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1. Introduction 

One of the important degradation mechanisms to be considered for alloyed steels, especially 

austenitic stainless steels, is stress corrosion cracking. This mechanism causes cracking in the 

material due to the combined action of corrosion and mechanical stresses. The purpose of 

this chapter is to apply probabilistic fracture mechanics (PFM) to the analysis of the 

influence of Remedial Actions on structural reliability. PFM provides a technique for 

estimating the probability of failure of a structure or component when failures are 

considered to occur as the result of the sub critical and catastrophic growth of an initial 

crack-like defect. Such techniques are inherently capable of treating the influence of non-

destructive inspections. For these reasons, PFM is becoming of increased usefulness in 

analysis of the reliability of modem structures. 

Various papers in the literature addressed the probabilistic failure analysis of components 

subjected to Stress Corrosion Cracking (SCC). Probabilistic failure analysis of nuclear piping 

of BWR plant was carried out by You and Wu (You Jang-Shyong, et al., 2002). Ting (Ting K, 

1999) analyzed the crack growth due to Intergranular Stress Corrosion Cracking (IGSCC) in 

stainless steel piping of BWR plants. Zhang et al. (Zhang S et al., 2002) carried out 

experimental investigations to determine the time to crack initiation and crack propagation 

velocity for IGSCC in sensitized type AISI304 stainless steel in dilute sulphate solutions. 

From the statistical analysis results obtained by Zhang et al. (Zhang S et al., 2002), it was 

seen that the time of crack initiation follows an exponential distribution, where as the crack 

growth rate follows a Weibull distribution. Harris et al. (Harris et al., 1992) developed a 

computer code named PRAISE (piping reliability analysis, including seismic events) for 

estimating the probability of pipe leak age under SCC. Rahman (Rahman S.  1997) has 
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developed another computer code named PSQUIRT (probabilistic see page quantification of 

upsets in reactor tubes) to determine the probability of leak age of piping made of stainless 

steel and carbon steel subjected to intergranular stress corrosion cracking (IGSCC) and 

corrosion fatigue. Failure probabilities of a piping component subjected to SCC was 

computed in (Priya C et al., 2005 and Guedri et al., 2009a , 2009b) using a Monte Carlo 

simulation (MCS) technique.  

In this chapter, a piping component made of AISI 304 stainless steel is considered for the 

analysis, because this type of steel is highly susceptible to SCC. Empirical relations are used 

to model the initiation and early growth rate of cracks. Fracture mechanics concepts are 

used deterministically in this study. Although the general methodology recommended in 

the computer program Piping Reliability Analysis Including Seismic Events (pc-PRAISE) 

(Harris et al., 1996) is used for the modeling of initiation and propagation of cracks, the 

American Society of Materials (ASM) recommendations (American Society of Materials, 

1996) are used for computing the stress intensity factors. The microstructural properties of 

the material and operating conditions like pressure and temperature show variations during 

the lifetime of the pipe. In order to account for these variations, degree of sensitization, 

applied stress, initiation time of cracks, crack growth velocity after initiation, and initial 

crack length are considered as random variables. 

The present calculations build on past studies by the nuclear power industry: General 

Electric Company (GEC) (General Electric Company, 1982a, 1982b) and Nuclear Regulatory 

Commission (NRC) (Hazelton , 1988), which have addressed both Inter-Granular Stress-

Corrosion Cracking (IGSCC) causes and preventive actions. A critical issue has been the 

difficulty of using Ultrasonic Testing (UT) to detect IGSCC. Pacific Northwest National 

Laboratory (PNNL) past research on Non-Destructive Examination (NDE) reliability has 

included systematic studies to quantify NDE effectiveness. The first statistically based data 

for the Probability of Detection (POD) of IGSCC in weld of stainless steel piping were 

generated based on a piping inspection round robin (Doctor et al., 1983). The resulting POD 

data related to crack size and other important variables covered the performance of several 

inspection teams participating in the round robin. The first part of this chapter describes the 

stress-corrosion cracking model used in the pc-PRAISE (Harris et al., 1981, 1986a, 1986b) for 

simulating the initiation and growth of IGSCC cracks. This model is based on laboratory 

data from IGSCC tests in combination with calibration of the model using field data from 

pipe-cracking experience. PNNL has improved on the prior calibrations (Harris et al., 1986b) 

by making adjustments to the modeling of plant loading/unloading cycles in addition to 

adjustments to residual stress levels. The crack detection data (POD curves) by use of the pc-

PRAISE model are also described. A parametric approach was adopted in the present 

calculations to characterize IGSCC by a single damage parameter (Dsigma). This parameter 

depends on residual stresses, environment conditions, and degree of sensitization. In the 

second part, a matrix of calculations to address an example of large pipe size, materials, and 

service conditions was developed. The results of these calculations quantify the reductions 

in failure probabilities that can be achieved with various In-Service Inspection (ISI) 

strategies. The final subpart of this chapter presents conclusions regarding ISI effectiveness 

as a mitigation action to enhance the reliability of Boiler Water Reactor piping. 
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2. Methodology  

2.1. Overview of the PRAISE code  

The present section describes probabilistic fracture mechanics calculations that were 

performed for selected components using the PRAISE computer code. The calculations 

address the failure mechanisms of stress corrosion cracking and intergranular stress 

corrosion cracking for components and operating conditions that are known to make 

particular components susceptible to cracking. Comparisons with field experience 

showed that the PRAISE code predict relatively high failure probabilities for 

components under operating conditions that have resulted in field failures. It was 

found that modeling assumptions and inputs tended to give higher calculated failure 

probabilities than those derived from data on field failures. Sensitivity calculations 

were performed to show that uncertainties in the probabilistic calculations were 

sufficiently large to explain the differences between predicted failure probabilities and 

field experience.  

The first version of PRAISE (Harris et al., 1981) was developed in the 1980s by Lawrence 

Livermore National Laboratory under contract to NRC, with the initial application to 

address seismic-induced failures of large-diameter reactor coolant piping. This version of 

the code addressed failures (small leaks and ruptures) associated with fabrication flaws in 

welds that were allowed to grow as fatigue cracks until they either caused the pipe to leak 

or exceed a critical size needed to result in unstable crack growth and pipe rupture. The next 

major enhancement to the code (Harris et al., 1986b) addressed IGSCC and simulated both 

crack initiation and crack growth. The enhanced code allowed for crack initiation at multiple 

sites around the circumference of a girth weld and simulated linking adjacent cracks to form 

longer cracks more likely to cause larger leaks and pipe ruptures. In the early 1990s a 

version of PRAISE (pc-PRAISE) was developed to run on personal computers (Harris and 

Dedhia, 1992). The mid-1990s saw the development of methods for risk-informed in-service 

inspection, for which there were many new applications of PRAISE. A new commercial 

version of PRAISE (win PRAISE) was made available by Dr. David Harris of Engineering 

Mechanics Technology that simplified the input to the code with an interactive front end 

(Harris and Dedhia, 1998). During this same time period, PNNL made numerous 

applications of PRAISE to apply probabilistic fracture mechanics to support the 

development of improved approaches to in-service inspection (Khaleel and Simonen, 

1994a; 1994b; 2000; Khaleel et al., 1995; Simonen et al., 1998; Simonen and Khaleel, 1998a; 

1998b). The objective of this work was to ensure that changes to inspection requirements 

could be justified in terms of reduced failure probabilities for inspected components. Other 

work at PNNL for NRC (Khaleel et al., 2000) involved evaluations of fatigue critical 

components that could potentially attain calculated fatigue usage factors in excess of 

design limits (usage factors greater than unity).The most recent upgrades to PRAISE 

(Khaleel et al., 2000) were developed to support these fatigue evaluations, with the 

upgrade consisting of a model similar to that for IGSCC but directed at predicting the 

probabilities of initiating fatigue cracks. This new model was used to develop the technical 
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basis for changes to Appendix L of American Society of Mechanical Engineers (ASME) 

Section XI that addresses fatigue critical locations in pressure boundary components 

(Gosselin et al., 2005). The PRAISE code has been extensively documented, successfully 

applied to a range of structural integrity issues, and has been available since the 1980s as a 

public domain computer code. However, the code has not been maintained and upgraded 

in an ongoing manner. Upgrades have been performed to meet the needs of immediate 

applications of the code and as such have served to fill very specific gaps in capabilities of 

PRAISE. 

Other probabilistic fracture mechanics codes for piping have been developed to calculate 

failure probabilities for piping. The SRRA code (Bishop 1997; Westinghouse Owners 

Group, 1997) developed by Westinghouse follows much the same approach as the PRAISE 

code, but is limited to failures associated with cyclic fatigue stresses considers only 

preexisting fabrication flaws. Fatigue crack initiation has been approximated by assuming 

a very small initial crack, but with only one initiation site per weld. Stress corrosion 

cracking is similarly treated by postulating a very small initial crack, and growing the crack 

according to user-specified parameters for a crack growth equation. The SRRA code 

includes an importance sampling procedure that gives reduced computation times 

compared to the Monte Carlo approaches used by PRAISE. Also the model can simulate 

uncertainties in a wide range of parameters such as the applied stresses. The European 

NURBIM (Brickstad et al., 2004) has looked at a number of codes including PRAISE as part 

of an international benchmarking study. Included were a Swedish code NURBIT (Brickstad 

and Zang, 2001), the PRODIGAL code from the United Kingdom (Bell and Chapman, 

2003), a code developed in Germany by GRS (Schimpfke, 2003), a Swedish code ProSACC 

(Dillstrom, 2003) and another code (STRUEL) from the United Kingdom (Mohammed, 

2003).  

This review concluded that none of the other benchmarked codes provided capabilities 

significantly different than or superior to the capabilities of PRAISE. In any case, the 

predictions of all such codes are limited in large measure by the quality of the values that 

can be established for the input parameters, as well as the validation with service 

experience. 

2.2. Stress corrosion cracking model 

SCC is a corrosion mechanism that forms cracks in susceptible material in the presence of an 

aggressive environment and tensile stresses. SCC can be intergranular or transgranular in 

nature depending on the material, level of stress, and environment (ASME, 1998). Austenitic 

stainless steels are commonly used in power generating industries because of high ductility 

and fracture toughness (American Society of Materials, 1996).This type of steel is used in 

applications where corrosion resistance is an important characteristic.  

The methodology recommended in pc-PRAISE for modeling IGSCC in pipe is followed in 

this study. PRAISE model the occurrence of IGSCC by considering it as a two-stage process, 

namely, (1) crack initiation and (2) crack propagation.  
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2.2.1. Crack initiation model  

2.2.1.1. Time to initiation 

Time to initiation of stress corrosion crack is considered as a function of damage parameter, 

Dsigma, which represent effects of loading, environment and material variables on IGSCC. The 

damage parameter is given by  

 
     1 2 3sigmaD f material f environment f looding    (1) 

where  f1, f2 and f3 are given by  

   2

1 1

C
f C Pa   (2) 

where Pa is a measure of degree of sensitization, given by Electrochemical Potentiokinetic 

Reactivation (in C/cm2).  

    3 6
2 2 4 5exp 273 logC Cf O C T C      (3) 

where O2 is oxygen concentration in ppm, T is temperature in degrees centigrade, and γ is 

water conductivity in μs/cm. The loading term f3  is considered to be a function of stress. For 

constant applied load case, f3   is given by  

 
  7

9
3 8

C
Cf C    (4) 

where σ is stress in MPa. C1 to C9 are constants whose values depend on type of material. 

Values for these constants are presented in Table1. 

 

Constant C1 C2 C3 C4 C5 C6 C7 C8 C9 

Value 23.0 0.51 0.18 −1123.0 8.7096 0.35 0.55 2.21 ×10−15 6.0 

Table 1. Numerical values of constants Ci used for predicting the initiation and propagation of SCC for 

AISI304 (Harris et al., 1992). 

The time to initiation tI for a given Dsigma is considered as a random variable following 

lognormal distribution. The mean and standard deviation of Log (tI) are given by:  

Mean value of 

   3.10 4.21 logI sigmaLog t D    

Standard deviation of 

 
  0.3081ILog t  			   (5) 
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2.2.1.2. Crack size at initiation 

 In pc-PRAISE, shape of surface crack initiated due to IGSCC is considered to be semi-

elliptical (Fig.1), which is also consistent with shapes of stress corrosion cracks reported by 

Helie (Helie M, et al., 1996) and by Lu (Lu B T et al., 2005). Surface length of initiated cracks, 

(l = 2b), is assumed to be log normally distributed with a median value of 3.175mm and a 

shape parameter of 0.85 (Harris et al., 1996). Depth of initiated crack is taken to be  

0.0254 mm.  

 

Figure 1. Geometry of the part-through circumferential crack considered 

2.2.2. Crack growth model 

The growth of very small cracks that have just initiated cannot be treated from a fracture 

mechanics standpoint (Andresen PL, 1994). Therefore, an initiation velocity is assigned to 

newly initiated cracks 

    1 log sigmaLog v J G D   (6)  

where J is normally distributed and G is a constant.  

It can be noted that equation (6) is similar in form (power law) as that proposed by Helie 

(Helie M, et al., 1996), based on experimental observations. For AISI 304 austenitic stainless 

steel, J has a mean of 2.551 and standard deviation of 0.4269, and G = 1.3447 (Harris et al., 

1996). From parametric studies carried out, a value of 5% coefficient of variation of Log (v1) 

was found to be critical to life of piping component (Priya C et al., 2005) , and hence this 

value is used in this study.  

The procedure followed for transition from initiation to fracture mechanics crack growth 

rate in the present study is (Harris et al., 1996):  

 Pre-existing cracks always grow at fracture mechanics velocity.  

 Initiation velocity is always assigned to initiate cracks.  

 At any given time, if fracture mechanics velocity (v2) is greater than initiation velocity 

(i.e. v2 >v1) and depth of crack is greater than 2.54 mm, that particular crack grows at 

fracture mechanics velocity thereafter.  

 If the stress intensity factor for a crack is negative, the crack will not grow.  

Fracture mechanics based crack growth velocity, v2 (inches/year), is given by Harris (Harris et 

al., 1996):  
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  2 14 15 KLog v C C D    (7) 

where DK  is the damage parameter given by  

 12 2 13KD C Log f environment C K                                                      (8) 

where K is stress intensity factor,C12, C13 and C15 are constants and C14 is normally 

distributed. 

For AISI 304 austenitic stainless steel, C12 = 0.8192, C13 = 0.03621 and C15 = 1.7935; mean value 

of C14 = -3.1671 and standard deviation of C14 =0.7260 (Harris et al., 1992). 

From a probabilistic failure analysis of austenitic nuclear pipe against SCC, Priya in (Priya C 

et al., 2005) inferred that expressions given in PRAISE for computation of stress intensity 

factors for modeling crack propagation need modification. This modification has been 

introduced by using well-accepted expressions given in ASM Handbook (American Society 

of Materials, 1996), and with modified PRAISE approach, stochastic propagation of stress 

corrosion cracks with time has been studied. The expression for the stress intensity factor for 

a part-through crack in a hollow cylinder is given by 

  K S F a  (9) 

where S is the tensile or bending stress (assumed to be the value of applied stress in the 

study), F is a function of a/b, R/h, and a/h, where a is the crack depth, b is half the crack 

length, R is the inner radius of the cylinder, and h is the wall thickness. The values of F are 

calculated for length and depth directions separately using the tables given in ASM 

Handbook (American Society of Materials, 1996). Since these factors are applicable for 

values of a/b less than 1.0, the expression for stress intensity factor for part-through cracks in 

a finite plate is used when a/b becomes greater than 1.0. This expression is given by 

 s

a
K F

Q

  
 
 

  (10) 

where Q  is the crack shape parameter which depends on a/b ratio and Fs is a function of 

a/b, a/h, and b/W and   such that 

 

2 4

1 2 3 1s w

a a
F M M M G f f

h h 

             
    (11) 

where 

 

1 2

1 1.0 0.04
b b

M
a a

    
    

    
   (12) 
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 2

4

0.2
b

M
a

 
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 

  (13) 

 

4

3 0.11
b

M
a

 
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 

     (14) 

  
2

2

1 1 0.1 0.35 1 sin
b a

G
a h


          

     (15) 

 

1 4
2

2 2
.sin cos

b
f

a  
       

   (16) 

 secw

b a
f

W h

    
    
    

     (17) 

  is the parametric angle measured from the plate surface toward the centre of the crack 

(i.e.  =0° is on the plate surface and   =90° is at the maximum depth of the crack) and W is 

the width of the plate (assumed to be 50mm  in the study). When the crack grows to become 

a through-wall crack, the expression for stress intensity factor used is 

  K S F b             (18) 

Here, F is given by the expression 

 2 3 4 5 6
1 2 3 4 5 6 7F A A A A A A A             (19) 

where α is one-half of the angle that represents the crack tip-to-tip circumferential arc and 

the coefficients A1 to A6 are computed from the table given in ASM Handbook . 

It has been noted that trend of distribution of crack depths at initial stages is in satisfactory 

agreement with relevant experimental observations reported in literature.  

2.3. Multiple cracks 

In materials subjected to IGSCC, many cracks would initiate successively and propagate 

simultaneously, and hence multiple cracks can be present in a given weld. The expressions, 

given in PRAISE, for determining statistical properties of tI  are mainly based on data from 

laboratory experiments on specimens about 50 mm long. Hence, these expressions are 

applicable to specimens of about 50 mm only. This is taken into account in PRAISE, by 

considering a given weld in the pipe to be composed of 50 mm segments adding up to length 

of weld. Initiation time for each segment is assumed to be independent and identically 

distributed.  
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2.4. Coalescence of crack 

The multiple cracks that may be present can coalesce as they grow. Linkage of two cracks 

takes place if spacing between them is less than the sum of their depths. After coalescence of 

two cracks, the dimensions of modified crack are given by Eqn. (20).   

 1 2 1 2Length,  and  , ,l l d l Depth a a or a which is greater     (20) 

where l1 and l2 are lengths of two cracks under consideration, a1 and a2 are crack depths and 

d is spacing between them.  

The operating conditions and environmental conditions show variations during the lifetime 

of the power plant (Anoop M B et al., 2008). Also, there will be variations in micro-structural 

properties of the material of piping component. These variations should be taken into 

account while assessing the safety of the piping component against SCC. Various 

researchers have carried out studies on failure analysis against SCC in different types of 

components of power plants by considering different basic variables (such as those 

associated with material properties and applied loading) as random, (Harris et al.,  1996; 

Ting K., 1999; Herrera ML et al., 1999;  You J-S,2002; Priya C et al., 2005). However, safety 

assessment of nuclear power plant pipelines also involves information from expert 

judgment and/or data from in-service inspections. 

2.5. Residual stresses 

Residual stresses influence both crack initiation and propagation. The damage  

parameter Dsigma  is a function of the stress, which consists of both the applied (service-

induced pressure and thermal) and residual stresses. The crack-tip stress-intensity factor  

is given by 

 ap resK K K   (21)             

where Kap and Kres are the stress-intensity factors attributable to the applied stress and 

residual stresses, respectively. 

The calculations reported here are concerned with the stress corrosion cracking behavior of 

large pipes (Outside Diameter > 508 mm). Residual stress is treated as a random variable in 

the Monte Carlo Simulation (MCS). Distributions of residual stress as a function of distance 

from the inner pipe wall were developed from experimental data for three categories of 

nominal pipe diameter. For large lines, residual stresses took the form of a damped cosine 

through the wall as based on data collected by GEC and Argon National Laboratory. Harris 

and Dedhia (Harris et al., 1996) documents the default pc-PRAISE inputs in detail for the 

complex pattern of residual stresses in large pipes. In summary, the inner surface had a 

mean tensile stress of 262 MPa. The through-thickness variation in stress had compressive 

stresses developing within the inner quarter-wall thickness and changing again to tension 

stress at greater depths. 
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2.6. Failure criteria  

The part-through initial stress corrosion cracks considered can grow and become unstable 

part-through cracks or stable or unstable through-wall cracks. The stability of the part-

through or through-wall crack is checked by comparing net-section stress with the flow 

stress of the material. The net-section stress criterion is applicable to very tough material, 

and the failure is due to the insufficient remaining area to support the applied loads (i.e. net-

section stress due to applied loads becomes greater than the flow stress of the material). For 

leakage failure, the criterion was that of a crack depth equal to the pipe-wall thickness.  

2.7. Numerical simulation  

In this study, the stochastic evolution of cracks due to IGSCC in AISI304 austenitic stainless 

steel is simulated using MCS technique. The details regarding the random variables 

considered in this study are given in Table 2. N values of f1 and f3 are computed using the N 

values of Pa and generated using MCS. Using the values of f1, f2 (considered as 

deterministic), and f3, N values of damage parameter are obtained. This represents N pipes 

with different damage parameters, which take into account the variation in microstructural 

properties of the material and the operating conditions. In order to take into account the 

variations in the time to initiation of stress corrosion cracks, the number of samples 

considered is 10N. For each sample, n (the number of possible initiation sites in the pipe 

considering the weld length is divided into 25.4mm long segments along the circumference 

of the pipe) values of tI are generated using MCS. In every time step, each one of the cracks 

is checked for initiation, values of initial crack depth and length are assigned to the initiated 

cracks and crack growth velocities are calculated. For all the initiated cracks in the 105 

samples generated, crack propagation velocities are calculated based on initiation and 

fracture mechanics considerations as is appropriate. After each time step, the failure 

criterion, in section 2.6 is checked. Failure probability Pf  is calculated as 

 
f

f

N
P

N
  (22) 

where Nf  is the number of failure cases and N is the total number of simulations.  

Computer programs have been developed implementing the step-by-step procedure, in the 

form of flow charts, for computing failure probabilities using the net-section stress as failure 

criteria. 

3. Calibration of model 

The original calibration of the PRAISE model in (Harris DO et al., 1985) was redone by 

Khaleel et al. in (Khaleel MA. et al., 1995). The original calculations predicted substantial 

levels of material damage from loading and unloading events (i.e., complete start-up and 

shut-down of the plant) that used a model that applied strain-to-failure data from constant 

extension rate tests. A review of the damage model concluded that these predictions were 
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extremely conservative and were inconsistent with more recent insights into stress corrosion 

cracking mechanisms. In the revised calculations, the loading/unloading events were 

decreased from once per year to once per 40 years, which essentially removed the 

contribution of these events to the calculated failure probabilities. 

 

Outside diameter, (mm) 549 

Wall thickness, (mm) 26.4 

Welding residual stress, (MPa) Randomized pc-PRAISE input values for 

large lines with adjustment of: f=0.75 

Stress at ID: Mean= 262 

Axial component of primary stress, (MPa) 4 to 86 

Flow stress of piping material, (MPa) Normal distribution 

Mean = 276 and Standard deviation= 29 

Initial flaw distribution Lognormal distribution 

Deterministic flaw depth=0.025 

Mean flaw length= 3.2 

Shape parameter=0.85 

POD Curves Three POD Curves as per table3 

Frequency of inspection,(yr),  

 (Time of initial ISI/ Frequency)  

5/10, 4/4, 1/1 

Range of Dsigma parameter 0.001 to 0.02 

Crack initiation and growth As per Eqs.1 to 10 

Table 2. Input values for parametric calculation including the effects of in-service inspection 

Fig. 2 compares the original PRAISE cumulative leak probabilities (Harris DO et al., 1985) 

and results obtained by Khaleel in (Khaleel MA. et al., 1995), for various values of residual 

stress adjustment factors and plant loading/unloading frequencies. In this case, the adjusted 

residual stress level used to limit the disagreement between predicted and observed leak 

probabilities was set at 75% of their original values. The resulting predictions had a much 

more rational basis and were in very good agreement with operational data for time periods 

beyond 6 years. The less satisfactory level of agreement for time periods less than 6 years 

can be attributed in a large measure to lack of observed failure events for the early periods 

of plant operation. 

4. In-service inspection model 

Performance demonstrations have addressed two measures of NDE reliability-Probability of 

Detection (POD) and flaw sizing accuracy. Both measures impact the ability of an inspection 

program to enhance the reliability of piping. The detection of growing flaws with a high 

level of reliability is an important step to ensure that in-service inspections will reduce the 

failure probabilities of the piping locations being inspected. However, such inspections 

impact piping reliability only if the detected flaws are correctly sized such that needed 

repairs or other corrective actions are performed. Significant under sizing of flaws can result 
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in incorrect conclusions. Flaws can be incorrectly classified as benign if their measured sizes 

are less than the sizes of the governing flaw acceptance criteria used to dictate repair 

decisions. 

 

Figure 2. Field Observations of Leak Probabilities Compared with pc-PRAISE Results for Various 

Values of the Residual Stress Adjustment Factors and Plant Cycles (Large Diameter Pipes) (Khaleel MA. 

et al., 1995) 

The procedures shown in Fig. 3 are applicable to a given location in a structure. The crack 

size distribution is combined with the non-detection probability to provide the post-

inspection distribution. The manner in which the cracks that escape detection grow is then 

calculated by fracture mechanics techniques. The cumulative probability of failure at any 

time is simply the probability of having a crack at that time equal to or larger than the 

critical crack size. The crack size distribution at the time of the first ISI can be calculated. 

This pre-inspection distribution is combined with the non-detection probability to provide 

the post-inspection distribution. Fracture mechanics calculations then proceed up to the next 

ISI, at which time the procedures are again applied. Calculations of the failure probability 

for the general model are performed numerically because of the complexity of the fracture 

mechanics calculations of the growth of two-dimensional cracks as well as the complicated 

bivariate nature of the crack size distribution. 

4.1. One-dimensional model 

Consideration of one-dimensional cracks greatly simplifies the probabilistic fracture 

mechanics model. The two-dimensional surface of the initial crack size shown in Fig. 1 

becomes a line that is a function of only one length, which will be taken to be crack depth a. 

Additionally, the fracture mechanics calculations are considerably simplified, because only 

one dimension of crack growth has to be considered. However, if one-dimensional cracks in 



Structural Reliability Improvement Using In-Service Inspection  
for Intergranular Stress Corrosion of Large Stainless Steel Piping 343 

finite bodies are considered, numerical calculations of subcritical crack growth are often still 

necessary. The procedures involved for one-dimensional cracks are depicted in Fig. 5. For 

simplicity, only the case of a pre-service inspection is shown in Fig. 5, and the critical crack 

depth, ac is considered to be a constant. 

 

Figure 3. Computational procedure used in estimating leak probability for nuclear power plant piping 

Let P0(a) be the probability density function of as-fabricated crack depth given that a crack is 

present. The as-fabricated complementary cumulative crack depth distribution is then given 

by 

 
0 0( ) ( )

h

x

a x y dyP P      (23) 

The density function and complementary cumulative distribution of crack depths following 

an inspection with nondetection probability PND(a) are then given by 

 
'
0 0( ) ( ) ( )NDP a P a P a

        (24) 
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Figure 4. Procedures involved in calculating failure probability for one-dimensional crack problems 

(Harris DO et al., 1983). 

The probability of failure at short time following the pre-service inspection is simply the 

probability of having a crack of depth greater than the critical value, ac . Hence, for t ~ 0, the 

Point A in Fig. 4 gives the cumulative failure probability (given that a crack is initially 

present). 

During succeeding time, the cracks that are initially present can grow due to subcritical 

crack growth, such as fatigue or stress corrosion cracking. Fracture mechanics calculations 
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could be performed to determine the entire crack size distribution as a function of time, such 

as shown by the dotted line in Fig.4. The cumulative failure probability at or before ts is then 

given by Point B in Fig. 4. Such a procedure requires extensive fracture mechanics 

calculations of crack growth in order to accurately define the crack size distribution at 

various times. An alternative procedure is to define atol(t) to be the size of a crack at t = 0 

(initially) that will just grow to ac in time t (Fig. 4) schematically shows atol(t).  The 

probability of failure at or before t is then simply the probability of initially having a crack 

bigger than atol(t). That is 

   0 0

tol

h

ND

a ( t )

( a x) (y)P (y)dyP' P     (26) 

Hence, once  atol(t)  is known, the cumulative (conditional) failure probability is calculated in 

a straightforward manner. The failure rate, or hazard function, is equal to (dP/dt)/(1—P).  In 

the case where P(tf < t) << 1, the (1—P) term is nearly unity, and the failure rate is 

approximately given by the following 
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Consideration of the failure rate in conjunction with the tolerable crack depth simplifies 

analysis of the influence of ISI. The procedures for calculating the failure rate for an 

arbitrary schedule of in-service inspections are straightforward but lengthy. Details are 

provided in (Harris DO et al., 1983). The end result of the analysis is the following 

expression 

 0

( )with inspection
( )

( )without inspection

f

f

k

ND n
n

t
P a t

t

P

P 

      (29) 

The crack depth, an(t), is shown schematically in Fig. 5 and is determined from fracture 

mechanics calculations. If atol(t) is the depth of an initial crack that would just grow to ac in 

time t, then an, is the depth this crack would have had at the arbitrary inspection times tn. 

The result expressed as Eqn. (29) shows that the relative benefit of ISI, when expressed as 

the ratio of failure rates with and without inspection, is independent of the initial crack size 

distribution. This ratio is dependent only on the nondetection probabilities and crack 

growth characteristics. The initial crack size distribution is currently ill-defined, and is a 

source of considerable uncertainty in probabilistic fracture mechanics analysis. 

Another ill-defined parameter is the probability of initially having a crack in a body of 

volume V. This parameter is denoted as p*. All failure probabilities just discussed were 

conditional on having an initial crack. To account for the possibility of not having a crack 
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(that is, to make the results not conditional on having a crack to begin with) all those results 

are to be multiplied by p*. This parameter is also not well defined, but cancels out in the 

relative benefit of ISI as expressed by Eqn. (29), because it appears in both the numerator 

and denominator. 

 

Figure 5. Schematic representation of ak from known subcritical crack growth results and specified 

inspection (Harris DO et al., 1983). 

Thus, the relative benefit of ISI is independent of both the conditional initial crack size 

distribution and the probability of having a crack. These two factors are currently sources of 

considerable uncertainty, and their absence from the relative benefit allows the influence of 

ISI to be assessed with greater confidence then if they were present in Eqn. (29). This result 

is for only one dimensional crack. The degree to which it is applicable to the more realistic 

case of two-dimensional cracks will be addressed in the following section. 

4.2. Probability of detection curves 

NDE techniques do not detect all cracks, but can be thought of as detecting cracks with a 

probability that depends on crack size. Detecting a crack depends on many factors, 

including the dominant degradation mechanism; the flaw location (e.g. surface or buried), 

orientation, and shape; material (e.g. stainless and ferritic steel); the inspector’s training and 

experience; and the inspection method and procedure. In the literature, the POD has been 

used to define the capability of specific NDE techniques and inspection teams (Doctor et al., 

1983), (Taylor et al., 1989) and (Heasler, 1996). Usually, however, the POD curve is given as 

a function of the defect size (depth) with all other factors governing detection assumed to be 

held constant for each given POD curve. In this paper, the POD curve is taken to be the 

measure of inspection reliability. 
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In general, the POD curve for a certain NDE method, procedure, and inspection team is 

estimated based on a statistical methodology using the experimental data, expert elicitation, 

or both data and elicitation. The characteristic POD curves for detection of IGSCC discussed 

here are based on expert judgement. Alternative inspection strategies for ultrasonic 

examination of welds in stainless steel piping were evaluated based on a range of POD 

curves. The approach was to establish three POD curves that represented widely differing 

levels of NDE performance. These curves were intended to bound the performance expected 

from inspection teams operating in the field. To establish the POD curves, an informal 

expert judgement elicitation was made using staff at PNNL with knowledge of NDE 

performance data from inspection round robins and of recent industry efforts in the area of 

NDE performance demonstrations. 

It was recognized that a population of inspection teams operating under field conditions can 

exhibit a considerable range of POD performance, even though all such teams have 

successfully completed a performance demonstration. The basic premise in estimating POD 

curves for the present calculations was that all teams had passed the ASME Section XI 

Appendix VIII performance demonstration. The informal expert judgement also considered 

information and trends observed in the PNNL round-robin studies on UT inspection 

(Doctor et al., 1983). The NDE experts at PNNL were asked to define POD curves by 

estimating parameters for the following form of a POD function: 
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where PND is the probability of nondetection, A is the area of the crack, A* is the area of 

crack for 50% PND, ε is the smallest possible PND for very large cracks, and ν is the ‘slope’ of 

the PND curve. Based on measured performance for PNNL’s mini round robin teams, a 

range of estimates for A* (crack area for 50% POD) was provided by the NDE experts. 

Harris et al. (Harris et al., 1981) assumed that the ‘slope’ parameter ν is 1.6. Several POD 

curves from PNNL studies were reviewed, and it was determined that a value of ν=1.6 was 

consistent with published curves. The slope was correlated to the detection threshold 

parameter A* and the value of ε was assigned to ensure that a smaller value of A* also 

implies a smaller value of ε. Three POD curves were selected: 

1. Marginal performance: POD performance that is described by this curve would 

represent a team having only a small chance of passing an Appendix VIII performance 

demonstration. 

2. Good performance: POD performance that is described by these curves corresponds to 

the better teams in the round robins. 

3. Very good performance: this curve corresponds to a team that significantly exceeds the 

minimum level of performance needed to pass an Appendix VIII performance 

demonstration test. 

Table 3 summarizes the input data for the above three POD curves. These particular curves 

assume that POD is a function of the crack depth as a fraction of pipe-wall thickness, 
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independent of the actual wall thickness. Parameters indicated in Table 3 are considered 

appropriate to wall thicknesses of 25.4 mm and greater. Lower levels of POD as a function of 

a/h should be assumed for thinner-walled pipe. The parameter a* is the crack depth for 50% 

probability of non-detection and is related to A* (i.e., A* = π/4 DB a*, where DB is the beam 

diameter of the ultrasonic probe). The parameter a* varies in the same manner as ε. 
 

Inspection Performance Level a*/h(+) ε ν 

Marginal 0.65 0.25 1.40 

Good 0.40 0.10 1.60 

Very Good 0.15 0.02 1.60 
(+)  h is the wall thickness of the pipe. 

Table 3. POD Curve parameters for three performance levels 

4.3. Factor of improvement 

The effectiveness of an inspection strategy is quantified by the parameter ‘Factor of 

Improvement (FI)’, which is the relative increase in piping reliability due to a given 

inspection strategy as compared with the strategy of performing no inspection. The results 

of a systematic set of calculations are presented in this paper that address inspection 

effectiveness for operating stresses giving crack growth rates ranging from very low to very 

high. Inspection strategies are described that address three reference levels of ultrasonic 

inspection reliability, intervals between inspections ranging from 1 to 10 years, and in-

service inspections. The FI is based on the cumulative leak probability that occurs over the 

40-year design life of the plant, and is defined as the ratio  

 
leak probability at 40 years without NDE

FI=
leak probability at 40 years with NDE

    (26) 

5. Results 

5.1. Predicted leak probability versus damage parameter 

The reliability for a large number of welds and fittings in a piping system can be estimated 

quickly if the results of detailed Monte Carlo simulations are provided in a structured 

parametric format. Dsigma Values for various degrees of sensitization, different levels of 

applied stress, a conductivity equal to 0.2 μS/cm, different steady state temperature and 

different O2 content are presented in Fig.6(a - d). The parametric calculations as presented 

below consisted of many pc-PRAISE runs that covered a range of leak probabilities from 

1.0E-04 to 1.0. It was believed that Dsigma could serve as a suitable parameter to summarize 

results for calculated failure probabilities of stainless steel piping. Results presented later in 

this section show a good correlation between 40-year cumulative leak probabilities and Dsigma. 

Although the correlation tends to break down for smaller values of Dsigma, the parameter does 

provide a useful basis to generalize results for piping-leak probabilities (Fig.7). 
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Figure 6. a: Dsigma Values for various degrees of sensitization, different levels of applied stress, a 

conductivity equal to 0.2 μS/cm and a steady state temperature equal to 288°C, for O2 content equal to 8ppm.  

b: Dsigma Values for various degrees of sensitization, different levels of applied stress, a conductivity 

equal to 0.2 μS/cm and a steady state temperature equal to 288°C, for O2 content equal to 0.2ppm. 

c: Dsigma Values for various degrees of sensitization, different levels of applied stress, a conductivity 

equal to 0.2 μS/cm and a steady state temperature equal to 288°C, for O2 content equal to 2ppm. 

d: Dsigma Values for various degrees of sensitization, different levels of applied stress, a conductivity 

equal to 0.2μS/cm and a steady state temperature equal to 140°C, for O2 content equal to 0.2ppm. 
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Figure 7. Cumulative Leak Probability over 40 Years as a Function of the Stress-Corrosion Damage 

Parameter  for Various Temperatures, Oxygen Contents and degrees of sensitization 

5.2. Improvement factors  

The individual data points for improvement factors exhibited some data scatter, which was 

addressed by using a regression analysis to establish best fit curves (second order 

polynomial) in terms of improvement factors versus the logarithm (base 10) of Dsigma and the 

corresponding leak probabilities. For clarity, the plots below show only the best-fit curves 

rather than the individual data points. Figs. (8-12) show calculated improvement factors 

(over a 40-year design life).  

Figs. (8-10) each addresses a specific inspection method (POD curve) with the individual 

curves corresponding to different inspection intervals ranging from 1 to 10 years. Figs. (10-

12) have rearranged the curves to maintain a common inspection interval for each plot, with 

the individual curves corresponding to different POD capabilities. In general, it appears that 

a given inspection strategy (combination of POD curve and inspection interval) gives 

somewhat greater improvement factors. 



Structural Reliability Improvement Using In-Service Inspection  
for Intergranular Stress Corrosion of Large Stainless Steel Piping 351 

 

Figure 8. Improvement Factors versus Dsigma for “Marginal” POD Curve with various Inspection 

Intervals  

 

 
 

 

Figure 9. Improvement Factors versus Dsigma for “Good” POD Curve with various Inspection Intervals 
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Figure 10. Improvement Factors versus Dsigma  for “Very Good” POD Curve with various Inspection 

Intervals 

 

 

Figure 11. Improvement Factors versus Dsigma  for 10-Year ISI Interval with various POD Curves  
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Figure 12. Improvement Factors versus Dsigma  for 4-Year ISI Interval with various POD Curves  

6. Conclusions 

Stress corrosion crack growth can occur under constant loading conditions, and is 

therefore very different from crack growth driven by the cyclic loading. Our original 

probabilistic fracture mechanics model incorporated a simple model of stress corrosion 

cracking, based on the assumption that crack growth velocity in either the radial or 

circumferential direction is controlled by the value of stress intensity factor (for a given 

material and environment) at the crack tip. This model described crack kinetics by a 

simple functional relationship between crack growth rate and stress intensity factor. 

This probabilistic stress-corrosion cracking model was applied to assess the effect of 

various inspection scenarios on leak probabilities. This chapter has also discussed 

probability of detection curves and the benefits of in-service inspection in the 

framework of reductions in the leak probabilities for nuclear piping systems subjected 

to IGSCC. The results for typical NDE performance levels indicate that low inspection 

frequencies (e.g., one inspection every 10 years) can provide only modest reductions in 

failure probabilities. More frequent inspections appear to be even more effective. The 

greatest benefits are predicted for the “Very Good” NDE technology and procedures, 

for which an order-of-magnitude improvement on the leak probability can be achieved 
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for an inspection frequency of once per year. The lower benefits of ISI for IGSCC 

compared to the benefits for fatigue crack growth can be explained in terms of long 

incubation periods for stress-corrosion cracking followed by a period of rapid crack 

growth. 
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