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1. Introduction

This chapter addresses the topographical examination of various mean squared error (MSE)
cost surface structures and selecting the most suitable MSE fitness function for accurate
brushless motor drive (BLMD) dynamical parameter system identification (SI) of BLMD
shaft load inertia and viscous damping for electric vehicle controlled propulsion. The pa‐
rameter extraction procedure employed here is in the offline mode for optimal drive tuning
purposes during the installation and commissioning phase of embedded BLMD systems in
high performance electric vehicle torque, speed and position control scenarios. Two types of
penalty function, based on the transient step response of the permanent magnet (PM) motor
shaft velocity and its stator winding current feedback in torque control mode [1,2], are ex‐
amined here for arbitration of a suitable choice of cost objective function as the response sur‐
face in the accurate extraction of the BLMD dynamics. The choice of a particular MSE cost
surface as an objective function in BLMD load parameter identification is motivated by the
need for reliable tuning of the proportional and integral (PI) term settings during the drive
installation phase for controller robustness and optimal performance in adjustable speed
drive (ASD) or torque controlled embedded PM motor applications for electric vehicle pro‐
pulsion. This chapter will focus on the mathematical analysis of embedded motor drive dy‐
namical parameter identification over an MSE multiminima response surface with the
following key results obtained:

a. the development of a novel quadratic mathematical model approximation for the inves‐
tigation of the (i) nature of the MSE objective function and (ii) existence of a bounded
MSE global minimum stationary region, based on transient step response motor current
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feedback signals, for mechanical parameter identification in sensorless drive torque
control of electric vehicles.

b. the examination of the phenomenon of multiminima proliferation in the MSE cost for‐
mulation due to target data choice and ‘noisiness’ arising from evaluation of pulse
width modulated (PWM) edge transition times during BLMD simulation [1,2].

c. the measurement of cost surface selectivity based on shaft velocity and current feedback
target data and the decision favouring the choice of the latter data training record as the
target function for dynamical parameter identification

d. the development of a novel parameter quantization metric to overcome cost surface
‘noisiness’, arising from computational uncertainty in the simulated PWM edge transi‐
tions [1], for avoidance of local minima trapping in the MSE cost surface during identifi‐
cation of the BLMD dynamics.

e. the development of a novel parameter convergence radius measure of encirclement of
the cost surface stationary region global minimum, arising from the parameter quanti‐
zation metric in (d), for determination of the bounds of accuracy that can be imposed on
the returned estimates of the global optimum dynamical parameter vector during
BLMD identification.

1.1. Motivation

BLMD control tuning is necessary during the commissioning phase of embedded drives ap‐
plications, for accurate torque and speed control in electric vehicle propulsion systems setup
[3,4], accurate robotic end effector [5] or CNC tool positioning [6], where detailed apriori
knowledge of expected drive load inertia and friction parameters are unknown to the elec‐
tric motor drive supplier/manufacturer in the intended application beforehand. The choice
of ASD [7] in high performance industrial applications, such as a small electric vehicle [4],
robot manipulator [8, 9, 10] or machine tool feed drive [6,4], is usually based on considera‐
tion of a BLMD manufacturer’s catalogued specifications, relating to drive performance ca‐
pabilities and limitations, by the customer or embedded drive equipment designer/
manufacturer. The BLMD selection is often done independently of the motor drive manufac‐
turer by the equipment designer for reasons of embedded systems design confidentiality
and second sourcing of matching drive equivalents from different manufacturers for the
purpose of cost reduction and embedded product protection from obsolescence via alterna‐
tive drive substitution. The range of motor sizes available and spread of possible BLMD em‐
bedded applications has resulted in the provision of flexible drive tuning facilities with
either manual or autotuning features [11] by motor drive manufacturers as a sales and mar‐
keting expedient to embedded equipment designers. This flexible approach to drive tuning
policy eliminates the need for the BLMD manufacturer to participate in the detailed design
of embedded drive applications except in the provision of motor drive systems with high
output torque and speed ranges to cater for a range of anticipated high performance appli‐
cations [12,8,13]. BLMD systems with high peak current capability and fast response times
due to low PM rotor mass are designed [6, 7] to handle large inertial load torques [14] expe‐
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rienced in robotic applications [4, 5] and electric vehicle propulsion systems, with a no-load
to full-load inertia variation [9] of 10 is to 1. It is in response to this background of applica‐
tions diversity, regarding the particular design details of embedded drive products about
the size of inertial loads and friction coefficients encountered [4,6,9], that the present work
on cost surface analysis for parameter extraction in electric vehicle control is directed from a
motor manufacturer’s perspective.

Since the possible variation in the load dynamics of an intended BLMD application is un‐
known at the outset the initial task here for an end user is to identify the actual load inertia
and friction coefficients experienced during startup of a given embedded drive in the offline
mode for robust PI controller tuning [15]. In this scenario the customer has the flexibility of
manually tuning the BLMD speed loop, which is provided as a PI adjustment option along
with procedural details for tuning by the motor manufacturer, during the setup and com‐
missioning phase for a particular ASD application. The challenge then posed for the motor
drive designer in this instance is the provision of an automated tuning facility for the veloci‐
ty or torque loop during the commissioning stage thus eliminating the need for any manual
input by the customer. This feature requires the identification of a fixed embedded load con‐
figuration during setup and subsequent automated optimal configuration of the velocity
controller PI terms [15]. In the absence of embedded load information the cost surfaces and
identification methods investigated here focused on inertial load spreads for vehicular and
robotic applications [9] of up to ten times the inherent motor shaft inertia as recommended
by the BLMD manufacturer for the drive [16] modelled in [1].

The concept of a simulated cost surface is developed here [17] as an objective function to fa‐
cilitate parameter extraction of the installed drive dynamics, during offline BLMD system
identification, with MSE minimization. This methodology provides useful insight into the
nature and formulation of the most suitable MSE objective function to be minimized, based
on actual drive experimental test data available and BLMD model simulation, coupled with
an effective system identification (SI) strategy for accurate motor parameter extraction [18].
This approach can also be used as an alternative means of providing the optimal set of ex‐
tracted parameter estimates from inspection of the global minimum location on the simulat‐
ed cost surface with embedded local minima. Furthermore it can be used as a basis for
comparison of the effectiveness of the actual identification search strategy deployed in terms
of the accuracy of returned parameter estimates. The problem of inertia (J) and friction (B)
parameter extraction of an actual BLMD system over a sinc function shaped multiminima
cost surface [19], based on step response feedback current (FC) target data which has a con‐
stant amplitude swept frequency characteristic, is investigated as a test case using response
surface simulation.

The global minimum estimation, from response surface simulation discussed in section 2.0
below, is targeted towards offline identification of the fixed dynamical load possibly en‐
countered by an embedded BLMD system during the setup and commissioning phase. This
is necessary for optimal tuning of the installed BLMD velocity and position loops in any
high performance electric vehicle and industrial application. The present work on optimal
parameter estimation is mainly concerned with the offline identification of the worst case in‐
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ertial load that could possibly be experienced by an installed embedded BLMD. This is ar‐
ticulated here through BLMD simulation in torque control mode, using the full reference
model developed in [1, 2], and drive experimental step response measurements with three
known test cases of shaft load inertia, for validation of the accuracy of the parameter identi‐
fication strategy, corresponding to:

a. the no-load rotor inertial value JT =Jm,

b. medium shaft load inertia JT ~ 4Jm and

c. large shaft load inertia JT ~ 7Jm.

where JT is the total inertia consisting of rotor Jm and additional shaft load Jl with

.T l mJ J J= + (1)

The problem of a numerically ‘noisy’ multiminima cost function resulting in non optimal
parameter convergence because of local minimum trapping, associated with the adoption of
the BLMD reference model in [1, 2] during simulation, in motor parameter identification is
examined [20, 21]. An explanation is provided as to the existence of ‘false’ local minima plu‐
rality with inaccurate resolution of PWM edge transition times, associated with the choice of
fixed step sizes Δt in BLMD model simulation, in both the current feedback Ifj and shaft ve‐
locity Vωr MSE objective functions. An explanation is also furnished as to the existence and
proliferation of genuine local minima with the observed feedback current (FC) target data
used in penalty cost surface generation, which will be shown to posses an inverted sinc
function-like shape. Details are presented, through MSE response surface simulation with
coarse step sizes chosen initially for the inertia J and friction B parameters employing shaft
velocity (parabolic cost surface) and feedback current (sinc-like surface) experimental target
data respectively, to shed light on the numerical noise problem for SI purposes. Both simu‐
lated MSE response surfaces reveal on a macro-scale the presence of a ‘line minimum’ of
possible feasible solutions in a stationary region, enveloping a global extremum within the
central surface fold, principally in the B-parameter direction. A novel mathematical approxi‐
mation [17], which provides verification of the cost surface shape in both cases, is given and
is used to provide information on the existence of a unique global minimum with an accom‐
panying optimal parameter set X̄ opt = { J̄ opt , B̄opt}T  instead of a multiplicity of candidate op‐

tions, X̄ opt
j = { J̄ opt , B̄opt

j }T , along a ‘B - line minimum’, for j = 1,2 …. Details of BLMD model
simulation at a finer parameter step size δX, which illuminates the problem of a noisy cost
surface, are also provided for both objective functions. An independent statistical analysis
appraisal of the computation ‘noise’ voltage engendered in the search for accurate PWM
transitions, based on a novel theoretical estimation [18] for the random error pulse energy
expectation associated with PWM replication with chosen simulation step size Δt, is also
provided. This probability analysis in itself provides a useful insight into the induced noise
mechanism with chosen time step size and highlights the magnitude contribution of the ran‐
dom error ‘noise’ voltage with PWM resolution to the overall accuracy in the BLMD model
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simulation exercise. The effect of inherent ‘noisy’ evaluation of the PWM edge transition
times during BLMD simulation is transferred as a lack of smoothness in the simulated con‐
struction of the MSE cost surface at the micro-scale for very low step changes δX in the
BLMD dynamical parameters J and B.

A novel mathematical analysis [21] is presented, via embedded quadratic curve fitting in the
MSE cost surface, to establish the worst case parameter quantization step size δXL necessary
to overcome cost function ‘noisiness’. This analysis also provides a radius of convergence rX

in parameter space about the global minimum for any parameter identification search strat‐
egy and establishes a bound on the limits of accuracy for the returned optimal parameter
estimateX̂ opt = { Ĵ opt , B̂opt}T . Furthermore this methodology provides a sensitivity measure of
the MSE cost surface selectivity for both the step response shaft velocity and current feed‐
back response surfaces in the neighbourhood of the global extremumX̄ opt . This surface vari‐
ability metric dependency on elemental parameter variation δX can then be used to decide
on the best objective function for parameter extraction purposes based on the accuracy of
the returned estimate. The choice of the FC target data is explained for its excellent coher‐
ence properties, based on frequency and phase attributes from step response tests, in check‐
ing BLMD model fidelity and accuracy and also for its high selectivity in penalty cost
function formulation for accurate parameter identification. Furthermore it will be shown
that there is an improvement in FC cost surface selectivity with longer data training records
while the converse effect is manifested for shaft velocity target data with measurement data
length in the reduction of cost surface curvature in the vicinity of the global minimum.
These current feedback step response attributes arbitrate in its favour as the most suitable
choice of target data in MSE cost function formulation.

In the absence of embedded drive application details from the BLMD manufacturer [17] no
precise limits on the desired accuracy of the returned J and B parameter estimates could be
affixed to the parameter identification strategy for velocity controller tuning purposes in the
commissioning phase. However the use of a quantized metric δXL, as mentioned previously,
in parameter space puts a limit on the parameter resolution accuracy possible during identi‐
fication of the BLMD dynamics in electric vehicles. It should be noted that without the im‐
position of this parameter quantization strategy there is a risk of false minimum trapping of
the identification search algorithm in a ‘noisy crevice’ [18] in a side-wall of a cost surface,
besides local minimum capture, well away from the global minimum estimate. This novel
quantization procedure in parameter space, which eliminates the effect of simulation step
size related computation induced noise, results in the availability of a smooth cost surface
over which a parameter identification search algorithm will work and converge to an opti‐
mal estimate [17,18,21]. One other benefit of the parameter quantization process is that it di‐
vides up parameter space and restricts the identification strategy to a countable number of
parameter lattice points [18] and thus minimizes the search time to global optimality.

A further aspect of concern besides false minimum trapping is that all optimization algo‐
rithms for BLMD parameter identification proceed in a continuous search of parameter
space to a convergence estimate of the parameter vector sought with an end stopping criteri‐
on [22,23]. The norm of cessation of the optimal parameter search strategy is generally based
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on the smallness of cost reduction over successive iterations within a specified error bound ε
at termination. The termination criteria are generally not focused on the smallest percentage
variation of the parameter estimates acceptable. However with the quantization δXL of pa‐
rameter space for response surface smoothness, limits for parameter resolvability can be im‐
posed by restricting the identification search process to an integral number k of quantum
steps kδX commensurate with the percentage accuracy %X required in absolute terms such
that %X = kδX. This restricted step approach, in terms of the specified parameter accuracy
sought for BLMD tuning purposes during the setup and commissioning phase, can reduce
the SI computation time to optimality [18].

2. Response surface simulation and analysis [17]

The concept of a simulated response surface (RS) is presented as an aid to motor dynamical
parameter optimization in high performance Brushless Motor Drive (BLMD) identification
with a multiminima objective function. This methodology provides useful information con‐
cerning the formulation and nature of the most suitable objective function to be minimized,
based on actual drive experimental test data available and BLMD model simulation, cou‐
pled with an effective system identification (SI) strategy for accurate motor parameter ex‐
traction. This simple approach, although computationally intensive, can also be used as an
alternative means of providing the optimal set of parameter estimates from inspection of the
global minimum location on the simulated cost surface with embedded local minima. Fur‐
thermore it can be used as a basis for comparison of the effectiveness of other identification
search strategies deployed, such as the Powell Conjugate Direction search method [18] and
Fast Simulated Diffusion algorithm [20,21], in terms of the accuracy of returned parameter
estimates. The problem of inertia J and viscous friction B parameter extraction of an actual
BLMD system over a sinc-function (sinx/x) shaped multiminima cost surface, based on step
response feedback current (FC) target data which has a constant amplitude swept frequency
characteristic, is investigated using response surface simulation. The choice of the FC target
data is based on its excellent coherence properties [24] from step response testing, for check‐
ing BLMD model fidelity and accuracy and for the penalty cost function formulation in SI.
This difficulty with a multiminima objective function converging to a non optimal parame‐
ter estimate, associated with the adoption of the FC target data for motor parameter identifi‐
cation, is examined in the FSD method [20, 21]. An explanation is provided as to the
existence of local minima plurality with the observed FC target data used in the sinc-like
penalty cost surface generation. All classical optimization techniques [22], with the excep‐
tion of modern statistical methods [21], are known to have difficulty with this type of cost
surface in identifying the optimal parameter vector. The problem arises with initialization of
the search strategy far from the global minimum resulting in possible local minimum trap‐
ping and non optimal convergence of the cost minimization algorithm during the parameter
extraction process. This response surface [RS] methodology, however, provides a simple
and effective alternative to classical methods in acquiring an accurate estimate of the global
minimum. Results are presented, which demonstrate the efficacy and reliability of the RS
method in returning accurate estimates for ‘known’ values of the BLMD shaft dynamics.
The application of this FC step response related multiminima cost function in parameter ex‐
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traction is compared with the alternative parabolic shaped shaft velocity objective function
for cost surface selectivity in the vicinity of the global minimum and for accuracy of the re‐
turned identified parameter estimates. A mathematical approximation analysis is provided
for verification of the cost surface shapes resulting from the deployment of step response FC
and shaft velocity as target data in objective function formulation.

2.1. Cost function formulation [18]

Response surface simulation is a useful graphical tool [25] in system identification and can
easily be applied to motor parameter extraction and BLMD model validation. This visual
concept, which has been used in process control optimization [25], provides an intuitive in‐
sight into the topographical structure of the cost function to be minimized and the rapid lo‐
cation of the global minimum. It also provides information on the most suitable
identification search strategy that should be adopted in parameter space to obtain an accu‐
rate estimate X̂ opt = {x̂1 opt , x̂2 opt}T  of the motor dynamics where the inertia J ≡ x1 and viscous
friction B ≡ x2 are the coded variables. The location of the global minimum stationary point
can be obtained by inspection from the simulated cost surface. This approach, although
computationally expensive, can be used to secure an independent alternative optimal esti‐
mate X̄ opt = { J̄ opt , B̄opt}T  as a reference against which the accuracy of other parameter identi‐
fication search schemes such as the Fast Simulated Diffusion [26] can be judged.

BLMD parameter extraction is generally based on the minimization of the errors of fit ek be‐
tween the observed motor drive target data and BLMD model responses in terms of the con‐
trolled parameter vector X. This identification process results in the adjustment of the J and
B parameters towards global optimality. The search strategy is performed in the neighbour‐
hood of the global extremum using the least squares error criterion in the cost function for‐
mulation between each value of a time series

{ },  ,  1 ,  k kt t t kT T t k n k N= = = D £ £ Î (2)

of n experimental sample points of the actual motor drive response g(tk ) as the target data
reference and the corresponding simulated model response f(X, tk). The objective function
E(X) is defined as the mean square error (MSE) from the residual vector as

1 2, , ,T
ne e e e= ¼é ùë û (3)

as

( ) 21 1
1

nT
kn n kE e

=
= = åX e e (4)

where
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ek = g(tk )− f (X , tk ) (5)

The MSE generates an error response cost surface in parameter X space based on target data
from one of the internal test points in [1]. The Powell Conjugate Direction (PCD) [23] and
Fast Simulated Diffusion optimization techniques [27] can be applied in conjunction with
the BLMD model in [1] to the response surfaces corresponding to motor shaft velocity Vωr

and winding FC Ifa target data respectively, obtained in torque control mode for different
shaft load inertia listed in [1], for optimal parameter Xopt extraction.
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Figure 2. Shaft Velocity Cost Surface

The simulated response surfaces E(X) are derived from BLMD simulation, with a fixed time
step of 1µs and appropriate decimation factor, using the model test point o/p f(X,tk) in con‐
junction with the sampled experimental target data
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( ) { ( ), ( )}
rk fag t V kT I kTwÎ (6)

as the target reference. These penalty cost functions are depicted in Figs.1 and 2 for zero
shaft load conditions over parameter space X=[J,B]T with a crude mesh size δX chosen as per
Table 1 to initially determine surface shape, according to the rotor inertia and friction toler‐
ances likely to be encountered in practice. The experimental test data training records used
in the MSE formulation for each objective function are displayed in Figs.1 and 2.

MSE Cost Surface Type E (X ) Current Feedback: Eifa(J , B) Shaft Velocity: Eωr(J , B)

Data Training Record g(tk ) Current Feedback: I fa(tk ) Shaft Velocity: V ωr(tk )

No. of Data Points Nd @ 20μs 4095 4095

BLMD Parameter varied x Jm (kg.m2) Bm (Nm/rad/sec) Jm (kg.m2) Bm (Nm/rad/sec)

Nominal Parameter Value xm 2.8x10-4 2.14x10-3 2.8x10-4 2.14x10-3

Parameter Tolerance Band Δ x ±20% ±80% ±20% ±80%

Crude Parameter Step size δ x 1.33% 4% 2% 4%

No. of Parameter Steps Nx 30 40 20 40

Parameter Value Returned 2.99x10-4 ~1.54x10-3 3.024x10-4 ~1.626x10-3

Assumed Optimal Parameter Vector Xo for Response Surface Analysis

Xo 3.0x10-4 2.14x10-3 3.0x10-4 2.14x10-3

Table 1. Experimental Cost Surface Formulation for Zero Shaft Load (NSL) Conditions
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The anticipated variation in the search cost, likely to be encountered during BLMD system
identification (SI) over the parameter tolerance band of interest, can be gauged from cross
sections through the chosen response surface at nominal values of the rotor parameters
[Jm,Bm]T. The cost variations associated with specific dynamic parameters are illustrated in
Figs.5 and 6 for motor current feedback and in Figs.7 and 8 for shaft velocity target data.
These cross sections provide important information regarding the surface shape and curva‐
ture and consequently about the nature of the stationary points found and type of SI search
algorithm that should be deployed over such hitherto surface ‘terra incognita’.
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The FC cost ‘landscape’ highlights the existence of several parabolic shaped ridges, inter‐
spersed with embedded synclines within its sinc-like folded topography, with a consequent
plurality of local minima. The cost terrain also shows the presence of a stationary elliptical
shaped ridge system centrally located in the contour map of Fig. 9 with the possible exis‐
tence of a ‘line minimum’ [25] along the principal/major axis. These multiminima folds are
manifested in the constructive and destructive interference patterns encountered in the fre‐
quency ramp up of the FC sinusoid, when compared with the optimal parameter reference
or test data waveform, during the transient phase of motor acceleration. The shaft velocity
cost surface is parabolic shaped as seen from the contour map in Fig. 10 but is less selective
than its FC equivalent in the vicinity of the global minimum when the respective cost sur‐
face cross sections with equivalent parameter grid sizes are compared.
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It is evident from Figs. 9 and 10 that both objective functions possess long wedge shaped
stationary valleys in the response surfaces with no ‘apparent’ clearly defined global mini‐
mizer. The observed near linear dependence of the surface shape on the parameters in a ‘line
minimum’ along the valley floor indicates that B is commensurate with J in the ratio J/B
which is the dynamical time constant τm of the motor. The B parameter, which is the least
likely of the two to vary in the electromechanical drive applications [8,9] can to be acquired
from dynamic testing as per [1] to free the other parameter for identification purposes. This
reduces the identification problem to single parameter extraction in J or alternatively in τm,
where parameter decoupling is non essential, for controller design purpose.

Response surface simulation provides an alternative route of accurately estimating the opti‐
mal parameter vector Xopt by means of inspection of the surface minimum cost. This method,
although computationally expensive, can be used as a yardstick by which the overall con‐
vergence performance of other identifications schemes [21] can be contrasted, such as FSD,
over a range of motor shaft inertial loads. The response surfaces can be simulated initially
using a coarse parameter mesh size, for a range of supposedly ‘unknown’ motor inertial
load test cases for shaft velocity and current feedback MSE objective functions, for rapid lo‐
cation of the global minimum. Further refinement in mesh size can be made down to the
parameter step sizes necessary in the vicinity of the global minimum for accurate resolution
of the optimal parameter set. Results, which demonstrate the accuracy and effectiveness of
RS simulation, are presented for global minimum estimates of motor shaft inertia which are
in close agreement with known test inertial load values.

2.2. Novel mathematical analysis of response surface [18] – Modelling and simulation

Response surfaces can be generated for the BLMD shaft velocity and current feedback step
responses, as the mean squared error cost function between an actual drive experimental
target data record and simulated model responses, by varying J and B over the two dimen‐
sional dynamical parameter space of interest. This graphical procedure is then used to shed
light on the shape of the respective cost surfaces and to make a decision as to the most effi‐
cient parameter identification strategy to be deployed in each case. Inspection of each of the
2-D MSE response surfaces reveal the existence of ‘open’ wedge shaped stationary regions
principally in the B-parameter direction containing what appears to be a global ‘line’ mini‐
mum in both cases. From a parameter identification perspective such open stationary re‐
gions would mean an infinite number of admissible solutions and thus uncertainty in the
parameters extracted. The presence of such a difficulty would require careful measurement
of one the parameters, in this case the friction as this is the principal direction that the line
minimum appears to exists, in order to free the other (J) for identification. A novel mathe‐
matical analysis is presented in this chapter to determine whether or not these embedded
stationary regions are open. This approach is articulated by formulating a simple quadratic
model approximation of the cost surface stationary regions over a small neighbourhood of
parameter space, with interacting J and B terms, for proposed model accuracy. The BLMD
model step responses are also approximated by simple analytical expressions over response
time spans that are very short by comparison with the dynamical time constant τm for vali‐
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dation and accuracy of the response surface quadratic model approximation. These simple
step response representations, in which the parameters J and B can be adjusted over the
space of interest for local cost surface generation and analysis of the stationary region, are
included along with the relevant experimental target data in the cost surface quadratic mod‐
el approximation. This mathematical analysis, employing the simplified quadratic model for
both cost surfaces, can be used to show:

• that the stationary regions for the current feedback and shaft velocity objective functions
are closed and bounded indicating the presence of a trapped global minimum,

• how closely the dynamical J and B parameters are coupled by making a comparison of the
extracted quadratic model eigenvalues,

• that a line minimum exists principally in the B parameter direction and quantifies the ex‐
tent of this B-line minimum by the eigenvalue ratio

• establishes the degree of ill conditioning for the global minimum solution parameter vec‐
tor estimate XS extracted from the minimized quadratic model.

Furthermore this analysis also demonstrates that the current feedback response surface has
better selectivity in the global stationary region than the shaft velocity equivalent with in‐
creasing data record lengths. This outcome helps in the decision analysis that favours the
use of current feedback target data in cost function formulation for dynamical parameter
identification.
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
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Figure 11. EM Torque Variation with Bm & Jm

The observed topographical features in the above penalty response surfaces can be anticipat‐
ed from the following approximation analysis. Initially the developed electromagnetic torque
Γe is at a maximum for unit torque demand step input Γd and remains so for a very short time as
per the BLMD model simulation in Fig.11 until the shaft speed starts to build up exponentially
as in Fig. 12 with time constant τm. The back-emf term vej in [1] becomes substantial causing a
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decrease in winding current ijs which reduces the applied torque. Furthermore the increased
rotor angular velocity ωr causes the machine impedance angle ϕz in [1] to approach π / 2 and
forces the winding currents into quadrature with the current command signals idj with subse‐
quent torque reduction as in [1]. The variation in applied motor torque with the worst case
spread of dynamical time constant τm values, observed for the parameter tolerance ranges in
Table  1  with  zero  shaft  load  conditions,  is  small  over  the  motor  acceleration  period
(t̂ =0.08sec≈60%τm) shown in Fig.11. The average value of applied mechanical torque Γem is
1Nm and is assumed constant over the period t̂ for tractability reasons in the following analy‐
sis of the cost surfaces used in the PCD and FSD methods of parameter extraction. However
this value deteriorates over longer time spans as the winding current moves out of phase align‐
ment with current demand as motor speed increases and thus with the back EMF. The simulat‐
ed shaft speed variation with time, based on the nominal parameter vector Xm in Table 1 and
displayed in Fig.12 for a step i/p torque demand Γd (~1v) is given by (7)-(a)

( )
( )00

0 0
0 0

0
0
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w t
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- G

= - = G £ £

= - = =
(7)

Similarly the corresponding shaft speed variation with time at the assumed optimum parame‐
ters {Jo, Bo} in Table 1, which are be identified from cost surface trial analysis, is given by (7)-(b)

The sampled motor speed ‘test’ data ωr
o(tk ) generated via (7)-(b) can now be used as target ref‐

erence ‘test’ data in the simulated trial cost function Eωr
O  for analytical purposes. The optimal

parameter set Xo  is supposedly unknown and the task here is to obtain a good estimate
J̄ o, B̄o

T  of this vector in the following cost surface analysis for verification of the RS strategy.
The variation in the time constant τm over the permitted parameter tolerance ranges employed
in the response surface generation, such as those in Figs 1 and 2 relying on experimental test
data, is insufficient to cause departure from nominal applied torque Γem for the short time span
shown in Fig.11. The shaft speed variation in this instance is approximated by
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Figure 14. BLMD Current Feedback

The resulting MSE cost function construct, illustrated in Fig.13 with details in Table 2, is for
simulation purposes given by

21( ) ( )
d

m m
r r rNEw w w= -åX (9)

with target data ωr
m. The parabolic cost variations associated with specific dynamic parame‐

ters for shaft velocity target data are illustrated in Figs.15 and 16. The corresponding wind‐
ing current feedback i fa(t) has the characteristics of a frequency modulated sinusoid during

the exponential buildup of motor shaft speed in that it exhibits the features of a constant am‐
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plitude swept frequency waveform as shown in Fig.14. The effect of shaft speed increase on
the phase angle ϕ of the FC response is determined from (8) as

{ }
0

( ) ( 1) ( )
t

t
r rx dx K t e Kt ttj w t tw-= = + - = -ò (10)
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The frequency modulated FC, which is current regulated by GI in [1], is given by

( )( ) cos cos ( )fa f f rI t I p I p Kt tj tw= = - (11)

with If ≈1 amp for a unit step torque demand i/p. The resultant FC cost surface generated
from simulation in Fig.17, with parameter grid sizes in Table 1, is based on the target shaft
velocity ωr

m(t) in (7)-(a) for nominal values of the dynamical parameters Xm with

21( ) ( )
d

m m
Ifa fa faNE I I= -åX (12)
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The sinc-profile cost variations associated with specific dynamic parameters for motor cur‐
rent feedback target data at nominal values of the BLMD parameters [Jm,Bm]T are illustrated
in Figs.18 and 19. The MSE penalty cost function can described in a more general form about
Xm as

( )2
1( ) ( ) ( )

d

m m
f k kN kE f t f t= -åX (13)

with either target data training record deployed using the representation

( ) { }, ( ), ( )k r k fa kf t t I twÎX (14)

The nature of the global stationary region embedded in either cost surface, described by (9)
or (12), can be explored in canonical form [25] by fitting a quadratic model using a Taylor
series. This two dimensional truncated series expansion, with quadratic terms measuring
the surface curvature, is anchored at the nominal value Xm to establish the principal axes/
directions in parameter space for global minimum search. It is assumed that the expansion
pivot Xm is in proximity to the supposed global optimum XO in the case of the FC objective
function as this consists of parallel ridges interlaced with folds enveloping local minima re‐
gions which obscure the global extremum position. The response surface model ℜ f can be
expressed, in either case with (14), in terms of the variables J ≡ x1 & B ≡ x2 and low order
interactive terms βij about Xm as
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(15)

with random modelling error ε. The surface model can alternatively be approximated in
compact matrix form as

1
0 2

ˆˆ ( ) ( ) ( )f
m m mbÂ = + - + - -T TB X X X X G X X (16)

with constant coefficient matrices determined from the cost at Xm, based on target data

( ) { }0 0 0
0( ) , ( ), ( )k k r k fa kf t f t t I tw= ÎX (17)

by the gradient vector B given by
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and the symmetric Hessian matrix Ĝ
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which determines the curvature in the vicinity of a local minimum via

( )20 01( ) ( ) ( )
d

m
f m k kN kE f t f t= -åX (20)

The set of constant coefficient differential equations pertaining to (15) are obtained via (13),
using either target data record (7)-(b) or (11) with I fa(t)|

ωr (t )=ωr
0(t )

, as
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The required first and second order partial differential equations, based on the shaft velocity
ωr , to substantiate expressions (22) to (26) are given by
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Target Data Record Length Nd with Time

Step 20μs

2000 Points - ωr
0(tk ) 2000 Points - I fa

0 (tk )

t̂=0.04sec ~31%τm t̂=0.04sec ~31%τm

Target Data Parameters

X0 =[J0,B0]T “To be identified”

Shaft Velocity Reference Data

[3.0x10-4, 2.14x10-3]T

Current Feedback Reference Data

[3.0x10-4, 2.14x10-3]T

Quadratic Model Fulcrum

Xm =[Jm,Bm]T

Model Surface R̂ωr :

[2.8x10-4, 2.14x10-3]T

Model Surface R̂ Ifa :

[2.8x10-4, 2.14x10-3]T

Model Cost R̂m
f  at Xm 19.553 0.098

Constant β0 via (21) 19.553 0.098

Gradient Vector B [β1, β2]T

via (22/3)
[-2.079x106, -3.279x104]T [-9.827x103, -113.345]T

Hessian Matrix Ĝ 
β11 β12

β12 β22

via (24/5/6)

1.238x1011 1.958x109

1.958x109 8.873x107

4.592x108 5.114x106

5.114x106 1.08x105

Stationary Point

Xs =[Js,Bs]T via (38)
[2.968x10-4, 2.138x10-3]T [3.005x10-4, 2.216x10-3]T

Slope at Xs via (37) [9.313x10-10, 1.455x10-11]T [0, 1.421x10-14]T

Model Cost R̂s
f  at Xs 2.086 -7.654x10-3

Quadratic Form Q(Xs -Xm) via (39) 34.934 0.211

Normal Form of Ĝ

Λ =
λ1 0

0 λ2

Eigenvalues

1.238x1011 0

0 5.774x107

Eigenvalues

4.593x108 0

0 5.109x104

Transformation/Modal Matrix T

with T −1ĜT = Λ

Normalized Eigenvectors

999.875 −15.825
15.825 999.875

⋅10−3

Normalized Eigenvectors

999.938 −11.137
11.137 999.938

⋅10−3

Co-ordinate Rotation θ -1.813º -1.276º

Table 2. Summary of Cost Surface Quadratic Modelling Details at Xm
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Target Data Record Length Nd

with Time Step 20μs
4095 Points t̂=0.082sec ~62.6%τm 4095 Points t̂=0.082sec ~56.5%τm

Target Data Parameters

X̄ opt = J̄ opt , B̄opt
T

“To be identified”

Shaft Velocity Reference Data

for zero shaft Inertial load (NSL)

Fig. 32; Ref [1] below

Current Feedback Reference Data for zero

shaft Inertial load (NSL)

Fig. 29; Ref [1] below

Quadratic Model Fulcrum

Xm =[Jm,Bm]T

Model Surface R̂ωr :

[2.8x10-4, 2.14x10-3]T

Model Surface R̂ Ifa :

[3.1x10-4, 2.14x10-3]T

Model Cost R̂m
f  at Xm 66.543 0.081

Constant β0 via (21) 66.543 0.081

Gradient Vector B [β1, β2]T

via (22/3)
[-6.842x106, -2.422x105]T [1.865x104, 449]T

Hessian Matrix Ĝ
4.02x1011 1.376x1010

1.376x1010 8.801x108

1.809x109 4.061x107

4.061x107 2.843x106

Stationary Point

Xs=[Js,Bs]T via (38)
[2.964x10-4, 2.159x10-3]T [3.00x10-4, 2.124x10-3]T

Slope at Xs via (37) [4.657x10-9,1.746x10-10]T [4.002x10-11, 5.116x10-13]T

Model Cost R̂s
f  at Xs 8.232 -0.015

Quadratic Form

Q(Xs -Xm) via (39)
116.624 0.193

Normal Form of Ĝ

Λ =
λ1 0

0 λ2

Eigenvalues

4.025x1011 0

0 4.086x108

Eigenvalues

1.81x109 0

0 1.931x106

Spectral Condition No. η 0.985x103 0.937x103

Contour sign check (51/2) -1.645x1020 -3.495x1015

Contour Eccentricity e 999.999 x10-3 999.999 x10-3

Modal Matrix T
999.413 −34.246
34.246 999.413

⋅10−3 999.748 −22.461
22.461 999.748

⋅10−3

Co-ordinate Rotation θ -1.9624º -1.2874º

Table 3. Details of Cost Surface Quadratic Model Fit at Xm based on actual BLMD Experimental Test Data shown in [1]
for Zero Shaft Inertial Load Conditions

The corresponding set of partial derivatives with FC Ifa are obtained via (11) as

( ) ( )sinfa r r
I

rJ B Jp Kt p
¶ w ¶w
¶ ¶tw t= - × + (32)

( ) ( )( )sin 2 2faI t
r r rB B Bp Kt p K

¶ t
¶ tw w w= - × - -é ùë û (33)
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t
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(36)

The variation of the directed contour gradient over the fitted cost surface model, given by

ˆˆ ( )f
mÑÂ = + -B G X X (37)

is used to locate the global optimum X0 in the parameter hyperspace region of interest. The
condition necessary [22] for the presence of a stationary point Xs is the existence of a vanish‐
ing gradient in the neighborhood of Xm located within the parameter tolerance band ΔX
with

1ˆ
s m

-= -X X G B (38)

from (37) and the nature of which is determined by the local curvature from the sign of the
quadratic form [28]

ˆ( ) ( ) ( )m m mQ - = - -TX X X X G X X (39)

The parametric details, which include estimates of the gradient vectors and Hessian matri‐
ces at Xm for the indicated data record lengths, of the fitted models to the cost surfaces illus‐
trated in Figs.13 and 17 are summarized in Table 2. Similar parametric quantities, employing
BLMD experimental test data, are given in Table 3 for cost surface models shown in Figs.1
and 2.

2.2.1. Novel analysis of global minimum estimation and response surface selectivity [18]

An estimate of the cost surface global minimum X̂ opt  is provided in each case by inference
from the vanishing gradient in (37) with location of the fitted model stationary point Xs in
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(38). A sufficient condition for the existence of a global minimizer at Xs is that Q(Xs - Xm)
must be positive-definite [28] in which Q(Xs - Xm) > 0 for Xs ≠ Xm. This is verified by the sign
of the eigenvalues λi of Ĝ in Table 2 which are determined from the characteristic equation

ˆ 0lé ù =ë ûG Idet - (40)

The accuracy of global estimates returned in each case for the inertial parameter J in Table 2
admit to the quality and goodness of fit of the models employed for cost surface approxima‐
tion in the vicinity of the global extremum. The contributory effect of parameter interaction
in model approximation in both cases is not insignificant with coefficients βij comparable in
magnitude to the geometric mean of the eigenvalues of Hessian Ĝ in Table 4 defined by

1 2
ˆ n

nl l l l= × K (41)

Uniqueness of Global Minimum Estimate

Cond ∞Ĝ(Xm)
Shaft Velocity Reference Data

2.2126x103

Current Feedback Reference Data

9.1878x103

Spectral Condition No. η 2.144x103 8.99x103

Geometric Mean λ̂ 2.674x109 4.844x106

Cost Surface Selectivity and Fitted Model Re-evaluation at Global Minimum Estimate Xs

Fitted Model Fulcrum X s [2.968x10-4, 2.138x10-3]T [3.005x10-4, 2.216x10-3]T

Model Constant β0 at X s 0.376 4.275x10-4

Gradient Vector at X s [3.562x104, 579.78]T [11.535, 0.081]T

Re-evaluation of Ĝat X s
9.142x1010 1.437x109

1.437x109 3.145x107

4.295x108 4.99x106

4.99x106 6.08x104

Global Estimate Update Xs1 [2.996x10-4, 2.138x10-3]T [2.998x10-4, 2.159x10-3]T

Slope at Xs1 via (37) [1.717x10-9, 2.547x10-11]T [8.413x10-12, 9.948x10-14]T

Eigenvalues of Ĝat X s
9.144x1010 0

0 8.846x106

4.295x108 0

0 2.819x103

Modal Matrix T
999.876 −15.723
15.723 999.876

⋅10−3 999.933 −11.618
11.618 999.933

⋅10−3

Residual Cost R̂s
f  at Xs1 6.439x10-3 -3.996x10-6

Quadratic Form Q(Xs1 -Xs) 0.738 8.629x10-4

Table 4. Results Derived From Cost Surface Quadratic Fit in Table 2
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The relative magnitudes of the Hessian curvature components provide information about
the uniqueness of the solution Xs in (38), via the matrix condition number in Table 3, based
on the infinity norm defined as

( )1
11

ˆ ˆ ˆ ˆ( )  where max n
ijji n

cond b-
¥ =¥ ¥¥ £ £

= = åG G G G (42)

The matrix condition number is much greater than unity in both cases, with the highest val‐
ue associated with the FC response surface, which indicates a sizeable measure of ill condi‐
tioning in the extraction of the global estimate in (38). The curvature component β11

associated with the J-parameter is much greater than that associated with damping B by
about three orders of magnitude which indicates greater selectivity of the solution Js along
the J axis. This suggests the presence of many potential solutions to (38) along the B-parame‐
ter co-ordinate direction due to poorer selectivity or smaller curvature component β22. A
more complete interpretation of the nature of the cost surface syncline containing the sta‐
tionary point region is obtained from the spectral condition number η of Ĝ [22] as

h l l= max min (43)

The relative magnitude η of the eigenvalues indicate that a ‘line minimum’ of potential solu‐
tions, which explains the degree of ill conditioning in the global solution estimate, is feasible
due to the ‘long’ elliptical shape of the contour map associated with the stationary point
zone of convergence in both cases as shown in Figs 9 and 10. The elliptical character of the
response surface model in the vicinity of the global minimum estimate can be visualized by
a coordinate translation of the parameter axes to Xs as pivot with

SX X= -V (44)

resulting in the modified representation from (16) as

( )

1
0 2

1
2

1
0 2

ˆ ˆ( ) ( ) ( )
ˆ ˆ      = a

ˆ ˆ( ) (where ) ( ) (b)

f
s m s m s m

f T
s

f
s s m s m s m

b

b

= + + - + + - + -

+

= + - + - -

T T

T T

B V X X V X X G V X X

V GV

B X X X X G X X

R

R

R

(45)

The normalized eigenvectors Ti, associated with the distinct eigenvalues of the symmetric
Hessian Ĝ as

1 ˆ- = LT GT (46)
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in Table 2, can be used as an orthonormal basis to transform the parameter axes along the
principal directions of the elliptical shaped contour system.
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Figure 20. A: Simulated MSE-Ifa Contour Map B: Ifa Contour Map with Canonical Variables

This rotation of co-ordinates, with origin anchored to Xs, is displayed in Figs 20 and 10 for
both simulated cost surfaces to eliminate the interactive terms β12 in Ĝ. The X co-ordinate
angular displacement θ in Figure 20B can be evaluated from the conical expression [29] as

22 11
122cot 2 b bq b-= (47)

using (15) with values listed in Tables 2 and 3 which are very small. The rotation can also be
deduced from the directional cosines of the unit column vectors âz1 âz2  constituting the
modal matrix T via

1 2 1 2
cos sinˆ ˆ ˆ ˆ
sin cosz z x x

q q
q q

-é ù
= =é ù é ù ê úë û ë û

ë û
T a a a a (48)

The normal form of the response surface model can be expressed with substitution of the
canonical variable

TZ T V= (49)

1 2

1
2

2 2 2 21
1 22 2 21

ˆ
s ˆ ˆ

ˆ
A

=

f f
s

f f
s k k sk z z zl ll

=

+ L

= + + +å

TZ ZR = R

R R
(50)
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with model cost R̂s
f  at the global estimate given in Table 4. The nature of the fitted quadratic

model can be deduced from the shape of the embedded contours, in the vicinity of the glob‐
al minimum estimate Xs, by inference from the sign of the scalar discriminant invariant
which pertains to elliptical conic sections [29] as

2
12 11 22 0b b b- < (51)

in the x1x2 frame or

2 21 1wi  0- th0l l l =< (52)

in z1z2 normal co-ordinates. These contours are elliptical for both choices of observed BLMD
target data with a negative discriminant in Table 3 based on the model cost at nominal pa‐
rameter value Xm. Consequently the stationary region enveloping the global minimum is en‐
circled and thus bounded by elliptical contours rather than contained within an open wedge
shaped response surfaces with no define convergence zone. The degree of elliptical eccen‐
tricity e of the trapped stationary zone quantifies the extent of the ‘line minimum’ of global
minimum convergence, congruent with the major axis, as notionally illustrated in Fig. 21.
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Figure 21. Elliptical Contour Bounded Stationary Zone

This can be determined from consideration of Fig. 21 by recasting the expression for the nor‐
mal form of the cost surface model in (50) into that for an elliptical contour, evaluated at the
nominal parameter value Xm with origin at Xs, as

2 2
1 2
2 2 1z z

a b
+ = (53)
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for model cost differential

( ),
ˆ ˆ ˆ-f f f

m s m sD =R R R (54)

with intrinsic parameters

2 2
1 , 2

ˆ ˆ2  and = 2f f
m,s m sa bl l= D DR R (55)

The eccentricity e, which measures the degree of ‘flatness’ of the oblate model contour R̂m
f

specified at Xm and thus the ‘linear extension’ of the global minimum X0, is given in terms of
the lateral displacement c of the elliptical foci from the global estimate Xs relative to the
length 2b of the major axis as

( ) ( )2 2
2

1

22
1 1b ac a

b b be l
l

-= = = - = - (56)

The eccentricity of the contours for the model target data in Table 3 is almost unity, as a con‐
sequence of the large spectral condition number η in each case, indicating a very flat dis‐
tended ellipse. The elliptical contours approximates an extended pencil-like global
minimum predominantly in the B parameter co-ordinate direction because the inclination
angle θ in (47) is less than 2º. This is qualified by the magnitude of the axial ratio (AR) which
defines the extent 2b of the ‘line minimum valley’ along the principal direction of the ellipse
in relation to its girth 2a, given by the minor axis length, as

1

2

b
aAR l

l h= = = (57)

This contrast of stationary region ‘feature sizes’ in parameter X-space is readily identified as
the spectral condition number η in Table 3 with a ‘line minimum’ extension ratio of about
three orders of magnitude for each target data training record used in the MSE cost surface
description.

The slope and curvature matrix Ĝ of the fitted cost model including its associated eigenval‐
ues are re-evaluated at the acquired global estimate Xs as summarized in Table 4 to gauge
the response surface selectivity either along the parameter co-ordinate directions or the prin‐
cipal axes of the normal form. The second iterative estimate Xs1, along with the residual
costs given in Table 4, is very close to the global minimum target X0 listed in Table 2 for both
cost surface models despite the large condition number in each case. A quantifiable measure
of the fitted model selectivity in an ill conditioned stationary region, tagged by a large spec‐
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tral number η, at discerning the global minimum can be obtained from the surface curvature
κj along a particular parameter co-ordinate direction xj as

ˆ1 f

j
s

j jj jjx
¶
¶k b b= + »

X

R (58)

where

∂R
^ f

∂ xj
< <1 at X =X s (59)

or alternatively in normal form as

κj =λj (60)
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Figure 22. Ifa Cost Surface Selectivity

The degree of model selectivity is three orders of magnitude greater in the case of the motor
inertia for actual measured target data employed in both response surface approximations
as evidenced from the spectral condition number in Table 3 and in Table 4 for simulated tar‐
get data trials. Consequently this selectivity margin renders a more accurate estimate in the
extracted J-parameter which is mirrored by the arguments leading to the feature size ratio in
(57). The cost surface selectivity improves along the principal axes of the normal form when
the target data length Nd is extended as indicated by the increased magnitudes of the eigen‐
values in Tables 4 and 3. This trend in enhanced J parameter selectivity, which is a measure
of the accompanying increase in curvature at the global extremum, is displayed in Figs. 22
and 23 for increasing data record lengths and is a manifestation of the narrowing of the cost
surface fold containing the directed ‘line minimum’ principally in the B-parameter direction.
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The selectivity improvements are greater for increased FC step response data record lengths
in Fig. 22 than those for shaft velocity target data in Fig.23. This due to the appearance of
more FC cycles with reduced periodicity as motor speed increases demanding a greater de‐
gree of fitted model accuracy, with smaller margins of error in terms of frequency and phase
coherence at the global minimum value, in the extraction of the optimum parameter vector
XO during system identification. The shaft velocity step response by contrast losses its exci‐
tation persistence with transient speed decay as it evolves towards steady state conditions
with increased data capture time. After a sufficient time elapse the target data transient in‐
formation, responsible for velocity cost surface folding, is submerged by the steady state on‐
set of maximum motor speed conditions. This irretrievable loss of target velocity signal
amplitude variation with time results in a reduction of surface selectivity with parameter
variation near the global minimum. These considerations admit to a better choice in the cur‐
rent feedback as a suitable candidate for MSE objective function formulation where accurate
parameter extraction is essential during the identification phase of optimal controller design
in high performance adaptive BMLD systems for electric vehicle mobility. Furthermore the
increasing trend towards motor sensorless control [30] obviates the need for separate rotor
position sensors with essential information obtained from the motor signature current via
FC sensing at the inverter controller o/p. This adoption of sensorless operation in motor
drive systems lends added importance to observed FC data as a suitable target function dur‐
ing parameter identification.

3. Response surface noise and parameter quantization

The computation ‘noise’ inherent in the MSE penalty function construct, based on simulated
target data at nominal machine parameter values, is manifested as response surface rough‐
ness in parameter space. This is due to model nonlinearities and coarseness of evaluation of
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the PWM switching instants and results in ‘false’ local minima proliferation in the neighbor‐
hood of the global minimizer.
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A typical example of this is illustrated in Figs 24 and 25 for BLMD model simulations, with
and without inverter turn-on delay δ considered, for small step change variations in the sta‐
tor winding inductance LS and torque constant Kt parameters. These response surfaces were
obtained from BLMD simulation, using FC target data for nominal parameter values as in
[1], with a 4095 bit maximal length 2.5 volt bipolar pseudorandom binary sequence (PRBS)
input stimulus. The response surface in Fig.24 has a very shallow paraboloidal shape for the
small parameter tolerance ranges chosen with a rough noisy texture peppered with local
minima in the vicinity of the point-like global minimum. The response surface for simulated
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FC target data is relatively smooth in the absence of inverter delay turn-on with a point-like
singularity at the global minimum as shown in Fig.25. The cost functions pertaining to simu‐
lated step response FC Ifa and shaft velocity ωr target data, displayed in Figs.26 and 27 for
the dynamic parameters {J,B}, are also noisy with point-like multiminima scattered around
the ‘pinhole’ stationary point as in the former case. These surfaces are parabolic for very
small tolerance ranges selected near the global minimum as in the main lobe of Fig.1 for the
FC corrugated surface.
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Figure 27. Noisy Velocity Cost Surface with Step I/P

The side elevations of the MSE cost functions in Figs.28 and 29 demonstrate very effectively
the fractal landscape with multiminima plurality disposed about the global extremum in the
FC case.
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Figure 28. Noisy Ifa Cost Surface Side Elevation
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       Fig.28: Noisy Velocity Cost Surface Side Elevation 

Figure 29. Noisy Velocity Cost Surface Side Elevation

In the simulated velocity response surface shown in Fig.29 a stationary region exists at zero
floor cost with no definite observable global minimum point. An alternative perspective of
the minimum stationary regions is provided by the contour maps shown in Figs.30 and 31
for FC and shaft velocity target data respectively. The existence of the point-like global mini‐
mum singularity with surface noisiness is clearly evident from the level contours in the FC
surface relief map. In the case of the shaft velocity response surface the presence of ‘noisy’
local minima strewn over the ‘river bed’ syncline of the global minimum stationary region is
clearly defined by the contour map in Fig.31. The occurrence of ‘noisy’ local minima in the
above error surfaces presents a difficulty to any classical optimization method in acquiring
the global minimizer where fine parameter resolution is concerned.

A more detailed examination of the effect of inverter delay, achieved through BLMD model
simulation without current controller o/p saturation using a 1 volt torque demand step i/p, on
the one dimensional MSE response surface in Fig. 32 for very small inductance variation reveal
a granulated profile which is less pronounced than that in Fig. 33 with the absence of delay.
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New Generation of Electric Vehicles356





E

  








145

0

1990

EIfa

Noisy Simulated Cost Surface EIfa

Variation with Inductance Ls

BLMD Model Simulation without Inverter Delay

d =1.0v Step I/P with Time Step t=1s

kLs

L =Lmin +kLs

Winding Inductance Ls =1.94mH20%
Lmin = 80%Jm; Ls =0.2% Ls

Point-like Global

Minimum

x10-5

            Fig.32: Cost Simulation without Delay  

Figure 33. Cost Simulation without Delay

The use of a PWM switch transition time search, based on a single iteration of the regula-
falsi method to keep simulation time overhead low, marginally reduces the response error
as in Figs.34 and 35. The sensitivity [31] of the error response E with inductance Ls

( )( )s

s s

LE E
L E LS ¶

¶= (61)

is very low in all cases and for a ±12% inductance variation gives a change of ΔE=1.5×10-4 in
1.75×10-4 for E. Poor cost surface selectivity will ensue in such cases of low sensitivity over a
large parameter tolerance range with possible local minimum convergence if the search
process is initiated far from the global minimizer with a noisy cost function.
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3.1. Novel theoretical estimation of PWM edge transition computation noise [18]

A measure of the computation ‘noise’, induced through inaccurate resolution of the PWM
edge transition within a simulation time step Δt, can be ascertained from the associated er‐
ror in random pulsed energy delivery by the inverter to the stator winding within Δt. Since
there is one PWM edge transition every half-switching interval TS/2 of the inverter the ex‐
pectation in the power delivery error to the stator can be obtained [18], from the error in
pulse energy dispatch during the time step interval Δt, as

2
2 2 2( ) ( ) d SE E U t T= = = Ds max sT E TP E (62)

The expected random voltage vn error associated with inaccurate resolution in PWM inver‐
ter switching during BLMD simulation is thus given by

( )
( )

( ) a

310 1 200 21.92 volts b
n d S

n

v E U t T

v

= = D

= =

P
(63)

If the chosen simulation time step Δt is 1µs and the inverter switching parameters in [1] are
substituted into (63)-(a) the expected uncertainty vn in the inverter output voltage Vjg per
phase j can be obtained as (63)-(b)

This value of voltage uncertainty in the inverter output is not insignificant as its magnitude
is 7.1% of the inverter HT voltage Ud for a simulation time step size of 1µs. The error can be
reduced by decreasing the simulation step size Δt for a more accurate resolution of the pulse
edge transition time, once its occurrence has been flagged, or alternatively by means of an
accurate search using the regula-falsi method as described in [1].
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The statistical considerations of pulsed energy delivery by the PWM inverter in [18], arising
from BLMD simulation with a fixed time step size, illuminates the origin of computation
‘noisiness’ and its subsequent manifestation as cost surface roughness as shown in Figs.36
and 37. For fixed shaft load inertia changes, encountered in motive power applications and
electric vehicles, the use of a coarse quantization step size δJ in the inertial parameter varia‐
ble about the nominal value Jm results in smooth generated and noise-free response surfaces
as shown in Figs.1 and 2 for actual FC and shaft velocity target data. However for a suffi‐
ciently small step size variation in the inertia Jm and damping Bm a ‘noisy’ cost surface with a
proliferation of local minima results in both cases as shown in Figs 36 and 37 for corre‐
sponding target test data. The degree of resolution of the parameter step size, that can be
obtained and then used in an identification search strategy, depends upon the onset of cost
surface irregularity.
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3.2. Novel mathematical analysis of quadratic curve fitting to noisy mse cost surface
[18,21]

The accuracy of any classical identification scheme used in terms of parameter resolving ca‐
pabilities can be gauged by fitting a quadratic [26] to the response surfaces in each test case
and determining rms deviation of the PWM computation noise related residuals. The quad‐
ratic fit employed

2
0 1 2( ) ;         1k k kQ x b b x b x k N= + + £ £ (64)

for N steps in the indexed parameter xk as shown in Fig.38 with

( ) ;       { , }k m m m mx x k m x x J Bd= + - Î (65)

is based on an infinitesimal step size δx, in model simulation to reflect response surface
roughness, and centred in a tolerance band ±Δxm within indexed range m of the nominal
value xm as

 mm x xd= D (66)

for

( ) ( ) m mx x x x xD = - = -min max m (67)

The nature of the residual error

( ) ( ) ( )f k f k f kW x E x Q x= - (68)

associated with the least squares quadratic fit to the various cost functions

{ , }r faf IwÎ (69)

for example in Figs.39 and 40 for the FC cost surface, is demonstrated by the autocorrelation
(ACR) functions

1
1( ) ( ) ( )Nf

W f k f k jN kj W x W x +=
Â = ×å (70)
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shown in Figs.41 and 42, which are mainly of the impulse type at zero offset, indicating a

white noise-like characteristic.
   
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Figure 38. Parameter Step Size Resolution

FC Target Data with reference to details in Figs.36 and 37

Parameter varied x Jm Bm

Nominal value xm 3.0375 × 10−4kg.m2 2.226 × 10−3Nm.rad-1.sec

Parameter Step Size δx 0.01% Jm 0.02% Bm

No. of Steps N 200 200

Tolerance Index m 100 100

b0 96.864 3.286

b1 −6.373 × 105 −2.891 × 103

b2 1.049 × 109 6.516 × 105

Residual ErrorW Ifa(x) = EIfa(x)−QIfa(x) illustrated in Figs.39 and 40

Standard Deviation σ̂ 1.916 × 10−4 1.127 × 10−4

Mean −3.309 × 10−8 −3.306 × 10−9

Peak Absolute Deviation 5.203 × 10−4 3.355 × 10−4

Table 5. FC Cost Function EIfa(x) and Quadratic Fit QIfa(x)
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The various cost function details with accompanying quadratic fits and corresponding resid‐
uals are summarized in Tables 5 and 6, based on FC and shaft velocity test data respectively,
for independent parameter variation in the BLMD shaft inertia and damping factor. The
quadratic polynomials fitted to the noisy shaft velocity cost surface sections are displayed in
Figs. 43 and 44 with coefficients given in Table 6. The corresponding cost residuals associat‐
ed with the fitted velocity profiles, which appear to be random, are shown for each of the
dynamical parameter variables in Figs. 45 and 46.
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Figure 42. Error Autocorrelation in B @ Jm

The white noise-like nature of the error-of-fit in the case of the shaft velocity cost surface sec‐
tions is demonstrated by the impulse characteristic of the ACR spike functions in Figs.47
and 48. The errors-of-fit can thus be considered as a random entity, with an ACR related
noise signature, associated with the BLMD simulation model at very high parameter resolu‐
tion for each of the observed target data records used in the MSE cost formulation. This
manifestation is attributed to some residual uncertainty in the BLMD model simulation of
the PWM edge transitions at the comparator o/p with dead time, despite the single iteration
cycle of the regula-falsi search, which are magnified in the three phase inverter o/p before
being fed to the stator winding.
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Shaft Velocity Target Data with reference to details in Figs.43 and 44

Parameter varied x Jm Bm

Nominal value xm 3.0375 × 10−4kg.m2 2.14 × 10−3Nm.rad-1.sec

Parmeter Step Size δx 0.01% Jm 0.02% Bm

No. of Steps N 370 600

Tolerance Index m 100 100

b0 1.698 0.157

b1 −1.079 × 104 −1.098 × 102

b2 1.747 × 107 2.465 × 104

Residual Error W ω(x) = Eω(x)−Qω(x) illustrated in Figs 45 and 46

Standard Deviation σ̂ 1.028 × 10−5 8.974 × 10−4

Mean 6.982 × 10−10 −1.415 × 10−11

Peak Absolute Deviation 3.476 × 10−5 2.871 × 10−5

Table 6. Shaft Velocity Cost Function Eω(x) and Quadratic Fit Qω(x)
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Figure 43. Velocity Cost Noise Variation with J

The effect of lowering the drive model simulation time step Δt, as shown in Figs. 49 and 50
for very small parameter variation in the vicinity of the global singularity, translates into a
reduction of the MSE as well as gradual removal of response surface roughness. This tangi‐
ble decrease in surface roughness with time step size, evident form Fig.51, is measured in
terms of the standard deviation of the residual errors associated with various quadratic pol‐
ynomials fitted to each of the FC cost sections. However the computational effort in terms of
CPU time increases in proportion with the decrease in time step size for a given simulation
trace length. The requirement for surface noise reduction with the elimination of false local
minima plurality has to be balanced with a tradeoff in simulation run time in an attempt to
reduce computation costs where BLMD model tractability is an issue in parameter identifi‐
cation and as a simulator in practical applications for performance related prediction of pro‐
posed embedded drive systems. A Taylor series expansion of the quadratic fit about the
parabolic vertex xopt  as

New Generation of Electric Vehicles364



2
2( ) ( ) ( )f f opt optQ x Q x b x x= + - (71)

with gradient

1 22 0f

opt

Q
optx

x
b b x

¶

¶ = + = (72)

can now be used to check the limit of parameter resolution and the “radius” of convergence
for worst case conditions [19].








0 74 148 222 296 370

-3.03

-1.73

-0.428

0.874

2.17

3.48 10-5

Residual Error W(Jk) for Quadratic Fit Q(Jk) with

Shaft Velocity Cost Surface Cross Section in J @ Bm

W(Jk)

Jm

Jk = Jm +(k-m)J

Jm =3.0375e-4 kg.m
-2

Bm =2.226e-3 Nm/rad/s







         Fig.44: Quadratic Error in J @ B             





J 2









Figure 45. Quadratic Error in J @ Bm

 

 


 

 

 

  
 
 







 

E


0 120 240 360 480 600

0.03509

0.03518

0.03526

0.03535

0.03544

0.03552 Cost Surface Cross Section

E variation with Damping B @ Jm

       Noisy Cost Surface E (Bj)

       Fitted Quadratic Q(Bj)

Bm = 2.226x10
-3
 Nm.rad

-1
.sec

Jm = 3.0375x10
-4
kg.m

-2

B = 0.02% Bm

E

Bj = Bm + jB

     Fig.43: Shaft Vel. Surface Noise with B Variation 

Figure 44. Shaft Vel. Surface Noise with B Variation
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At best the smallest parameter threshold step size required in simulation to overcome re‐

sponse surface noise, with rms sample estimate σ̂, is determined from that value xk
s near the

global minimum as in Fig.38 such that

2
2 ˆ( ) ( ) ( ) ( )S S s s

f f k k opt k optQ Q x Q x Q x b x x sD = D = - = - ³ (73)
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3.2.1. Parameter quantization and radius of convergence estimation for system identification

The largest threshold step size estimate can be determined by applying Chebyshev’s theo‐
rem for statistical measurements [32] to the response surface noise sample [19, 26]. This the‐
orem indicates that at least the fraction 1− (1 / h 2) of all the residuals W f k

 in any sample lie

within h standard deviations of the mean μ̂ with probability

{ } 2ˆ ˆ ˆ ˆ( ) ( ) ( ) 1 (1 )f kh W x h hm s m s- £ £ + = -Prob (74)

and for h = 4, which exceeds the tabulated peak absolute deviation in all cases in Tables 5
and 6, is 94%. Thus a measure of the worst case parameter resolution is provided by the in‐
equality

2
2 ˆ( ) ( ) ( ) 4L L L

f f k f opt k optQ Q x Q x b x x sD = - = - ³ (75)

for some large xk
L  via the quadratic minimiser

1 22optx b b= - (76)

in (72) as

2

ˆ4L
k opt bx x s³ ± (77)
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The parameter resolution limit in terms of quantization step size δx necessary to overcome
cost surface noisiness and local minimum trapping in BLMD parameter identification,
which is also a measure of the convergence radius rx about the global minimizer in Fig.38, is

given by

δ
2

ˆ4L
x bx r s= = (78)

Parameter varied x Jm Bm

Minimizer xopt 3.038 × 10−4kg.m2 2.219 × 10−3Nm.rad-1.sec

Minimizer Offset (m−kopt) −0.243 16.199

Threshold Locations kL 72 & 129 24 & 143

Worst Relative Step Size δ x L

xm
0.281% 1.182%

Table 7. Quantized Step Sizes for FC Cost Function in Figs. 36 & 37

If measurements are referenced to the nominal value xm at the centre of the parameter toler‐

ance range the relative step sizes

δ ( )L L
mx k m xd= - (79)

of which there are two pending the sign of the quadratic surd in (77), must be corrected by
allowance for the global minimum offset

δ( )m opt optx x m k x- = - (80)

Parameter varied x Jm Bm

Minimizer xopt 3.007 × 10−4kg.m2 2.097 × 10−3Nm.rad-1.sec

Minimizer Offset (m−kopt) -161.146 -201.448

Threshold Locations kL 210 & 312 212 & 391

Worst Relative Step Size δ x L

xm
0.505% 1.783%

Table 8. Quantized Step Sizes for Shaft Velocity Cost Function in Figs.43 & 44
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The dynamical parameter threshold step sizes δxL, which are by default the convergence
radii measures for reliable global parameter estimation, are tabulated for the response sur‐
face cross sections in Tables 7 and 8. The resolution of the motor shaft inertia from the tabu‐
lated step sizes, which is the most likely to vary and more essential to identify in high
performance applications, is higher when the FC cost function is used instead of the shaft
velocity equivalent. Convergence of the inertia parameter estimates to the global minimum
is enhanced in the former case with a lower uncertainty due to the smaller step size. The de‐
gree of selectivity of the fitted response surfaces with respect to the parameter variability
[31] given by

x
x xV D= (81)

can be determined through the sensitivity coefficient

opt ff

opt

x QQ
x Q xS

¶

¶
æ öæ ö= ç ÷ç ÷
è øè ø

(82)

in the vicinity of the global minimum xopt. This measure can then be usefully employed as a
performance index to decide on the best target test data available to use in a motor parame‐
ter identification strategy. The sensitivities for 2% parameter variability, greater than the
largest threshold step size encountered, of the various fitted surfaces are summarized in Ta‐
ble 9. These sensitivity considerations indicate the suitability of FC test data in the objective
function formulation for accuracy in parameter identification.

Parameter varied x Jm Bm

FC Response Surface Sensitivities Figs.36 and 37

Sensitivity 28.88 0.82

Shaft Velocity Response Surface Sensitivities Figs.43 and 44

Sensitivity 0.98 0.07

Table 9. Response Surface Sensitivity

The above method of parameter quantization, employed to surmount cost surface noise and
resultant avoidance of local minimum capture during system identification, reduces the
search time in parameter space to global optimality. This is due to the reduction of N-Di‐
mensional parameter space into a finite sized hypercube of countable lattice points NC to be
searched, within the imposed parameter tolerance bounds ±Δxm, using an interstitial ‘dis‐
tance’ equivalent to the step size variability in Tables 7 and 8 as
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Figure 52. Simulated Ifa Cost Surface
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Figure 53. Simulated Shaft Velocity Cost Surface

The application of the tabulated parameter threshold sizes δxL in the objective function sim‐
ulation results in smooth noise-free response surfaces in the stationary region enclosing the
global minimum as displayed in Figs.52 and 53. The degree of accuracy achieved by param‐
eter quantization, with restricted step size during dynamical system identification, in acquir‐
ing the global extremum Xopt is determined from the critical values in Tables 7 and 8 as the
estimate

L
opt opt d= ±X X X (84)
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The accuracy of the estimate in (84) can be improved with the selection of FC target data
because of its greater cost surface sensitivity and smaller relative step size. If the length of
the test data record is extended with more data values collected, accompanied by a corre‐
sponding transient response decay in the observed variables, the selectivity of the FC re‐
sponse surface improves with genuine local minima proliferation while the parabolic Vωr

surface concavity decreases. Thus a more accurate global estimate X̄ opt  is obtained for refer‐
ence purposes with increased data record length and improved FC surface selectivity. A
suitable identification method can then be applied in conjunction with the BLMD model to
the response surfaces corresponding to either motor shaft velocity Vωr or winding FC Ifa tar‐
get data, obtained in torque mode control for different shaft load inertia, in the parameter
search process of the optimal estimate X̂ opt = Ĵ opt , B̂opt

T . The Powell conjugate direction
method [22,23] and FSD [19] parameter extraction techniques can be applied, for example, to
the respective Vωr and Ifa cost surfaces to obtain X̂ opt  [18].

4. Conclusions

Response surface simulation has been theoretically investigated and shown to be a useful
graphical tool in motor parameter identification with a multiminima objective function and
BLMD model validation for electric vehicle systems. This visual concept provides an intui‐
tive insight into the topographical structure of the cost function to be minimized, the loca‐
tion of the global minimum, and the relevant identification search strategy to be adopted in
parameter space to obtain an accurate estimate. It also provides an alternative parameter
measurement strategy against which the accuracy of other parameter identification search
techniques can be judged. A novel mathematical analysis of the competing shaft velocity
and current feedback response surfaces, for identification purposes, has revealed the exis‐
tence of a ‘line’ minimum of possible solutions principally in the B-parameter direction via a
comparison of the eigenvalues derived from the quadratic model fit of the global stationary
region. This analysis also shows that the global stationary region is closed and bounded by
elliptical shaped MSE contours, which guarantees the existence of an optimal parameter
vector solution. Furthermore a comparison of the quadratic model eigenvalues, for the com‐
peting cost surfaces, illustrates the dominance of the current feedback response selectivity
and its acceptance as the most suitable objective function during SI for accurate parameter
extraction.

The quantization of parameter space to remove ‘false’ local minima proliferation has been
examined and demonstrated to be effective in surmounting cost surface ‘noisiness’ engen‐
dered during BLMD simulation, with a finite step size, of the PWM natural sampling proc‐
ess. A probability analysis has shown that the error incurred in resolution of PWM edge
transition times during BLMD simulation, which is responsible for cost surface granularity,
is dependent on the step size and is manifested as a random error voltage at the PWM inver‐
ter output. The effect of cost surface selectivity with choice of target data in MSE penalty
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cost function formulation, for usage in BLMD parameter identification, has been examined
with motor current feedback being the preferred option.
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