
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Nutrient Balance as Paradigm of Soil and Plant
Chemometrics

S.É. Parent, L.E. Parent, D.E. Rozanne,
A. Hernandes and W. Natale

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53343

1. Introduction

Soil fertility studies aim to integrate the basic principles of biology, chemistry, and physics,
but generally lead to separate interpretations of soil and plants data [1]. Paradoxically, J.B.
Boussingeault warned as far as in the 1830s that the balance between nutrients in soil-plant
systems was more important than nutrient concentrations taken in isolation [2]. Indeed, the
biogeochemical cycles of elements that regulate the dynamics of agroecosystems [3] do not
operate independently [4]. However, raw concentrations of individual elements or their log
transformation are commonly used to conduct statistical analyses on plant nutrients [5, 6,7],
soil fertility indices [8] and C mineralization data [9, 10]. Researchers thus proposed several
ratios and stoichiometric rules to relate system’s components to each other when monitoring
mineralization and immobilization of organic C, N, P and S in soils [4, 11], cations interact‐
ing on soil cation exchange capacity [12], nutrient interactions in plants [13, 14, 15, 16] and
carbon uptake by plants [17, 18].

Different approaches have been elaborated to describe nutrient balances in soils. The nu‐
trient intensity and balance concept (NIBC) computes ionic balances in soil water extracts
[19, 20]. The basic cation saturation ratio (BCSR) concept hypothesizes that cations and acidi‐
ty exchanging on soil cation exchange capacity (CEC) can be optimized for crop growth [12].
However, the BCSR has been criticized for its elusive definition of ‘ideal’ cationic ratios [21,
22]. In plant nutrition, [23] were the first to represent geometrically interactions between nu‐
trients by a ternary diagram where one nutrient can be computed by difference between
100% and the sum of the other two. As a result, there are two degrees of freedom in a terna‐
ry diagram. One may also derive three dual ratios from K, Ca, and Mg but only two ratios
are linearly independent because, for example, K/Mg can be computed from K/Ca × Ca/Mg
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and is thus redundant. Therefore, a ratio approach conveys D-1 degrees of freedom or line‐
arly independent balances for a D-part composition [24].

In contrast, there are D×(D-1)/2 dual ratios such as the K/Mg ratio and D×(D-1)²/2 two-com‐
ponent amalgamated ratios such as the K/(Ca+Mg) ratio that can be derived from a D-part
composition. Most information on dual and two-component amalgamated ratios is thus re‐
dundant and the dataset is artificially inflated. In Figure 1, the number of (a) dual and (b)
two-component amalgamated ratios is plotted against the number of components. With 10
components, one may compute up to 45 dual and 405 two-component amalgamated ratios,
hence generating a “redundancy bubble” that inflates exponentially above D. [25] elaborat‐
ed the Diagnosis and Recommendation Integrated System (DRIS) to synthesize the D×
(D-1)/2 dual ratios into D nutrient indices adding up to zero; therefore, there is still one re‐
dundant index closing the system to zero and computable from other indices. Applying
Ockham’s razor law of parsimony to compositional data, nine degrees of freedom suffice to
fully describe a 10-part composition without bias [24].

Figure 1. Number of (a) dual and (b) two-component amalgamated ratios illustrating the redundancy bubble.

To solve problems related to nutrient diagnosis in soil and plant sciences, one must first rec‐
ognize that soil and plant analytical data are most often compositional, i.e. strictly positive
data (concentrations, proportions) related to each other and bounded to some whole [26].
Compositional data have special numerical properties that may lead to wrong inferences if
not transformed properly. Log-ratio transformations have been developed to avoid numeri‐
cal biases [26, 29, 30, 31]. The balance concept presented in this chapter is based on log ratios
or contrasts. Balances are computed rather simply from compositions using the isometric
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log-ratio (ilr) transformation developed by [27]. In the literature, the nutrient balance often
refers to a nutrient budget that measures the depletion or accumulation of a given nutrient
in soils [28], implying exchange between compartments of some whole. In this chapter, nu‐
trient balance is defined as dual or multiple log ratios between nutrients, implying balance
between components of the same whole.

The aim of this chapter is to introduce the reader to the balance concept as applied to soil
fertility studies. The first section of this chapter presents the theory common to the three
subsequent subjects, which are cationic balance in soils, plant nutrient signatures and miner‐
alization of organic residues. It is suggested that the reader gets familiar with the theory be‐
fore browsing through the subject of interest.

2. Theory of CoDa

Because a change in any proportion of a whole reverberates on at least one other proportion,
proportions of components of a closed sum (100%) are interdependent. Therefore, a compo‐
sitional vector is intrinsically multivariate: its components cannot be analyzed and interpret‐
ed without relating them to each other [32,33]. Compositional data (CoDa) induce numerical
biases, such as self-redundancy (one component is computable by difference between the
constrained sum of the whole and the sum of other components), non-normal distribution
(the Gaussian curve may range below 0 or beyond 100% which is conceptually meaningless)
and scale dependency (correlations depend on measurement scale). Redundancy can be con‐
trolled by carefully removing the extra degree of freedom in the D-part composition. Scale
dependency is controlled by ratioing components after setting the same scale (e.g. fresh
mass, dry mass or organic mass basis) or unit of measurement (e.g. mg kg-1, g dm-3, cmolc

kg-1, etc.) across components. Compositional datasets constrained to a closed space between
0 and 100% are amenable to normality tests after projecting them into a real space using log-
ratio transformations.

One of the log ratio transformations is the centered log ratio (clr) developed by [26]. The clr
is a log ratio contrast between the concentration of any nutrient and the geometric mean
across the compositional vector. [34] used the clr to convert DRIS into Compositional Nu‐
trient Diagnosis (CND-clr), hence correcting inherent biases generated by DRIS. [35] and [36]
modeled the time change of ion activities in soils and nutrient solutions using clr. However,
because clr generates a singular matrix (the clr variates sum up to 0), one clr value should be
removed (e.g. that of the filling value) in multivariate analysis. In addition, outliers may af‐
fect considerably log ratios [32]. The diagnostic power of CND-clr is decreased by large var‐
iations in nutrient levels (e.g. Cu, Zn, Mn contamination by fungicides) that affect the
geometric means across concentrations. Nevertheless, the clr transformation is useful to con‐
duct exploratory analyses on compositional data [37].

The additive log ratio or alr [26] computed as ln(x/xD) is the ratio between any component x
and a reference component xD. [17] used nitrogen as reference component (N=100%) to pro‐
duce a stoichiometric N:P:K:Ca:Mg rule for adjusting nutrient needs of tree seedlings. If a
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tissue contains 2.50% N and 0.15% P, the Redfield N/P ratio [38] is 16.7 and the correspond‐
ing alr [P/N] value is ln(0.15/2.50) = -2.81. Other stoichiometric rules have been proposed
such the C:N:P:S rule for humus formation [4]. There are D-1 alr variables in a D-part com‐
position because one component is sacrificed as denominator. The alrs are oblique to each
other and are thus difficult to rectify and interpret [24]. Orthogonal balances are log ratio
contrasts between geometric means of two groups of components that are multiplied by or‐
thogonal coefficients to gain orthogonality [27]. Orthonormal balances are called ‘isometric
log ratios’ coordinates or ilr [27] and are illustrated by a mobile and its fulcrums (CoDa den‐
dogram) [37]. Balances are encoded in a device called sequential binary partition that order‐
ly allocates components to balance numerator and denominator or +/- sides of a contrast.
The ilr of groups of components is a thus rectified ratio between their geometric means. Bal‐
ances avoid matrix singularity and redundancy: there are D-1 independent balances in a D-
part composition. The orthonormal balance concept was found to be the most appropriate
technique in the multivariate [29] and multiple regression [39] analyses in geochemistry [40],
plant nutrition [34, 35, 36, 41, 42], the P cycle [43], and soil quality [44, 45].

2.1. From CoDa to sound balances

The sample space of a compositional vector defined by SD is a strictly positive vector of D
nutrients adding up to some constant κ. The closure operation, �, computes the constant
sum assignment as follows :

S D =�(c1, c2, …, cD)=
c1κ

∑
i=1

D
ci

,
c2κ

∑
i=1

D
ci

, …,
cDκ

∑
i=1

D
ci

(1)

Where ∑
i=1

D
ci closes the sum of components to some whole such as 1, 100%, 1000 g kg-1, which

allows computing a filling value to the unit of measurement. In other cases where the data
do not add up to the measurement unit such as mg dm-3 or mg L-1, the measurement unit
just cancels out when components are ratioed.

In general, raw or log-transformed concentration data are analyzed statistically without any
a priori arrangement of the data. The analyst not only processes such data through a numeri‐
cally biased procedure, but also relies on a cognitively unstructured path that returns un‐
structured results that are barely interpretable (Figure 2).

Fortunately, recent progress in compositional data analysis provides means to elaborate
structured pathways and interpret results coherently [27]. Indeed, the ilr technique trans‐
forms a D-part composition into D-1 pre-defined orthogonal balances of parts projected into
a real Euclidean space [24]. Orthogonality is a special case of linear independence where
vectors fall perfectly at right angle to each other [46]. The balances can thus be analyzed as
additive (undistorted) variables in the Euclidean space, hence without bias. The log ratio of
X/Y is also called a log contrast between X and Y because log(X/Y) = log(X) – log(Y). A log
ratio can scan the real space (±∞) because ratios may range from large numbers (positive log
values) to small fractions (negative log values).
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Figure 2. Unstructured or knowledge-based (structured) pathways of compositional data analysis lead to numerically
biased and unbiased interpretations, respectively.

Balances can be illustrated by a CoDa dendrogram [37] where components or groups of
components are balanced by analogy to a mobile and its fulcrums (Figure 3). Each part has
its own weight and the balance between parts or groups of parts are the fulcrums (boxplots)
equilibrating the system and computed as ilr. It can be shown that a relative increase in Ca
concentration will change the [Ca | Mg] balance and [N,P,K | Ca, Mg] balances without af‐
fecting the ([N,P | K] and [N | P]. Transforming compositions to functional balances does
not only create orthogonal real variables amenable to linear statistics; it also creates new var‐
iables whose interpretation is also of interest. Thus the interpretation of relationships be‐
tween nutrients depends on how balances are conceived using the best science and
management options. For example, another balance setup could be defined as [N,P | K, Ca,
Mg], [N | P], [K | Ca, Mg] and [Ca | Mg].

A CoDa dendrogram (e.g. Figure 3) is interpreted as follows:

• Each fulcrum represents a balance. There are 4 balances for 5 components in Figure 3.

• If the fulcrum lies in the center of the horizontal bar, the balance is null. If it lies on the left
side of the center, the mean balance is negative and left-side components occupy a larger
proportion in the simplex. A fulcrum on the right side indicates a positive balance.

• Rectangles located on fulcrums are boxplots.

• The length of vertical bars represent the proportion of total variance

Nested balances are encoded in an ad hoc sequential binary partition (SBP) that nurtures the
ties between groups of components. A SBP is a (D-1)×D matrix, where parts labelled “+1”
(group numerator) are balanced with parts labelled “-1” (group denominator) in each or‐
dered row. A part labelled “0” is excluded. The composition is partitioned sequentially at
every ordered row into 2 contrasts until (+1) and (-1) subcompositions each contain a single
part. The analyst can use exploratory analysis [37] or refer to current theory and expert
knowledge to design the balance scheme. The CoDa dendrogram in Figure 3 is formalized
by the SBP in Table 1.

Nutrient Balance as Paradigm of Soil and Plant Chemometrics
http://dx.doi.org/10.5772/53343

87



Figure 3. Balances between N, P, K, Ca, and Mg (five weight variables) are illustrated by a mobile and its fulcrums (four
balance variables) where N, P, and K are contrasted with Ca and Mg, N and P with K, N with P, and Ca with Mg.

Binary partiton Balance between groups of components r s ilr computation

N P K Ca Mg

[N,P,K | Ca,Mg] +1 +1 +1 -1 -1 3 2 3x2
3 + 2 ln( (NxPxK )1/3

(CaxMg )1/2 )
[N,P | K] +1 +1 -1 0 0 2 1 2x1

2 + 1 ln( (NxP )1/2

K )
[N | P] +1 -1 0 0 0 1 1 1x1

1 + 1 ln( N
P )

[Ca | Mg] 0 0 0 +1 -1 1 1 1x1
1 + 1 ln( Ca

Mg )

Table 1. Sequential binary partition defining macronutrient balances.

In Table 1, the sequential binary partition of nutrients encodes the balances between two
geometric means across the + components at numerator and the – components at denomina‐
tor. The orthogonal coefficient of a log contrast is computed from the number of + and –
components in each binary partition. The balances between two subcompositions are or‐
thogonal log ratio contrasts between geometric means of the “+1” and “-1” groups. The jth ilr
coordinate is computed as follows [24]:

ilr j = rs
r + s ln

g (c+)
g (c-)  ,  with j =  1,  2,  …,  D - 1  (2)
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Where ilrj is the jth isometric log-ratio; g(c+) is geometric mean of components in group “+1”,
c+; and g(c-) is the geometric mean of components in group “-1”, c-. Because dual ratios are
nested into g(c+) and g(c-), the balances avoid generating redundant ratios. The orthogonal

coefficient is computed as rs / (r + s) [27]. For example, a Redfield N/P ratio of 16.7 is con‐
verted to ilr as 1x1 / (1 + 1)ln (16.7)=2.02. The ilr technique is thus not only mathematically
elegant, but is also conceptually meaningful.

2.2. Dissimilarity between compositions

As a result of orthogonality, the Aitchison distance (�) between any two compositions is
computed as a Euclidean distance across the selected ilr coordinates as follows [47]:

�= ∑
j=1

D-1 (ilr j - ilr j
* )2 (3)

Where ilrj is the jth ilr of a given composition and ilrj
* is the corresponding ilr for the refer‐

ence composition. Selecting alternative SBPs to test and interpret other balances in the sys‐
tem under study just rotates the orthogonal axes of the ilr coordinates without affecting �.
The Aitchison distances computed across ilr or clr values are identical [24]. [34] rectified
DRIS to fit into clr. As computed from dual ratios and nutrient indices [13] and using the
same reference population as reference for computing the Aitchison distance, the DRIS nu‐
trient imbalance index appeared to be slightly distorted and noisy (Figure 4). Tissue analy‐
ses in Figure 4 were obtained from a survey across guava (Psidium guajava) orchards in the
state of São Paulo, Brazil. Noise and distortion between results observed in Figure 4 is attrib‐
utable to numerical biases in DRIS results.

On the other hand, the Euclidean distance (ℰ) based on log transformations is biased by the
difference between the geometric means times the number of parts as follows [48]:

ℰ2(ln (x),  ln(y))=�2 + D(ln g (x)
g (y) )2≥�2 (4)

In plant nutrition studies [49], the Mahalanobis distance (ℳ) may be preferred to the Eucli‐
dean distance because the former takes into account the covariance structure of the data [29]
(as illustrated in Figure 5) and has χ 2 distribution [50,51]. The M2 is computed as follows:

ℳ2 =  (x - x̄)T ×COV -1(x - x̄)   (5)

Where x̄ is the mean and COV is the covariance matrix. Both � and ℳ computed across
log-transformed data are higher than their counterparts computed across balances, indicat‐
ing systematic upper bias using natural log compared to ilr transformations (Figure 6). Tis‐
sue analyses in Figure 6 were obtained from the same guava orchard survey as above.
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Figure 4. Distance from a reference composition computed using DRIS versus the Aitchison distance.

Figure 5. The Euclidean distance is circular while the Mahalanobis distance (M) is elliptical. The blue ellipse represents
a line of equidistant points in terms of M that scales data to the variance in each direction. The M between green
points and the center are equal. However, the Euclidean distance between each green point and the center is differ‐
ent, as shown by the Euclidean equidistance pink circles.
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2.3. Cate-Nelson analysis

The Cate-Nelson procedure was developed as a graphical technique to partition percentage
yield (yield in control divided by maximum yield with added nutrient) versus soil test [52].
The scatter diagram is subdivided into four quadrants to determine a critical test level and a
critical percentage yield by maximizing the number of points in the + quadrants. This techni‐
que is analog to binary classification tests widely used in medical sciences [53] where data
each quadrant are interpreted as true positive (correctly diagnosed as sick), false positive
(incorrectly diagnosed as sick), true negative (correctly diagnosed as healthy) and false neg‐
ative (incorrectly diagnosed as healthy). Applied to soil fertility studies, we can define four
classes as follows:

• True positive (TP: nutrient imbalance): imbalanced crop (low yield) correctly diagnosed
as imbalanced (above critical index).

• False positive (FP: type I error): balanced crop (high yield) incorrectly identified as imbal‐
anced (above critical index). FP points indicate luxury consumption of nutrients.

• True negative (TN: nutrient balance): balanced crop (high yield) correctly diagnosed as
balanced (below critical index).

• False negative (FN: type II error): imbalanced crop (low yield) incorrectly identified as
balanced (below critical index). FN points show impacts of other limiting factors.

The performance of the test is measured by four indices:

• Sensitivity: probability that a low yield is imbalanced as TP/(TP+FN)

• Specificity: probability that a high yield is balanced as TN/(TN+FP)

• Positive predictive value (PPV): probability that an imbalance diagnosis returns low yield
as TP/(TP+FP)

• Negative predictive value (NPV): probability that a balance diagnosis returns high yield
as TN/(TN+FN)

The performance of the binary classification test is higher when the four indexes get closer
to unity. However, the maximization of the four indexes may not be the most appropriate
procedure. Indeed, agronomists are more interested in high PPV than in high specificity.

Using the Cate-Nelson graphical procedure, the TN specimens are selected as reference pop‐
ulation after removing outliers. If the number of points is too large, yields are arranged in an
ascending order and a two-group partition is computed. The sums of squares between two
consecutive groups of observations are iterated as follows:

Class sum of squares =
(∑

j=1

n1
Y 1 j)2

n1
+

( ∑
j=1+n1

n
Y 2 j)2

n2
-

(∑
j=1

n
Y j)2

n
(6)

Nutrient Balance as Paradigm of Soil and Plant Chemometrics
http://dx.doi.org/10.5772/53343

91



Where Y1 j is class 1 yields starting with the two lowest soil indices; the remaining yields are
in class 2 or Y2 j; and n1, n2 and n are the numbers of observation in class 1, class 2 and across
classes, respectively. The last member of the equation is the correction factor. The starting
values for maximization of the sums of squares across � or ℳ could be the ilr means of the
upper 20 top specimens [54]. Due to yield variations between production years, the upper
quartile of higher yield standardized by year of production is an additional option. Because
the iterative procedure is very sensitive to extreme values, an a posteriori visual adjustment
may be necessary to maximize the number of points in opposite quadrants.

Figure 6. Relationships between the Euclidean, Aitchison and Mahalanobis distances.
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2.4. Statistics

In this chapter, statistics computed across compositional data were performed in the R stat‐
istical environment [55]. Compositional data analysis was conducted using the R “composi‐
tions” package [56]. Data distribution was tested using the Anderson-Darling normality test
[57] in the “nortest” package [58]. Multivariate outliers were removed using ℳ computed in
the R “mvoutlier” package [59]. Linear discriminant analysis (LDA) was used as a statistical
ordination technique that allows computing linear combinations of variables that best dis‐
criminate groups. Multiple regression analysis was conducted using ilr [39] and compared
to raw data. After completing the statistical analysis, the balances could be back-trans‐
formed to the familiar concentration units using the D-1 ilr values and the sum constraint.

3. Cationic balances in tropical soils

3.1. Sequential binary partition

The percentage base saturation is the proportion of soil cation exchange capacity (CEC) oc‐
cupied by a given cation. The soil compositional vector is defined as follows [12]:

S 4 =�(K ,  Ca,  Mg ,  H + Al) (7)

As illustrated in Figure 7, the first contrast, [K | Ca, Mg, H+Al], balances the K against diva‐
lent cations and acidity to enable adjusting the K fertilization to soil basic acid-base condi‐
tions as modified by liming.

The second contrast [Ca, Mg | H+Al] is the acid-base contrast for determining lime require‐
ments while the [Ca | Mg] balance reflects the Ca:Mg ratio in soils adjustable by the liming
materials. Alternative SBPs could also be elaborated such as [K, Ca, Mg | (H+Al)], [K | Ca,
Mg] and [Ca | Mg] balances that reflects the BCSR model of [12]. The selected sequential
binary partition for cationic balances is presented in Table 2.

For example, if a soil contains 2.9 mmolc K dm-3, 20 mmolc Ca dm-3, 5 mmolc Mg dm-3, and 23
mmolc H+Al dm-3. Cationic balances are computed as follows:

(1) K |Ca, Mg , H + Al = 1x3
1 + 3 ln( 2.9

20x5, x3 23) )= - 1.312;

(2) K |Ca, Mg = 1x2
1 + 2 ln( 2.9

20x5
)= - 1.011;  and

(3) Ca |Mg = 1x1
1 + 1 ln( 20

5 )=0.980.

Note that the K fertilization would depend on soil acidity as well as levels of exchangeable
Ca and Mg in the soil. We thus expect the K index and the K balance to be similarly related
to fruit yield if the ceteris paribus assumption applies to exchangeable Ca, Mg, and acidity in
this soil-plant system.
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Figure 7. The cationic balances in soils can be designed to facilitate K fertilization and lime management. Each bal‐
ance between two groups of ions is computed as isometric log ratio.

Partition Cationic balances r s ilr formulation

K Ca Mg H+Al

1 1 -1 -1 -1 3 1 1x3
1 + 3 ln( K

CaxMg , x(H + A3 l ) )

2 1 -1 -1 0 1 2 1x2
1 + 2 ln( K

CaxMg
)

3 0 1 -1 0 1 1 1x1
1 + 1 ln( Ca

Mg )

Table 2. Sequential binary partition of soil cationic data

3.2. Datasets

Changes in soil  cationic balances were monitored in N and K fertilizer trials established
on an epieutrophic and endodystrophic soil  (Red-Yellow Oxisol)  [60] at  São Carlos (São
Paulo, Brazil). One year old plants of ‘Paluma’ guava (Psidium guajava) were planted. The
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experiment lasted 3 yr. The N treatments in the 1st year were 0, 30, 60, 120, 180, 240 and
300 g N tree-1 supplemented with 52 g P tree-1 and 52 g K tree-1. The initial N rates were
doubled and tripled in the 2nd and 3rd years, respectively. The initial P and K doses were
doubled the 2nd year. The 3rd year, rates were 240 g P2O5 tree-1 and 360 g K2O tree-1. Fertil‐
izers  were  ammonium nitrate  (34% N),  simple  superphosphate  (8.7% P)  and potassium
chloride (50% K). In the K trial, K was added as KCl at rates of 0, 25, 50, 100, 150 and 200
and 250 g K tree-1  the 1st  year and supplemented with 120 g N tree-1  as ammonium sul‐
fate (20% N) and 52 g P tree-1  as triple superphosphate (19% P).  The N, P,  and K rates
were  doubled in  the  2nd  year.  The  K rates  were  tripled  the  3rd  year  and supplemented
with 360 g N tree-1  and 105 g P tree-1.  The acidifying ammonium fertilizers may increase
exchangeable acidity in both trials.  The fertilizers were broadcast around the tree 40 cm
from crown projection. Each plot comprised four trees each covering an area of 7 m x 5
m, for  a  total  of  286 trees ha-1.  The experimental  setup was a  randomized block design
with four replications.  Fresh fruit  yields were measured 1-3 times wk-1  from January to
June, starting approximately 97 d after fruit set.

Soils were sampled annually after harvest at four locations per tree in the 0-20 cm and 20-40
cm layers where most of the root system is located, then composited per plot. Soil samples
were air dried and analyzed for K, Ca, Mg and (H + Al) [61]. The K, Ca and Mg were extract‐
ed using exchange resins, quantified by atomic absorption spectrophotometry and reported
as mmolc dm-3. Exchangeable acidity (H+Al) was quantified by the SMP pH buffer method
[62] and computed using the equation of [63] to convert buffer pH into mmolc (H+Al) dm-3

as follows:

(H + Al)=10exp (7.76 + 1.053pH SMP),  R² =0.98 (8)

Cation exchange capacity (CEC) was computed as the sum of cationic species. Assuming a
soil bulk density of 1 kg dm-3, CEC averaged 5.4 cmolc kg-1.

3.3. Results

3.3.1. Influence of the K fertilization on cationic balances in soil

As shown by scatter and ternary diagrams (Figure 8), the large ellipses, that represent the
distribution of cationic balances in the 0-20 and 20-40 cm layers, overlapped. However, the
small ellipses (Figure 8) representing the confidence region about means differed signifi‐
cantly. The [K │ Ca, Mg, H+Al] balance was higher in the 0-20 cm layer, indicating that
more K accumulated in the surface layer as a result of surface K fertilizer applications.

Soil test K and cationic balances were averaged between the beginning and the end of the
growing season to represent average soil conditions. The soil indices were related to fresh
fruit yield (Figures 9a and 9b). In Figure 9, data are means of 4 replicates and bars are least
significant differences.

Nutrient Balance as Paradigm of Soil and Plant Chemometrics
http://dx.doi.org/10.5772/53343

95



 (a) 

(b) 

Figure 8. The K accumulated relatively more on the 0-20 cm layer following three years of K fertilization as shown by
(a) two orthonormal cationic balances and (b) a K-Ca-Mg ternary diagram.
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 (a) 

(b) 

Figure 9. Exchangeable K (a), the [K | Ca,Mg,H+Al] balance (b) and fruit yield increased with added K. Other cationic
balances did not change markedly.

3.3.2. Critical soil K concentration and balance in the N and K trials

The Cate-Nelson partitioning of the relationship between guava fresh fruit yield and either soil
K level or the [K | Ca, Mg, (H+Al)] balance across the combined N and K fertilizer experiments
indicates that the K level index classified two specimens as TN compared to four for the K bal‐
ance index (Figure 10). The graphical representation of this soil-plant relationship indicates di‐
agnostic advantage to using the K nutrient balance in rather than the K concentration.
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The sensitivity, specificity, PPV and NPV criteria are presented in Table 3. We expect perform‐
ance criteria to be at least 80%. Low specificity indicates that some interactions with K leading
to high yield, possibly involving Ca and Mg, have been ignored. Apparently, the ceteris paribus
assumption did not apply to this study. The fact that the balance allows to adjust the K to other
cationic species may account for failure to meet the ceteris paribus assumption.

 (a) 

(b) 

Figure 10. Cate-Nelson partitioning of the relationship between guava fresh fruit yield. critical values were (a) 1.2
mmolc K dm-3. TN = 2; FN = 0; TP = 11; FP = 1 and (b) -2.07. TN = 4; FN = 0; TP = 9; FP = 1.
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Soil K index Sensitivity =

TP/(TP+FN)

Specificity = TN/(TN+FP) Positive

predictive value =

PPV=TP/(TP+FP)

Negative predictive

value = NPV=TN/(TN+FN)

%

K level 100.0 66.7 91.7 100.0

K balance 100.0 80.0 90.0 100.0

Table 3. Performance of K indices in terms of sensitivity, specificity, PPV and NPV

4. Multi-element Balances in plant nutrition

4.1. Sequential binary partition

Plant nutrients are classified as essential macronutrients measured in % (N, S, P, Mg, Ca, K,
Cl), essential micronutrients measured in mg kg-1 (Mn, Cu, Zn, Mo, B) and beneficial nu‐
trients generally measured in mg or μg kg-1 but occasionally in % (Si, Na, Co, Ni, Se, Al, I, V)
[64, 65, 15]. The plant ionome is defined as elemental tissue composition as related to the
genome [66]. A subcomposition of plant ionome could be defined by the following simplex
for conducting statistical analysis:

S D =�(C , N , P , K , Ca, Mg , B, S , Cl , Cu, Zn, Mn, Fe, Mo, F v) (9)

Where Fv is the filling value between 1000 g kg-1 and the sum of analytical data and D = 15,
the total number of components including Fv. An SBP scheme can be elaborated based on
well documented roles and stoichiometric rules provided by [17, 14, 12], who reported a
large number of dual and multiple nutrient interactions in plants such as:

• Macronutrients have a stoichiometric relationship with carbon uptake;

• N with S, P, K, Ca, Mg, Fe, Mn, Zn, and Cu;

• NH4 with K, Ca, and Mg;

• S with N, P, Fe, Mn, Mo;

• P with N, K, Ca, Mg, B, Mo, Cu, Fe, Mn, Al, and Zn;

• Cl with N and S;

• K with N, P, Ca, Mg, Na, B, Mn, Mo, and Zn;

• Ca with N, K, Mg, Na, Cu, Fe, Mn, Ni, and Zn;
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• Mg with N, P, B, Fe, Mn, Mo, Na, and Si;

• B with N, P, K, and Ca;

• Cu with N, P, K, Ca, Fe, Mn, and Zn;

• Fe with N, P, Ca, Mg, Cu, Mn, Co, and Zn;

• Zn with N, P, K, Ca, Mg, S, Na, Zn, Fe, and Mn;

• Mn with N, P, K, Ca, Mg, B, Mo, Ni, and Zn;

• Mo with N, P, K, S, Fe, and Mn.

4.2. Datasets

The tissue composition can be altered by environmental and seasonal factors. A dataset of
1909 potato (Solanum tuberosum L. cv. ‘Superior’) yields and ionomes was collected at five
developmental stages between 1987 and 2002 in Quebec, Canada. The first mature leaf from
top was sampled at 20-cm height (n = 502), bud stage (n = 544), beginning of flowering (n =
587), full bloom (n = 213) and fast tuber growth (n = 63) and analyzed for N, P, K, Ca, and
Mg. The plant nutrient signatures at each developmental stage were compared using box‐
plots and discriminant analysis.

A critical hyper-ellipsoid can be viewed as a particular zone of the nutrient balance space
where the probability to obtain high yield is high enough to satisfy the practitioner. The
points lying inside the hyper- ellipsoid would be qualified as “balanced”, and those lying
outside the multi-dimensional construct, as “imbalanced”. The practitioner might delineate
intermediate zones if needed. Fertilizer trials were conducted to monitor balance change to‐
ward optimum nutrient conditions defined by the critical ellipses. In a P trial, P treatments
applied to a P deficient soil were 0, 33, 66, 98 and 131 kg P ha-1. In a K trial, K treatments of 0,
50, 100 and 150 kg K ha-1 were applied to a K deficient soil. The diagnostic leaf of potato was
sampled at the beginning of flowering [67].

4.3. Seasonal change in nutrient compositions

The boxplots and the CoDa dendrogram illustrate the center and dispersion of nutrient bal‐
ances per development stage (Figure 11). The [N, P, K | Ca, Mg] balance tended to decrease
markedly during the season while the [N | P] and [Ca | Mg] balances tended to increase,
and the [N,P | K] balance tended to decrease. The fast decrease in [N,P,K | Ca, Mg] balance
is attributable to more N, P and K than Ca and Mg being transferred toward growing leaves
during exponential growth and toward tubers during maturation. The K was more affected
than N and P.

The discriminant scores (dots) and eigenvectors, as well as confidence regions at 95% lev‐
el delineated the distributions of populations (large grey ellipses) and means (small color
colored ellipses) across stages of plant development (Figure 12). The first axis, dominated
by the Redfield [N | P] balance followed by the [N, P, K | Ca, Mg] balance, captured 92%
of total inertia. It is noteworthy that the nutrient balance changed orderly from one devel‐
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opmental to the other. The ilrs can thus be described by trend equations and sample com‐
position be detrended toward a specific developmental stage for diagnostic purposes. The
seasonally increasing N/P ratio may indicate possible N or P imbalance at some point in
time assuming a stationary N:P stoichiometric rule. However, the N/P ratio was found to
vary  widely  between  plant  species  during  plant  development,  depending  on  relative
growth rates [38]. The Redfield N/P ratio in eukaryotic microbes is a balance between two
fundamental processes, protein and rRNA synthesis, resulting in a stable biochemical at‐
tractor toward a given protein: to RNA ratio [68]. The N/P ratio of plant biomass is used
as indicator of N or P limitation but critical N/P ratios change with age and function of
tissues  [38].  Immature  leaves  of  young  plants  assimilate  and  grow  simultaneously  and
their demand for N and P follows the stoichiometryic rules of basic biochemical process‐
es such as photosynthesis, respiration, protein synthesis, DNA duplication and transcrip‐
tion; growth becomes restricted to active meristems such as young leaves, shoot tips and
inflorescences when plants get older [38]. Mature leaves are still photosynthetically active
but no longer grow, which greatly reduces the P requirements for RNA and increases the
N/P ratio. Nucleic-acid P can be mobilized from older leaves and transferred to younger
leaves, leading to higher N/P ratios in older leaves [69], such as the first mature leaves of
potatoes used as diagnostic tissue [67].

 

(b) (a) 

Figure 11. The (a) boxplots and (b) coda dendrogram of the four balances for five development stages.
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Figure 12. Discriminant analysis shows that nutrient balance changes orderly between the early and late develop‐
mental stages.

4.4. Defining reference balances for diagnostic purposes

The confidence region of optimum nutrition was defined by a 4-dimensional hyper-ellipsoid
(Figure 13).

 

(b) (a) 

Figure 13. The ellipses define the optimum conditions of potato nutrition as found in surveyed high-yield potato
stands (95% confidence regions about mean) illustrated as (a) balances and (b) scaled and centered concentrations.
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The green and red points in Figure 13 represent specimens showing balanced and imbal‐
anced nutrition, respectively. The fertilization of the potato should move nutrient signature
toward the hyper-ellipsoid center. Added P perturbed the internal nutrient balance of cv.
‘Superior’ growing on a P deficient soil (Figure 14). The P trial showed that an addition of 98
kg P ha-1 allowed the balance to penetrate into the critical ellipse.

 

(b) (a) 

Figure 14. The P treatments applied to a P-deficient soil at rates of 0, 33, 66, 98 and 131 kg P ha-1 (rates increasing as
red circles enlarged) perturbed the potato ionome that moved toward the critical ellipse. The ternary diagram scaled
on proportions on the left (A) was centered and rescaled on the right (B) for better appreciation of the shape of the
ellipse and the trend of the fertilization effect.

In Figure 15, it can be observed that added K also perturbed the nutrient balance: the potato
ionome moved toward the critical ellipse. The 2nd K rate moved the K deficient plant ionome
closer to the critical ellipse, but Ca shortage maintained the crop outside the critical ellipse.
From the second application rate up, the perturbation was small. In this case, the Ca was
likely to be the most limiting nutrient as shown on the ternary diagram.

The perturbation on 5 nutrients can be illustrated by a matrix of ternary diagrams (Figure
16). These diagrams show 2 nutrients and an asterisk (*) representing the sum of the 3 other
components. The central dot is the mean of high yielders surrounded by its 95% confidence
region represented by a black line.
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(b) (a) 

Figure 15. Ternary diagrams showing K treatments applied to a K-deficient soil at rates of 0, 50, 100 and 150 kg K ha-1

(rates increasing as red circles enlarged (a) zoomed on proportions and (b) centered and scaled.

Figure 16. General view of plant ionomes in P and K deficient soils moving toward the reference ellpse for highly pro‐
ductive agroecosystems as P (blue) and K (red) fertilizers are added.
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5. Compositional modeling of C mineralization of organic residues in
soils

The carbon, nitrogen, phosphorus and sulfur cycles are interconnected in agroecosystems
and often expressed using stoichiometric rules [4]. The ratio between total C and total N is
the most simplified rule used in C mineralization studies but the Corganic/Norganic and lignin/
Norganic ratios are also common. However, several biochemical components of organic matter
are omitted in most studies, resulting in loss of information on the system. There are few
studies on the relationship between labile or recalcitrant C and the biochemical composition
of organic residues added to soil. [70] analyzed ash and N contents as well as four C frac‐
tions in organic residues representing pools of increasing resistance to decomposition. In
this section, we related labile C in organic residues to this 6-part compositional vector of or‐
ganic residues. The components were expressed as fractions on dry weight basis to compute
a biological stability index using multiple linear regression models. The compositional vec‐
tor was defined as follows:

S 6 =�(SOL , HEM , CEL , LIG, N , Ash ) (10)

Where SOL = soluble matter, HEM = hemicellulose, CEL = cellulose, L IG= lignin, and N =
total nitrogen.

Because scale dependency induces spurious correlations [71, 72, 73] and linear regression
models are solved based on correlations between variables, the interpretation of regression
coefficients is scale-dependent. To illustrate the problem of spurious correlations, chemical
fractions were scaled on organic mass basis and analyzed using multiple linear regression.

The balance scheme reflected the C/N ratio and the order of decomposability of biochemical
components (Figure 17). The SOL fraction was isolated from other biochemically labile frac‐
tions because its composition is complex, possibly including sugars, amino-sugars, amino-
acids, and polypeptides as well as more recalcitrant or bacteriostatic easily solubilized
polyphenols such as fulvic acids, tannic substances, resins, intermediate products, etc. The
balance scheme was formalized by SBP as shown in Table 4.

Ilr balance SOL HEM CEL LIG Total N Ash r s

[SOL,HEM,CEL,LIG,N | Ash] 1 1 1 1 1 -1 5 1

[SOL,HEM,CEL,LIG | N] 1 1 1 1 -1 0 4 1

[SOL,HEM,CEL | LIG] 1 1 1 -1 0 0 3 1

[SOL | HEM,CEL] 1 -1 -1 0 0 0 1 2

[HEM | CEL] 0 1 -1 0 0 0 1 1

Table 4. Sequential binary partition of the biochemical composition of organic residues in Thuriès et al. (2002)
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Figure 17. Graphical representation of the balances for the sequential binary partition defined in Table 3. SOL = solu‐
ble matter, HEM = hemicellulose, CEL = cellulose, LIG = lignin, N = total nitrogen, and ash.

The linear regression models relating labile C to bio-chemical fractions or balances showed
R2 values between 0.86 and 0.92 (Figure 18). For the 6-part (dry mass basis) and 5-part (or‐
ganic matter basis) models, variation in labile C mesaured as evolved CO2 was explained in
part by total N and SOL as follows:

Clabile =0.0773 + 0.5202SOL - 0.2515HEM - 0.3372CEL - 0.2882LIG + 2.3884N total (11)

Clabile = - 0.1776 + 0.5585SOL + 0.1909HEM + 2.0187N total (12)

However, Equations 11 and 12 were subcompositionally incoherent. The intercept and the β
coefficient for HEM showed opposite signs in equations 11 and 12 while CEL and LIG were
absent in Equation12. This incoherence is attributable to spurious correlations (Table 5).
Pearson correlation coefficients among raw proportions were not consistent in terms of val‐
ue, significance or sign whether the proportions were expressed on the dry mass of the or‐
ganic product (including ash) or on organic matter (LOI) basis.
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Figure 18. Regression analysis of C mineralization on dry matter (six raw components) or organic matter (five compo‐
nents) basis and using balances that reflects the order of decomposability of b

Component SOL HEM CEL LIG Ash

Pearson correlation coefficient

Dry matter basis (including ash)

Total N 0.241 0.354 -0.462 -0.320 -0.184

SOL -0.115 -0.232 -0.669 -0.027

HEM -0.292 -0.293 -0.340

CEL 0.465 -0.495

Organic matter basis (loss on ignition)

Total N 0.466 0.067 -0.637 -0.475 -

SOL -0.194 -0.425 -0.756 -

HEM -0.409 -0.383 -

CEL 0.376 -

SOL = soluble substances; HEM = hemicelluloses; CEL = cellulose; LIG = lignin and cutin

Table 5. Scale dependency of the correlations between biochemical components in Thuriès et al. (2002); for 17
observations, r = 0.468 at P = 0.05 and r = 0.590 at P = 0.01
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On the other hand, the labile C pool was largely explained by the ilr balances between C
sources and total N, a surrogate of the C/N ratio, the balance between labile and refractory C
sources, and between two labile C pools, one being more labile (HEM) than the other (CEL).
The equation was as follows:

Clabile =0.3065 - 0.1251 SOL .HEM , CEL , LIG | N + 0.0301 SOL , HEM , CEL | LIG
+0.0019 SOL | HEM , CEL - 0.1063 HEM |CEL

(13)

Equation 13 shows that labile C increases with total N and higher proportions of more labile
over more recalcitrant C forms. These findings indicate that the ilr coordinates provide a co‐
herent interpretation of the C dynamics of organic products. The ilrs are not redundant,
scale-invariant and free from spurious correlations.

6. Conclusions

This paper shows that the specific numerical properties of compositional data require log ra‐
tio transformations before conducting statistical analyses of soil and plant compositional da‐
ta. Compared to raw concentration data, the orthonormal balances can be interpreted
consistently and without numerical bias as isometric log ratio coordinates. The ilr approach
can provide unbiased indices of nutrient balance in soils and plant tissues, biological stabili‐
ty of organic residues and soil quality. Well supported by techniques developed by compo‐
sitional data analysts, the balance paradigm and the elaboration of its SBP schemes prompt
that many concepts inherited from the past centuries be debated and revisited in soil fertility
and plant nutrition.
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