material, this will allow an analytical description of the phenomena resulting the 
roughness of these surfaces within the Fracture Mechanics. Thus the Fracture Mechanics will 
may incorporate fractal aspects of the fracture surfaces explaining more appropriately the 
material properties in general. In this section one propose a generic model, which results in 
different cases of fracture surfaces, seeking to portray the variety of geometric features found 
on these surfaces for different materials. For this a basic mathematical conceptualization is 
needed which will be described below. For this reason it is done in the following section a 
brief bibliographic review of the progress made by researchers of the fractal theory and of the 
Fracture Mechanics in order to obtain a mathematical description of a fracture surface 
sufficiently complete to be included in the analytical framework of the Mechanics Fracture. 

4.2.2. Literature review - models of fractal scaling of fracture surfaces  

Mosolov [64] and Borodich [3 ] were first to associate the deformation energy and fracture 
surface involved in the fracture with the exponents of surface roughness generated during 
the process of breaking chemical bonds, separation of the surfaces and consequently the 
energy dissipation . They did this relationship using the stress field. Mosolov and Borodich 
[64, 3 ] used the fractional dependence of singularity exponents of this field at the crack tip 
and the fractional dependence of fractal scaling exponents of fracture surfaces, postulating 
the equivalence between the variations in deformation and surface energy. Bouchaud [62] 
disagreed with the Mosolov model [64] and proposed another model in terms of 
fluctuations in heights of the roughness on fracture surfaces in the perpendicular direction 
to the line of crack growth, obtaining a relationship between the fracture critical parameters 
such as ICK  and relative variation of the height fluctuations of the rugged surface. In this 
scenario has been conjectured the universality of the roughness exponent of fracture 
surfaces because this did not depend on the material being studied [63]. This assumption 
has generated controversy [61] which led scientists to discover anomalies in the scaling 
exponents between local and global scales in fracture surfaces of brittle materials. Family 
and Vicsék [39, 65] and Barabasi [66] present models of fractal scaling for rugged surfaces in 
films formed by ballistic deposition. Based on this dynamic scaling Lopez and Schimittibuhl 
[67, 68] proposed an analogous model valid for fracture surfaces, where they observed in 
your experiments anomalies in the fractal scaling, with critical dimensions of transition for 
the behavior of the roughness of these surfaces in brittle materials. In this sense Lopez [67, 
68] borrowed from the model of Family and Vicsék [39, 65] analogies that could be applied 
to the rough fracture surfaces. 



 
Foundations of Measurement Fractal Theory for the Fracture Mechanics 43 

4.2.3. The fractality of a crack or fracture surface 

By observing a crack, in general, one notes that it presents similar geometrical aspects that 
reproduce itself, at least within a limited range of scales. This property called invariance by 
scale transformation is called also self-similarity, if not privilege any direction, or self-
affinity, when it favors some direction over the other. Some authors define it as the property 
that have certain geometrical objects, in which its parts are similar to the whole in in 
successive scales transformation. In the case of fracture, this takes place from a range of 
minimum cutoff scale , min  until a maximum cutoff scale, max , contrary to the proposed 
by Borodich [3], which defines an infinite range of scales to maintain the mathematical 
definition fractal. In the model proposed in this section, one used the fractal theory as a form 
closer to reality to describe the fracture surface with respect to Euclidean description. This 
was done in order to have a much better approximatation to reality of the problem and to 
use fractal theory as a more authentic approach. 

 
Figure 13. Self-similarity present in a pine (fractal), with different levels of scaling, k.  

To understand clearly the statements of the preceding paragraph, one can use the pine 
example shown in Figure 13. It is known that any stick of a pine is similar in scale, the other 
branches, which in its turn are similar to the whole pine. The relationship between the scales 
mentioned above, in case of pine, can be obtained considering from the size of the lower 
branch (similar to the pine whole) until the macroscopic pine size. Calling of min 0l  , the 
size of the lower branch and max 0L  , the macroscopic size of whole pine one may be 
defined cutoff scales lower and upper (minimum and maximum), subdivided, therefore, the 
pine in discrete levels of scales as suggested the structure, as follows: 

 0 0 max

0 0

1
( )

o k o
min k max

o o o

static case L Ll l L

dynamic case L L tL L L
  

        
 (35) 

where an intermediate scale  min maxk k      can also be defined as follows: 

 .k
k

o

l

L
   (36) 



 

Applied Fracture Mechanics 44 

The magnitude k  represents the scaling ratio which depicts the size of any branch with 
length, kl , in relation to any pine whole. 0l  is related to the Mishnaevsky minimum size for 
a crack which is shown in section - 4.2.6 and 0 0 maxL L  is the maximum leght if the fracture 
already been completed. 

Similarly it is assumed that the cracks and fracture surfaces also have their scaling relations, 
like that represented in equations (35) and (36). In the continuous cutoff scale levels, lower 
and upper (minimum and maximum), are thus defined as follows: 

 1o o
min max

o o o

l Ll

L L L
         (37) 

Note that the self-similarity of the pine so as the crack self-affinity, although statistical, is 
limited by a lower scale min  as determined by the minimum size, 0l , and a upper scale 

max , given by macroscopic crack size, 0L . 

From the concepts described so far, it is verified that the measuring scale k  to count the 
structure elements is arbitrary. However, in the scaling of a fracture surface, or a crack 
profile, follows a question: 

Which is the value of scale k  to be properly used in order to obtain the most accurate 
possible measurement of the rugged fracture surface? 

There is a minimum fracture size that depends only on the type of material? 

Surely the answer to this question lies in the need to define the smallest size of the fractal 
structure of a crack or fracture surface, so that its size can be used as a minimal calibration 
measuring ruler(2).  

Since an fracture surface or crack, is considered a fractal, first, it is necessary to identify in 
the microstructure of the material which should be the size as small as possible a of a rugged 
fracture, i.e. the value of minl . This minimal fracture size, typical of each material, must be 
then regarded as an elementary structure of the formation of fractal fracture, so defining a 
minimum cutoff scale, min , for the fractal scaling, where min 0 0l L  , where 0l  it is a 
planar projection of minl . In practice, from this value the minimum scale of measurement, 

min 0 0l L   one defines a minimum ruler size min , for this case, equal to the value of the 
plane projection the smallest possible fracture size, i.e. min 0l  . Thus, the fractal scaling of 
the fracture surface, or crack, may be done by obtaining the most accurate possible value of 
the rough length, L . However, the theoretical prediction of the minimum fracture, minl , 
must be made from the classical fracture mechanics, as will be seen below. 

4.2.4. Scaling hierarchical limits  

Mandelbrot [58] pointed out in his work that the fracture surfaces and objects found in 
nature, in general, fall into a regular hierarchy, where different sizes of the irregularities 
                                                                 
2 This must be done so that the measurement scales are not arbitrary and may depend on some property of the material. 
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described by fractal geometry, are limited by upper and lower sizes, in which each level is a 
version in scale of the levels contained below and above of these sizes. Some structures that 
appear in nature, as opposed to the mathematical fractals, present the property of invariance 
by scale transformation (self- similarity of self-affinity) only within a limited range of scale 
transformation ( min max    ) . Note in Figure 13 that this minimal cutoff scale min , one 
can find an elementary part of the object similar to the whole, that in iteration rules is used 
as a seed to construct the fractal pattern that is repeated at successive scales, and the 
maximum cutoff scale D  one can see the fractal object as a whole. 

One must not confuse this mathematical recursive construction way, with the way in which 
fractals appear in nature really. In physical media, fractals appears normally in situations of 
local or global instability [24], giving rise to structures that can be called fractals, at least 
within a narrow range of scaling ( min max    ) as is the case of trees such as pine, 
cauliflower, dendritic structures in solidification of materials, cracks, mountains, clouds, etc. 
From these examples it is observed that, in nature, the particular characteristics of the seed 
pattern depends on the particular system. For these structures, it is easy to see that that 
fractal scaling occurs from the lowest branch of a pine, for a example, which is repeated 
following the same appearance, until the end size of the same, and vice versa. In the case of 
a crack, if a portion of this crack, is enlarged by a scale,  , one will see that it resembles the 
entire crack and so on, until reaching to the maximum expansion limit in a minimum scale, 

min , in which one can not enlarge the portion of the crack, without losing the property of 
invariance by scaling transformation (self-similar or self-affinity). As the fractal growth 
theory deals with growing structures, due to local or global instability situations [24], such 
scaling interval is related to the total energy expended to form the structure. The minimum 
and maximum scales limit is related to the minimum and maximum scale energy expended 
in forming the structure, since it is proportional to the fractal mass. The number of levels 
scaling, k , between min  and max  depends on the rate at which the formation energy of 
fractal was dissipated, or also on the instability degree that gave rise to the fractal pattern. 

4.2.5. The fractal geometric pattern of a fracture and its measurement scales 

Considering that the fracture surface formed follows a fractal behavior necessarily also 
admits the existence of a geometric pattern that repeats itself, independent of the scale of 
observation. The existence of this pattern also shows that a certain degree of geometric 
information is stored in scale, during the crack growth. Thus, for each type of material can 
be abstract a kind of geometric pattern, apparently irregular with slight statistical variations, 
able to describe the fracture surface. 

Moreover, for the same type of material is necessary to observe carefully the enlargement or 
reduction scales of the fracture surface. For, as it reduces or enlarges the scale of view, are 
found pattern and structures which are modified from certain ranges of these scales. This 
can be seen in Figure 14. In this figure is shown that in an alumina ceramic, whose 
ampliation of one of its grains at the microstructure reveals an underlying structure of the 
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cleavage steps, showing that for different magnifications the material shows different 
morphologies of the surface of fracture. 

 
Figure 14. Changings in pattern of irregularities with the magnification scale on a ceramic alumina, Lot 
A8 [56]. 

To approach this problem one must first observe that, what is the structure for a scale becomes 
pattern element or structural element to another scale. For example, to study the material, the 
level of atomic dimensions, the atom that has its own structure (Figure 15a) is the element of 
another upper level, i.e., the crystalline (Figure 15b). At this level, the cleavage steps formed by 
the set of crystalline planes displaced, in turn, become the structural elements of 
microsuperfície fracture in this scale (Figure 15c). At the next level, the crystalline, is the 
microstructural level of the material, where each fracture microsurface becomes the structural 
member, although irregular, of the macroscopic rugged fracture surface, as visible to the naked 
eye, as is shown diagrammatically in Figure 15d. Thus, the hierarchical structural levels [69] 
are defined within the material (Figure 15), as already described in this section. 

 
Figure 15. Different hierarchical structural levels of a fracture in function of the observation scale; a) 
atomic level; b) crystalline level (cleavage steps); c) microstructural level (fracture microsurfaces) and d) 
macrostructural level (fracture surface). 

Based on the observations made in the preceding paragraph, it is observed that the fractal 
scaling of a fracture surface should be limited to certain ranges of scale in order to maintain 
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the mathematical description of the same geometric pattern (atom, crystal, etc.) , which is 
shown in detail in section - 4.2.3. Although it is possible to find a structural element, forming 
a pattern, at each hierarchical level, it should be remembered that each type of structure has 
a characteristic fractal dimension. Therefore, it is impossible to characterize all scale levels of 
a fracture with only a single fractal dimension. To resolve this problem one can uses a 
multifractal description. However, within the purpose of this section a description 
monofractal provides satisfactory results. For this reason, it was considered in the first 
instance, that a more sophisticated would be unnecessary. 

Considering the analytical problem of the fractal description, one must establish a lower and 
an upper observation scale, in which the mathematical considerations are kept within this 
range. These scales limits are established from the mechanical properties and from the 
sample size, as will be seen later. Obviously, a mathematical description at another level of 
scale, should take into account the new range of scales and measurement rules within this 
other level, as well as the corresponding fractal dimension. 

As already mentioned, the description of the rough fracture surface can be performed at the 
atomic level, in cleavage steps level (crystalline) or in microstructural level (fracture 
microsurfaces), depending on the phenomenological degree of detail that wants to reach. This 
section will be fixed at the microstructural level (micrometer scale), because it reflects the 
morphology of the surface described by the thermodynamic view of the fracture. This means 
that the characteristics lengths of generated defects are large in relation to the atomic scale, thus 
defining a continuous means that reconciles in the same scale the mechanical properties with 
the thermodynamic properties. Meanwhile, the atomic level and the level of cleavage steps is 
treated by molecular dynamics and plasticity theory, respectively, which are part areas. 

4.2.6. The calibration problem of a fracture minimum size as a "minimal ruler size" of their 

fractal 

To answer the previous question, about the minimum fracture size, Mishnaevsky [70] 
proposes a minimum characteristic size, a , given by the size of the smallest possible 
microcrack, formed at the crack tip (or notch) as a result of stress concentration in the 
vicinity of a piling up dislocations in the crystalline lattice of the material, satisfying a 
condition of maximum constriction at the crack tip, where: 

 ~ ,oa k nb  (38) 

where 0k  is a proportionality coefficient. n  is the number of dislocations piling up that can 
be calculated by: 

 (1 )
,

l
n

b

  



  (39) 

where v  is the Poisson's ratio, l  is the length of the piling up of dislocations,   is the 
normal or tangential stress,   is the shear modulus and b


 is the Burgers vector. 

Substituting (39) in (38) one has; 
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(1 )

~ .ok n l
a

  



 (40) 

Mishnaevsky equates with mathematical elegance, the crack propagation as the result of a 
"physical reaction" of interaction of a crack size, 0L  with a piling up of dislocations, nb , 
forming a microtrinca size, a , i.e.; 

 ,o oL nb L a          (41) 

where oa L e onb L . 

Mishnaevsky proposes a fractal scaling for the fracture process since the minimum scale, 
given by the size a , until the maximum scale, given by the macroscopic size crack, 0L . 

As a consequence for the existence of a minimum fracture size, recently has arosen a 
hypothesis that the fracture process is discrete or quantized (Passoja, 1988, Taylor et al., 
2005; Wnuk, 2007). Taylor et al. (2005) conducted mathematical changes in CFM to validate 
this hypothesis. Experimental results have confirmed that a minimum fractures length is 
given by: 

 0
0

2
~ .cK

l
 
 
  
 

 (42) 

where cK  is the fracture toughness, 0  is the stress of the yielding strength before the 
material fracture. 

4.2.7. Fractal scaling of a self-similar rough fracture surface or profile 

A mathematical relationship between the extension of the self-similar contour and a 
extension of its projection is calculated as follows. 

Being A  the surface extension of the fractal contour, given by a self-similar homogenous 
function with fractional degree, D , where: 

    .D
uA A    (43) 

0A  is the plane projection extension, given by a self-similar homogeneous function with 
integer degree, d , in accordance with the expression: 

    0
d

uA A   , (44) 

where,   d
uA    is the unit area of measurement, whose values on the rugged and plane 

surface are the same. Thus the relationships (43) and (44) can be written in the same way as 
the equations (43) and (44). Therefore, by dividing these equations, one has: 

    0 .d DA A     (45) 
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An illustration of the relationship (43), (44) and (45) can be seen in Figure 16. 

 
Figure 16. Rugged surface formed by a homogeneous function A , with frational degee D , whose 
planar projection, 0A  is a homogeneous function of integer degree d , showing the unit surface area 

uA .  

The rugged fracture surface, may be considered to be a homogeneous function with 
frational degree, D , ni.e.: 

 ,D
k kA A    (46) 

and its planar projection, may be considered as a homogeneous function with integer degree 
2d  , i.e.: 

 0 .d
r rA A    (47) 

The index k  was chosen to designate the irregular surface at a k -level of any magnification 
or reduction. The index r  has been chosen to designate the smooth (or flat) surface at a r -
level, and the index, 0 , was chosen to designate the projected surface corresponding to 
rugged surface, at the k -level. 

Considering that, for k r  and k r  , the area unit, kA  and rA , are necessarily of equal 
value and dividing relationships (46) and (47) , one has: 

 0( ) .d D
k kA A    (48) 

The equation (48), means that the scaling performed between a smooth and another 
irregular surface, must be accompanied by a power term of type d D

k
 . Thus, there is the 

fractal scaling, which relates the two fracture surfaces in question: a rugged or irregular 
surface, which contains the true area of the fracture and regular surface, which contains the 
projected area of the fracture. 

From now on will be obtained a relationship between the rugged and the projected 
profile of the fracture in analogous way to equation (250) for a thin flat plate (Figure 17a 
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and Figure 17b) with thickness 0e  . In this case the area of rugged surface can be 
written as: 

 ,A Le  (49) 

 
Figure 17. Scaling of a rugged profile of a fracture surface or a crack, using the Mishnaevsky minimum 
size as a "measuring ruler"; a) in the case of a crack is a non-fractal straight line, where 1D d  ; b) in 
the case of tortuous fractal crack, with its projected crack length, where 1d D d   . 

and the area of the projected surface as 

 0 0 ,A L e  (50) 

According to the equation (48) the valid relationship is: 

 ( ) ,d D
k o kL L    (51) 

where, ( )kL   is the measured crack length on the scale k , 0L  is the projected crack length 
measured on the same scale, in a growth direction. 

4.2.8. The self-similarity relationship of a fractal crack 

The fracture is characterized from the final separation of the crystal planes. This 
separation has a minimum well-defined value, possibly given by theory Mishnaevsky Jr. 
(1994). If it is considered that below of this minimum value the fracture does not exist, 
and above it the crack is defined as the crystal planes moving continuously (and the 
formed crack tip penetrates the material), so that an increasing number of crystal planes 
are finally separated. One can in principle to use this minimum microscopic size as a kind 
of ruler (or scale) for the measurement of the crack as a whole(3), i.e. from the start point 
from which the crack grows until its end characterized by instantaneous process of crack 
growth, for example. 

The above idea can be expressed mathematically as follows: 

                                                                 
3 During or concurrently with its propagation, in a dynamic scaling process, or not 
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0 ,d DL L    (52) 

dividing the entire expression (52) above by the minimum Mishnaevsky size one has: 

 0 ,d DLL

a a
  

  
 

 (53) 

or 

 
0 ,d DN N    (54) 

where 

N L a : is the number of crack elements a  on the non-projected crack 

0 0N L a : is the number of cracl elements a  on the crack projected 

and yet: 

 
0 ,a L   (55) 

where: 

 : is the scaling factor of the fractal crack 

d : is the Euclidean dimension of the crack projection  

D : is the crack fractal dimension. 

Within this context the number of microcracks that form the macroscopic crack is given by: 

 .
D

o

a
N

L


 

   
 

 (56) 

In this context (in Mishnaevsky model), the above expression is volumetric and admits cracks 
branching generated in the fracture process with opening and coalescence of microcracks. 
However, he continue equating the process in a one-dimensional way reaching an expression 
for the crack propagation velocity. A complete discussion of this subject, using a self-affine 
fractal model to be more realistic and accurate, can be done in another research paper. 

The answer to the question about what should be the best scale to be used for fractal fracture 
scaling is then given as follows: being the limit of the crack length kL  in any scale, given by 

kL L  (actual size) as well as minkl l , the value of the minimum size ruler, 0l  it must be 
equal to the minimum crack size, a (4), given by Mishnaevsky [70], through its energy 
balance for the fracture of a single monocrystal of the microstructure of a material. The 
physical reason for this choice is because the Mishnaevsky minimum size is determined by a 
                                                                 
4 It is possible that this minimal ruler size be very low than the scale used in fractal characterization of the fracture 
surfaces. However, it must to be the smallest possible size for a microcrack. 
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energy balance, from which the crack comes to exist, because below this size, there is no 
sense speak of crack length. Therefore, the scale that must be considered is given by: 

 min 0a L  , (57) 

where a  is given by relation (40). 

Therefore, the statistical self-similarity or self-affinity of a fracture surface, or a crack is 
limited by a cutoff lower scale min , determined by the minimum critical size, 0l a , and a 
cutoff upper scale max , given by the macroscopic crack length, 0L . 

In two dimensions, the problem of existence of a minimum scale size (possibly given by the 
Mishnaevky minimum size), leads to abstraction of a microsurface with minimum area, 
whose shape will be investigated further, in Appendices, in terms of the number of stress 
concentrators nearest existing within a material. 

4.3. Model of self-affine fracture surface or profiles 

In this section one intend to present the development of fractal models of self-similar 
surfaces. From a rough fracture surface can be extracted numerous profiles also rough on 
the crack propagation direction. However, in this section is considered only one profile, 
which is representative of the entire fracture surface (Figure 18). The plane strain condition 
admits this assumption. Because, although the fracture toughness varies along the thickness 
of the material to a plastic zone reduced in relation to material thickness, it can be 
considered a property. This means that it is possible to obtain a statistically rough profile, 
equivalent to other possible profiles, which can be obtained within the thickness range 
considered by plane strain conditions. 

 
Figure 18. Statistically equivalent profiles along the thickness of the material  

In order also equivalent to this, it is also possible to obtain an average projected crack length 
as a result of an average of the crack size along the thickness of the material thickness within 
the range considered by plane strain, for the purpose of calculations in CFM, it is considered 
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this average size as if it were a single projected crack length, as recommended by the ASTM 
– E1737-96 [71]. Therefore, inwhat follows, is effected by reducing or lowering the 
dimensional degree of relationship from the two-dimensional case, shown above, for the 
one-dimensional case, as follows: 

    , .A x y L x  (58) 

thus, for a self-affine fractal one has: 

 ( ) ( ),H
x xL x L x   (59) 

where 

 2H D   (60) 

is the Hurst exponent measuring the profile ruggedness. In one-dimensional case the 
fracture surface is a profile whose length L  is obtained from measuring the projected 
length, 0L , as illustrated below in Figure 19. 

4.3.1. Calculation of the rugged crack length as a function of its projected length  

Considering a profile of the fracture surface as a self-affine fractal, analogous to the fractal of 
Figure 19, which perpendicular directions have the same physical nature the Voss [48] 
equation to the Brownian motion can be generalized(5) to obtain rugged crack length L , 
depending on the projected crack length, 0L . 

Figure 19 illustrates one of the methods for fractal measuring. This measure can be obtained 
by taking boxes or rectangular portions, based 0L  and height 0H  on the crack profile, 
and recovering up this profile, within these boxes, with "little boxes" (recovering units) with 
small sizes, 0l  and 0h , respectively (Figure 19). Instead of little boxes is also possible to use 
other shapes(6) compatible with the object to be measured. Then makes the counting of the 
little boxes (or recovering units) needed to recover the extension of the rugged crack, 
centered in the box 0 0L H  . The number of these little boxes (or recovering units) of size 
r  in function of the boxes extension (or parts), 0 0L H  , provides the fractal dimension, as 
shown in section 3 - Methods for Measuring Length, Area, Volume and Fractal Dimension. 

Assume that the rectangular little boxes (or recovering units) of microscopic size, r , recover 
the entire crack length, L  inside the box with greater length, 0 0L H  . The number of 
little boxes (recovering unit) with sides of 0 0l h  needed to recover a crack in the horizontal 
direction, inside the box (or stretch) of rectangular area 0 0L H  , for the self-affine fractal 
can be obtained by the expression: 
                                                                 
5 Voss [48], modeled the noise plot of the frational Brownian motion , where in the y-direction, he plots the amplitude, 
VH, and in the x-direction, he plots the time, t. 
6 Some authors used “balls” 
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Figure 19. Self-affine fractal of Weierstrass-Mandelbrot, where 1 / 4k   and 1.5xD   and 0.5H  , 
used to represent a fracture profile (Family, Fereydoon; Vicsek, Tamas Dynamics of Fractal Surfaces, 
World Scientific, Singapore , 1991, p.7). 

  00

0

in vertical directionv v

L
N

l



  (61) 

where 0L  is the crack horizontal projection and v  is the vertical scaling factor. 

Considering that the self-affine fractal extends in the horizontal direction along 0L , and 
oscillates in the perpendicular direction, i.e. in the vertical direction, the number of little 
boxes hN , with size, 0l  in the horizontal direction, are gathered to form the projected length 

0L , while vertically the number of little boxes vN , with size 0h , overlap each other, 
increasing (as power law) this number in comparison to the number of little boxes gathered 
horizontally. Therefore, for the vertical direction with a projection 0H , the box sides 

0 0L H  , an expression for the number of boxes (or units covering) can be writen as: 

  0

0

in horizontal direction .H
h h

H
N

h
 

  (62) 

where H  is the Hurst exponent, 0H  is the total variation in height ( 0o ol H L    ) and 

h  is the scale transformation factor in the horizontal direction. 

Therefore, for the corresponding rugged crack length (real) L , the stretch 0 0L H   one 
can writes: 

 vL N r   (63) 
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where r  is equal to the rugged crack length on a microscopic scale, as a function of 
extension of the little boxes 0 0l h  by: 

 
2 2

0 0r l h   (64) 

where 0l  and 0h  are the microscopic sizes of the crack length in horizontal and vertical 
directions, respectively. Substituting (64) in (63), one has: 

 2 2
0 0vL N l h    (65) 

substituting (61) in (65), one has: 

 2 20
0 0

0

L
L l h

l


    (66) 

Since that in the fracture process, the scales in orthogonal directions are the same physical 
nature, one can choose 0 0/v h l L    , and one can writes from (62) that: 

 0 0

0 0
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H L
N

l l

   
     
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 (67) 

being necessarily h vN N , one has: 

 0 0 0

0 0 0

H
L H L

l l l

      
        

    
 (68) 

rewriting the equation (66), one has: 
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0

0
0

1
h

L L
l

 
      

 
 (69) 

writing 0h from (68), as: 

 

1
0

0 0
0

.
H

L
h H

l


 

    
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 (70) 

Eliminating in (69) the dependence of 0h , by substituting (70) in (69), one has: 

 

 2 2 1
0 0

0
0 0

1
H

H L
L L

l l


    
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The curve length in the stretch, 0 0L H   considering the Sand-Box method [38] whose 
counting starts from the origin of the fractal, can be written as: 0 0,L L L L     and 

0 0H H   hence the equation (71) shall be given by: 
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 (72) 

whose the plot is shown in Figure 20. Note that the lengths 0L  and 0H  correspond to the 
projected crack length in the horizontal and vertical directions, respectively. 

Applying the logaritm on the both sides of equation (72) one obtains an expression that 
relates the fractal dimension with the projected crack length: 
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Figure 20. Graph of the rugged length L  in function of the projected length 0L , showing the influence 
of height, 0H , of the boxes in the fractal model of fracture surface: a) in the upper curves is observed 
the effect of 0H  as it tends to unity ( 0 1.0H  ), b) in the lower curves, that appearing almost overlap, is 
observed the effect of 0H  as it tends to zero ( 0 0H  ). 

The graph in Figure 20 shows the influence of the boxes height 0H  on the rugged crack 
length, L , as a function of the projected crack length, 0L . Note that for boxes of low  
height ( 0 0H  ), in relation to its projected length, 0L , the lower curves (for 

0 0.01,0.001,0.0001H  ), denoted by the letter " b ", almost overlap giving rise to a linear 
relation between these lengths (Figure 21). While for boxes of high height ( 0 1.0H  ) in 
relation to its projected length, 0L , the relation between the lengths become each more 
distinct from the linear relationship for the same exponent roughness, H . 
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Figure 21. Counting boxes (or strechts) with rectangular sizes 

o o
L x H  where the boxes that recovers 

the profile have different extensions in the horizontal and vertical directions. 

Making up the counting boxes (or stretch) with rectangular sizes o oL x H  where the boxes 
recovering the profile have different extensions in the horizontal and vertical directions 
respectively, i.e., o oH l  the equation (72). Is simplified to: 
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 (74) 

which plot is shown in Figure 22. 

The graph in Figure 22 shows the influence of the roughness dimension on the rugged crack 
length, L , in function of the projected length, 0L . Note that for 0 1.0H  , corresponding to 
a smooth surface, the relation between the rugged and projected length becomes 
increasingly linear. While for 0 0H  , which corresponds to a rougher surface, the the 
relation between the rugged and projected length becomes increasingly non-linear. 

 
Figure 22. Graph of the rugged length, L , in function of the projected length, 0L , showing the 
influence of the Hurst exponent H , in the fractal model of the fracture surface. 

Note that for o oL H , one has, from the equation (62) and (68) the following relationship: 
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 (75) 



 

Applied Fracture Mechanics 58 

which is a self-similar relation between the projected crack length, 0L , and height of the 
little box, 0h . This relationship shows that all self-affine fractal, in the approximation of a 
small scale, has a local self-similarity forming a fractal substructure, when is considered 
square portions, 0 0L L , instead of rectangular portions, 0 0L H . 

It important to observe that 0L  denotes the distance between two points of the crack (the 
projected crack length). The self-affine measure, L  of 0L , in the fractal dimension, D , is 
given by (72). 0l  is the possible minimum length of a micro-crack, which defines the scale 

0 0/l L  under which the crack profile is scrutinized, as discussed in previous section and will 
be discussed after in the section #.5.4.5. The Hurst exponent, H , is related to D  by (60). 

In the study of a self-affine fractal there are two extremes limits to be verified. One is the 
limit at which the boxes height is high in relation to its projected length, 0L , i.e. ( 0 0H L ), 
which is also called local limit. The other limit is one in which the boxes height is low in 
relation to its projected length, 0L , i.e., ( 0 0H h ) which is called global limit. It will be seen 
now each one of this limits case contained in the expression (72). 

Case 1 : The self-similar or local limit of the fractality  

Taking the local limit of the self-affine fractal measure as given by (72), i. e. for the case 
where, 0 0 0H L l  , one has: 
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where 

 1
2

H
oH

o

L
l constant

L




   (77) 

This equation is analogous to self-similar mathematical relationship only that the exponent 
is  1 H  instead of  1D  , which satisfies the relation 2H D   [3 , 40, 51 , 70].  

According to these results it is observed that the relation (77) has a commitment to the Hurst 
exponent of the profiles on the considered observation scale 0 0/l L  . It is observed that 
the consideration of a minimum fracture size 01l  over a region, one must consider the local 
dimension of the fracture roughness on this scale. Similarly, if the considerations of a 
minimum fracture size are made in a scale that involves several regions, 02l  this should take 
into account the value of the roughness global dimension on this scale, so that: 

 1 21 1
1 01 2 02(2 ) (2 ) ,H HH l H l constant      (78) 

although 01 02l l  e 1 2H H . 

Case 2: The self-affine or global limit of fractality  

Taking the global limit of the self-affine fractal measure given by (72), i.e. for the case in 
which: 0 0 0H l L  . Therefore the length L  is independently of H  and 1D  , so 
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 oL L  (79) 

It must be noted that the ductile materials by having a high fractality have a crack profile 
which can be better fitted by the equation (76), while brittle materials by having a low 
fractality will be better fitted by the equation (79) corresponding the classical model, i.e., a 
flat geometry for the fracture surface. Furthermore, the cleavage which occurs on the 
microstructure of ductile materials tend to produce a surface, where 0L L , which could be 
called smooth. However, this cleavage effect is just only local in these materials and 
therefore the resulting fracture surface is actually rugged. 

4.3.2. Local Ruggedness of a fracture surface 

Defining the local roughness of a fracture surface, as: 

  0 0 .
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dA
A A dA

dA
      (80) 

where A  is the rugged surface and 0A  is the projected surface. In the case of a rugged crack 
profile,one has: 
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using (74) in (81), one has that: 
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From (81) note that when there is no roughness on surfaces (flat fracture) one has that: 

0L L , thus 

 1.
o

dL

dL
  (83) 

The quantity 
o

dL

dL
   seems be a good definition of ruggedness unlike the definition where 

the ruggedness is given by / //L L   [56, 57] (where / / 0 cosML L  , see Figure 23) does not 

satisfy the requirement intuitive of the ruggednes when 0ML  is only inclined with respect to 

0L , while maintaining, 0 0ML L , as shown Figure 23. 
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Figure 23. Schematization of a rugged surface which is inclined with respect to its projection. 

The ruggedness must depend on infinitesimally of the projected length and its relative 
orientation to it. In this case, the surface roughness by the usual definition adds an error 
equal to the angle secant  , or 
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 (84) 

However, by the definition proposed herein, when only one inclines a smooth surface against 

to the horizontal, one has: 0ML L  and 0 0ML L  and again, 1oM

o oM o

dLdL dL

dL dL dL
    . 

Within this philosophy will be considered as rugged any surface that presents in an 

infinitesimal portion a variation of their contour such that 1
o

dL

dL
 , therefore has to be: 

 1
o

dL

dL
 . (85) 

4.3.3. Preliminary considerations on the proposed model  

Considering a fractal model for the fracture surface given by the equation: 
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 (86) 

it is possible to describe its ruggedness in order to include it in the mathematical formalism 
CFM to obtain a Fractal Fracture Mechanics (FFM). This derivative of equation (86) defines a 
fractal surface ruggedness, which for the case of a self-affine crack which grows with, 

0 0H l  , is given by: 
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such modifications were added to equations of the Irregular Fracture Mechanics to obtain a 
Fractal Fracture Mechanics as described below. 

4.3.4. Comparison of fractal model with experimental results  

In Figure 24 and Figure 25, a good agreement is observed in the curve fitting of equation 
(72) and equation (73) to the fractal analyses of the mortar specimen 2A  side1 and the red 
ceramic specimen 8A , respectively. 

 
Figure 24. a) Fractal analysis of mortar specimen A2 side 1 – Fractal dimension x Projected length, 0L ; 
b)Fractal analysis of mortar specimen A2 side 1 - rugged length L x projected length, 0L  

 
Figure 25. a) Fractal analysis of red clay A8 side 1 – Fractal dimension x Projected length, 0L ; b) Fractal 
analysis of red ceramic specimen A8 - rugged length L x projected length, 0L  
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5. Conclusions  

i. It is possible, in principle, mathematically distinguish a crack in different materials 
using geometric characteristics which can be portrayed by different values of roughness 
exponents in the relations (72) and (74). 

ii. The fractal model of the rugged crack length, L  in function of the projected crack 
length, 0L , suggested by Alves [72 73 ,74 , 75 ] seems have a good agreement with 
experimental results. This results allowed us to consolidate the model previously 
published in the literature on fracture [72 , 73 , 75 ]. 

iii. The rugged crack length is a response to its interaction with the microstructure. of the 
material. Therefore, mathematically is possible to portray the rugged peculiar behavior 
of a crack using fractal geometry 

iv. The mathematical model presents a wealth (mathematical richness) that can still be 
explored in terms of determining the minimum crack length, 0l  for each material and 
the fractal dimension as a function of test parameters and material properties. 

v. The mathematical model is sensitive to variations in the behavior of the crack length it 
is a linear or logarithmic with the projected crack length. 

Comparing the experimental results with the model proposed in this chapter, it is 
concluded that one of the more important results obtained here are the equations (72), (74) 
and (82) leading to finding that the fracture surfaces of the materials analyzed are indeed 
(actually) self-affine fractals. Starting from this verification it becomes feasible to consider 
the fractal model of rugged fracture surface and its ruggedess inside the equations of the 
classical fracture mechanics, according to equation (74) and (82). As there is a close 
relationship between phenomenology and structure formed by virtue of its fractal 
geometry, the understanding of the formation processes of these dissipative structures, as 
the cracks, should be derived from their mathematical analysis, as the close relationship 
between the phenomenology of the formation process of dissipative structures and their 
fractal geometry. Therefore, the mathematical description of fractal structures must 
exceed a simple geometrical characterization, in order to correlate the pattern formed in 
the process of energy dissipation with the amount of energy dissipated in the process that 
generated it. Thus, it is possible to use the fractal geometry in order to understand other 
more and more complex processes inside the fracture mechanics. Therefore, the various 
mechanisms responsible by the crack deviation and by the formation of the rugged 
fracture surface can then, from the fractal model, be quantified in the fractal analysis of 
this surface. 

The idea of obtaining a relationship between L  and 0L  comes the need to maintain the 
present formalism used by the CFM, showing that fractal geometry can greatly contribute to 
the continued advancement of this science. 

On the other hand, we are interested in developing a Fractal Thermodynamic for a rugged 
crack that will be related to the CFM and the Classical Fracture Thermodynamics when the 
crack ruggedness is neglected or the crack is considered smooth. 
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