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1. Introduction

An all-digital implementation of multicarrier modulation called discrete multitone (DMT)
modulation has been standardised for asymmetric digital subscriber line (ADSL), ADSL2,
ADSL2+ and VDSL [1]- [3]. ADSL modems rely on DMT modulation, which divides a
broadband channel into many narrowband subchannels and modulated encoded signals onto
the narrowband subchannels [4], [5]. With advanced digital signal processing algorithms,
DMT system is to fight the impairments for wired communications such DSL-based
technology. The major impairments such as the intersymbol interference (ISI), the intercarrier
interference (ICI), the channel distortion, echo, radio-frequency interference (RFI) and
crosstalk from DSL systems are induced as a result of large bandwidth utilisation over the
telephone line. However, the improvement can be achieved by the equalisation concepts.

ISI and ICI caused by the length of channel impulse response can be eliminated by the use
of cyclic prefix (CP) adding a copy of the last ν time-domain samples between DMT-symbols
at the part of transmitter. The conventional equalisation in DMT-based systems consists
of a (real) time-domain equaliser (TEQ) and the (complex) one-tap frequency-domain
equalisers [6]. For a more sophisticated equalisation technique, a frequency-domain equaliser
(FEQ) for each tone, called per-tone equaliser (PTEQ) has been introduced in order to give the
bit rate maximising compared with existing equalisation schemes [7], [8].

The basic structure of the DMT transceiver is shown in Fig.1. The incoming bit stream
is likewise reshaped to a complex-valued transmitted symbol for mapping in quadrature
amplitude modulation (QAM). Then, the output of QAM bit stream is split into N parallel
bit streams that are instantaneously fed to the modulating inverse fast Fourier transform
(IFFT). After that, IFFT outputs are transformed into the serial symbols including the cyclic
prefix between symbols and then fed to the channel. The transmitted signal sent over

© 2012 Sitjongsataporn; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



the channel with impulse response is generally corrupted by the additive white Gaussian
noise and near-end crosstalk. The received signal is also equalised by PTEQs without TEQ
concerned. The per-tone equalisation structure is based on transferring the TEQ-operations
into the frequency-domain after FFT demodulation, which results in a multitap PTEQ for
each tone separately. Then, the parallel of received symbols are eventually converted into
serial bits in the frequency-domain.
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Figure 1. Block Diagram of a Discrete Multitone System.

It is a well known issue that in DMT theory, there is no overlapping between tones due to
orthogonality derived from the discrete Fourier transformation among them. In practice,
frequency-selective fading channel generally destroys such orthogonal structure leading
to information interfering from adjacent tones as commonly known as ICI. In such case,
information supposedly belonging to a particular tone generally smear into adjacent tones
and leave some residual energy in them. The idea of a mixed-tone PTEQ for DMT-based
system has been proposed in [9]. By recovering adaptively the knowledge of residual
interfering signal energy from adjacent tones, the mixed-tone exponentially weighted least
squares criterion can be shown to offer an improved signal to noise ratio (SNR) of the tone
of interest.

In order to improve the convergence properties, the orthogonal gradient adaptive (OGA)
has been presented by introducing orthogonal projection to the filtered gradient adaptive
(FGA) algorithm. When the forgetting-factor is optimised sample by sample whereas a fixed
forgetting-factor is used for FGA algorithm [10]. A normalised version of the OGA (NOGA)
algorithm that has been introduced with the mixed-tone cost function and fixed step-size
presented in [11]. With the purpose of the good tracking behaviour and recovering to a
steady-state, it is necessary to let the step-size automatically track the change of system.
Consequently, the concept of low complexity adaptive step-size approach based on the FGA
algorithm is introduced for the per-tone equalisation in DMT-based systems in [12].

In this chapter, the focus is therefore to present low complexity orthogonal gradient-based
algorithms for PTEQ based on the adaptive step-size approaches related to the mixed-tone
criterion. The convergence behaviour and stability analysis of proposed algorithms will be
investigated based on the mixed-tone weight-estimated errors. The convergence analysis of
mechanisms will be carried out the steady-state and mean-square expressions of adaptive
step-size parameter relating to the mean convergence factor.
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2. System model and notation

In this section, the basic structure of the DMT transceiver is illustrated in Fig. 1. We describe
that the data model and notation based on an FIR model of the DMT transmission channel
is presented as [7]

y = H · X + n ,
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where l denotes as the first considered sample of the k-th received DMT-symbol. This
depends on the number of tap of equaliser (T) and the synchronisation delay (∆). The
vector yk,i:j of received samples i to j of k-th DMT-symbol is as yk,i:j = [yk,i · · · yk,j]

T . A

sequence of the N × 1 xk,N transmitted symbol vector is as xk,N = [xk,0 · · · xk,N−1]
T . The

size N is of inverse discrete Fourier transform (IDFT) and DFT. The parameter ν denotes
as the length of cyclic prefix. The matrices 0(1) and 0(2) are also the zero matrices of size

(N − l) × (N − L + 2ν + ∆ + l) and (N − l) × (N + ν − ∆). The vector h̄ is the h channel
impulse responce (CIR) vector in reverse order. The (N + ν)× N matrix Pν is denoted by

Pν =

[
0ν×(N−ν) Iν

IN

]

,

which adds the cyclic prefix. The IN is N × N IDFT matrix and modulates the input symbols.
The ηk,l+∆:N−1+∆ is a vector with additive white Gaussian noise (AWGN) and near-end
cross-talk (NEXT).

Some notation will be used throughout this chapter as follows: E{·} is the expectation
operator and diag(·) is a diagonal matrix operator. The operators (·)T , (·)H , (·)∗ denote
as the transpose, Hermitian and complex conjugate operators, respectively. The parameter k
is the DMT symbol index and Ia is an a× a identity matrix. A tilde over the variable indicates
the frequency-domain. The vectors are in bold lowercase and matrices are in bold uppercase.

3. Per-tone equalisation

In this section, we show the concept of per-tone equaliser (PTEQ). We refer the readers
to [7] for more details. The per-tone equalisation structure is based on transferring the
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TEQ-operations into the frequency-domain after DFT demodulation, which results in a T-tap
PTEQ for each tone separately. For each tone i (i = 1 . . . n), the TEQ-operations are shown as
follows [7]

d̃n =

1-tap PTEQ
︷︸︸︷

z̃n ·rown

1 DFT
︷ ︸︸ ︷

(FN) · (Y · w) , (2)

= rown (FN · Y)
︸ ︷︷ ︸

TDFTs

· w · z̃n
︸ ︷︷ ︸

T−tap PTEQ vn

, (3)

where d̃n is the output after frequency-domain equalisation for tone n. The z̃n is the
(complex) one-tap PTEQ for tone n. The parameter w is of (real) T-tap TEQ and FN is
an N × N DFT matrix [7]. Note that Y is an N ×T Toeplitz matrix of received signal samples
as vector y in (1). From (3), the T DFT-operations are cheaply calculated by means of a
sliding DFT. It is demonstrated in [7] that every T-tap PTEQ vn exists a T-tap PTEQ p̃

n

which consists of only one DFT and T− 1 real difference terms as its input.

The PTEQ output x̂k,n can be specified as follows

x̂k,n = p̃H
n
·

[
IT−1 0 -IT−1

0 FN(n, :)

]

︸ ︷︷ ︸

Fn

·y , (4)

= p̃H
n
· ỹ

k,n , (5)

where p̃
n

is the T-tap complex-valued PTEQ vector for tone n. The Fn is a (T− 1)× (N +

T− 1) matrix [7]. The FN(n, :) is the nth row of FN . By using the sliding DFT, the first block
row of matrix Fn in (4) extracts the difference terms, while the last row corresponds to the
usual DFT operation as detailed in [7] and [13]. The vector y is of channel output samples as
described in (1). The ỹ

k,n is the sliding DFT output for tone n at each symbol k.

4. A mixed-tone cost function

In this section, we describe a mixed-tone cost function by means of the orthogonal projection
matrix. The idea of using orthogonal projection of adjacent equalisers to include the
information of interfering tones has been presented firstly in [9]. The illustration of the
vector p̂

m
and its orthogonal projection as well as x̃m for 2-dimensional subspace S2 is

shown in Fig. 2. The error vector e⊥m associated with the orthogonal projection of vectors
p̂

m
and Π

⊥
mp̂

m
, where Π

⊥
m denotes as the orthogonal projection matrix of p̂

m
(k), will be

presented in the update of the vector p̂
m
(k) where k 6= m. Therefore, the mixed-tone cost

function derived as the sum of weight-estimated errors is optimised in order to achieve the
solutions for frequency-domain equalisation. It is designed to work in conjunction with the
complex-valued frequency-domain equalisation structure.
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Figure 2. The tap-weight estimated PTEQ vector p̂m and its orthogonal projection Π⊥
m p̂m are illustrated in two dimentional

subspace S2 [9].
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Figure 3. Block structure of the proposed mixed-tone PTEQ p̂m for m ∈ M with the use of combining estimates of M-adjacent

tones, where M = 3. [11]

A mixed-tone exponentially weighted least squares cost function to be minimised is defined
as

J(k) =
1

2

M

∑
m=1

k

∑
i=1

λk−i
m {ξm(i)}

2, (6)

where λm is the forgetting-factor and ξm(k) is the mixed-tone weight-estimated error at tone
m for m ∈ M. The number of the adjacent tones M is of tone of interest.
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ξm(i) = x̃m(i)− p̂H
m
(k)ỹ

m
(i)−

(

Π⊥
l
(k)p̂

l
(k)

)H
ỹ

l
(i)

−
(

Π⊥
l+1(k)p̂l+1(k)

)H
ỹ

l+1(i)

− . . . −
(

Π⊥
L (k)p̂L

(k)
)H

ỹ
L
(i) ,

for m 6= l , L ≤ M − 1. (7)

where the parameter x̃m(k) is the kth transmitted DMT-symbol on tone m. The vector p̂
m
(k)

is of complex-valued T-tap PTEQ for tone m. The vector ỹ
m
(k) is the DFT output for tone m

at symbol k.

The orthogonal projection matrix Π⊥
l
(k) which is the matrix difference determined by the

tap-weight estimated vector p̂
l
(k) as [14]

Π⊥
l
(k) = Ĩ − Π̂l(k)

= Ĩ − p̂
l
(k) [p̂H

l
(k) p̂

l
(k)]−1 p̂H

l
(k) , (8)

where Ĩ denotes as an identity matrix and Π̂l(k) is the projection matrix onto the space
spanned by the tap-weight vector p̂

l
(k). We note that the orthogonal projection matrix Π⊥

l
(k)

is mentioned by the vector p̂
l
(k) for l 6= m.

With the definition for this cost function, the mth-term on the right hand side of (9) represents
as the estimated mixed-tone error of the symbol k due to the mth-tone of equaliser p̂

m
(k) for

m ∈ M as depicted in Fig. 3.

ξm(i) = x̃m(i)− p̂H
m
(k)ỹ

m
(i)−

L

∑
l=1

(

Π⊥
l
(k)p̂

l
(k)

)H
ỹ

l
(i) , for m 6= l , L ≤ M − 1. (9)

5. Adaptive step-size normalised orthogonal gradient adaptive algorithms

Based on filtered gradient adaptive algorithm, adaptive algorithms employing orthogonal
gradient filtering can provide with the development of simple and robust filter across a wide
range of input environments. This section is therefore concerned with the development
of simple and robust adaptive frequency-domain equalisation by defining normalised
orthogonal gradient adaptive algorithm.

In this section, we describe the orthogonal gradient adaptive (OGA) algorithm that is a class
of the filtered gradient adaptive (FGA) algorithm using an orthogonal constraint. This
employs the mixed-tone criterion described above in Section 4 in order to improve the
convergence speed presented in Section 5.1, respectively.

The idea for low complexity adaptive step-size algorithms with the mixed-tone cost function
is described in Section 5.2. For a large prediction error, the algorithm will increase the
step-size to track the change of system whereas a small error will result in the decreased
step-size [15], [16].
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5.1. A Mixed-Tone Normalised Orthogonal Gradient Adaptive (MT-NOGA)
algorithm

The orthogonal gradient adaptive (OGA) algorithm is formulated from the FGA
algorithm [10] by introducing an orthogonal constraint between the present and previous
direction vectors [17]. This OGA algorithm employs the optimised forgetting-factor on a
sample-by-sample basis, so that the direction vector is orthogonal to the previous direction
vector.

We then demonstrate the derivation of the mixed-tone normalised orthogonal gradient
adaptive (MT-NOGA) algorithm for PTEQ in DMT-based systems. With this mixed-tone
criterion in Section 4, the tap-weight estimate vector p̂m(k) at symbol k for m ∈ M is given
adaptively as

p̂m(k) = p̂m(k − 1) + µm(k) dm(k) , (10)

where µm(k) is the step-size parameter and dm(k) is the T× 1 direction vector.

The direction vector dm(k) can be obtained recursively as

dm(k) = λm(k) dm(k − 1) + gm(k)

= λm(k) dm(k − 1)−∇p̂m(k)
J(k) , (11)

where gm(k) is the negative gradient of cost function J(k) in (6) and λm(k) is the
forgetting-factor at symbol k.

By differentiating J(k) in (6) with respect to p̂m(k), we then get the gradient vector gm(k) as

gm(k) = −∇p̂m(k)
J(k)

= −ξm(k)
∂ξm(k)

∂p̂m(k)
= ỹm(k) ξ∗m(k) . (12)

where ξm(k) is the a priori mixed-tone weight-estimated error at symbol k for m ∈ M as

ξm(k) = x̃m(k)− p̂H
m (k − 1)ỹm(k)−

L

∑
l=1

(

Π⊥
l (k)p̂l(k)

)H
ỹl(k) , for m 6= l , L ≤ M − 1. (13)

We introduce the updating gradient vector gm(k) by

gm(k) = λm(k)gm(k − 1) + ỹm(k)ξ
∗
m(k) , (14)

where ξ∗m(k) is the complex conjugate of the mixed-tone estimated error at symbol k for
m ∈ M as given in (13).

A procedure of an orthogonal gradient adaptive (OGA) algorithm to determine λm(k) has
been described in [17] by projecting the gradient vector gm(k) onto the previous direction
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vector dm(k − 1). This leads us to obtain the direction vector dm(k).

By determining the direction vector dm(k) through an orthogonal projection of the
gradient vector g

m
(k) onto the previous direction vector dm(k − 1), we arrive

dm(k) = g
m
(k)−

dm(k − 1) dH
m (k − 1)

dH
m (k − 1) dm(k − 1)

g
m
(k) . (15)

Thus, dm(k) is orthogonal to the previous direction vector dm(k − 1) weighted by
the forgetting-factor λm(k). We can easily optimise a value of λm(k) based on a
sample-by-sample basis by taking the previous direction vector dm(k − 1) in (11) and setting
to zero as

dH
m (k)dm(k − 1) = λm(k)d

H
m (k − 1)dm(k − 1) + gH

m
(k)dm(k − 1)

= 0 . (16)

Meanwhile, the gradient vector g
m
(k) becomes the direction vector dm(k) when the gradient

vector g
m
(k) is orthogonal to previous direction vector dm(k − 1) by gH

m
(k)dm(k − 1) = 0 .

The forgetting-factor parameter λm(k) can be calculated for each tone m at symbol k as

λm(k) =

∣

∣

∣

∣

gH
m
(k) dm(k − 1)

dH
m (k − 1) dm(k − 1)

∣

∣

∣

∣

. (17)

According to the results in [10], it is noticed that the results of FGA and OGA algorithms
are similar to those obtained by the normalised version of OGA (NOGA) algorithm. The
convergence rate of the NOGA algorithm is shown that it is better than that of both FGA and
OGA.

Therefore, we introduce the mixed-tone normalised orthogonal gradient adaptive
(MT-NOGA) algorithm which can be applied recursively as

g̃
m
(k) = λ̃m(k) g̃

m
(k − 1) +

ỹ
m
(k) ξ∗m(k)

‖ỹ
m
(k)‖2

, (18)

λ̃m(k) =

∣

∣

∣

∣

g̃H
m
(k) dm(k − 1)

dH
m (k − 1) dm(k − 1)

∣

∣

∣

∣

, (19)

where g̃
m
(k) is obtained instead of the gradient vector g

m
(k) in (14) and (17) for this

normalised version and ξ∗m(k) is the complex conjugate of the mixed-tone estimated error
at symbol k for m ∈ M as given in (13).

5.2. Adaptive step-size algorithms

This section describes the proposed low complexity adaptive step-size algorithms with the
method of the mixed-tone criterion as described in Section 4 as follows.
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5.2.1. Modified Adaptive Step-size algorithm (MAS)

Following [18] and [19], the step-size parameter is controlled by squared prediction
mixed-tone error. If a large error will be the cause of increased step-size for fast tracking,
while a small error will result in a decreased step-size to yield smaller misadjustment. This
algorithm can be expressed as

µm(k + 1) = γ µm(k) + β|ξm(k)|
2 , (20)

where 0 ≤ γ < 1, β > 0 and ξm(k) is the a priori mixed-tone estimated error at symbol k for
m ∈ M as given in (13).

We note that the instantaneous mixed-tone cost function controls the step-size parameter.
This idea is that a large prediction error causes the step-size to increase and provides faster
tracking, while a small prediction error will result in a decrease in the step-size to yield
smaller misadjustment. The step-size parameter µm(k) at symbol k for m ∈ M is always
positive and is controlled by the size of the prediction error and parameters γ and β. The
summary of proposed MAS-MTNOGA algorithm is presented in Table 1.

5.2.2. Adaptive Averaging Step-size algorithm (AAS)

The objective is to ensure large step-size parameter when the algorithm is far from an
optimum point with the step-size parameter decreasing as we approach the optimum [15].

This algorithm achieves the objective using an estimate of the autocorrelation between ξm(k)
and ξm(k − 1) to control step-size update µ̃m(k + 1). The estimate of an averaging of ξm(k) ·
ξm(k − 1) is introduced as

µ̃m(k + 1) = γ µ̃m(k) + β |ζ̂m(k)|
2 , (21)

ζ̂m(k) = α ζ̂m(k − 1) + (1 − α)|ξ∗m(k) · ξm(k − 1)| , (22)

where 0 ≤ γ < 1 and β is an independent variable for scaling the prediction error. The
exponentially weighting parameter α should be close to 1. The parameter ξ∗m(k) is the
complex conjugate of the mixed-tone estimated error at symbol k for m ∈ M as shown
in (13). The use of ζ̂m(k) responds to two objectives as presented in [15]. First, the error
autocorrelation is generally a good measure for the optimum. Second, it rejects the effect
of the uncorrelated noise sequence on the update step-size. The summary of proposed
AAS-MTNOGA algorithm is presented in Table 2.

6. Computational complexity

In this section, we investigate the additional computational complexity of the proposed low
complexity MAS and AAS algorithms. We consider that a multiplication of two complex
numbers is counted as 4-real multiplications and 2-real additions. A multiplication of a real
number with a complex number is computed by 2-real multiplications.
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• Starting with soft-constrained initialisation as :
p̂

m
(0) = 0; Π⊥

m(0) = I; d̃m(0) = g̃
m
(0) = [1 0 · · · 0]T .

• Do for n ∈ Nd n = 1, 2, . . . , compute.

for m = 1, 2, . . . , M.

for k = 1, 2, . . . , K.

1. To compute p̂
m
(k) as:

p̂
m
(k) = p̂

m
(k − 1) + µm(k) d̃m(k) ,

d̃m(k) = λ̃m(k) d̃m(k − 1) + g̃
m
(k)

g̃
m
(k) = λ̃m(k) g̃

m
(k − 1) +

ỹ
m
(k) ξ∗m(k)

‖ỹ
m
(k)‖2

,

where λ̃m(k) =

∣

∣

∣

∣

g̃H
m
(k) d̃m(k − 1)

d̃
H

m (k − 1) d̃m(k − 1)

∣

∣

∣

∣

.

2. To compute µm(k) as:

µm(k) = γ µm(k − 1) + β |ξm(k − 1)|2 ,

where ξm(k) = x̃m(k)− p̂H
m
(k − 1)ỹ

m
(k)−

L

∑
l=1

(

Π⊥
l
(k)p̂

l
(k)

)H
ỹ

l
(k) ,

for m 6= l , L ≤ M − 1.

Π⊥
m(k) = Ĩ − p̂

m
(k) [p̂H

m
(k) p̂

m
(k)]−1 p̂H

m
(k) .

end
end
end

Table 1. Summary of the proposed modified adaptive step-size mixed-tone normalised orthogonal gradient adaptive

(MAS-MTNOGA) PTEQs.

The proposed AAS mechanism involves two additional updates (21) and (22) as while the
proposed MAS approach employs only one update (20) compared with the MT-NOGA
algorithm in [11].

Therefore, the computational complexity of the proposed MAS-MTNOGA, AAS-MTNOGA
and FS-MTNOGA algorithms are listed in Table 3, where T is the number of taps of PTEQ.
It is shown that the proposed algorithms require a few additional number of operations.
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• Starting with soft-constrained initialisation as :
p̂

m
(0) = 0; Π⊥

m(0) = I; d̃m(0) = g̃
m
(0) = [1 0 · · · 0]T .

• Do for n ∈ Nd n = 1, 2, . . . , compute.

for m = 1, 2, . . . , M.

for k = 1, 2, . . . , K.

1. To compute p̂
m
(k) as:

p̂
m
(k) = p̂

m
(k − 1) + µ̃m(k) d̃m(k) ,

d̃m(k) = λ̃m(k) d̃m(k − 1) + g̃
m
(k)

g̃
m
(k) = λ̃m(k) g̃

m
(k − 1) +

ỹ
m
(k) ξ∗m(k)

‖ỹ
m
(k)‖2

,

where λ̃m(k) =

∣

∣

∣

∣

g̃H
m
(k) d̃m(k − 1)

d̃
H

m (k − 1) d̃m(k − 1)

∣

∣

∣

∣

.

2. To compute µ̃m(k) as:

µ̃m(k) = γ µ̃m(k − 1) + β |ζ̂m(k − 1)|2 ,

ζ̂m(k) = α ζ̂m(k − 1) + (1 − α)|ξ∗m(k) · ξm(k − 1)| ,

where ξm(k) = x̃m(k)− p̂H
m
(k − 1)ỹ

m
(k)−

L

∑
l=1

(

Π⊥
l
(k)p̂

l
(k)

)H
ỹ

l
(k) ,

for m 6= l , L ≤ M − 1.

Π⊥
m(k) = Ĩ − p̂

m
(k) [p̂H

m
(k) p̂

m
(k)]−1 p̂H

m
(k) .

end
end
end

Table 2. Summary of the proposed adaptive averaging step-size mixed-tone normalised orthogonal gradient adaptive

(AAS-MTNOGA) PTEQs.

Algorithm Number of operations per symbol

Multiplications Additions Divisions

MAS-MTNOGA 8T+ 5 8T+ 5 1

AAS-MTNOGA 8T+ 8 8T+ 6 1

MTNOGA [11] 8T+ 2 8T+ 4 1

Table 3. The computational complexity per symbol [21].
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7. Performance analysis

The convergence behaviour and stability analysis of the proposed MAS and AAS mechanisms
are investigated based on the mixed-tone weight-estimated error. The convergence analysis
of both MAS and AAS mechanisms are carried out and the steady-state and mean-square
expressions of the step-size parameter relating the mean convergence factor as presented
in [21] .

In the following analysis, we study the steady-state performance of the proposed MAS and
AAS algorithms. We assume that these algortihms have converged.

7.1. Convergence analysis of the proposed MAS mechanism

Taking expectations on both sides of (20), the steady-state step-size arrives at

E{µm(k + 1)} = γ E{µm(k)}+ β E{|ξm(k)|
2} . (23)

To facilitate the analysis, the proposed MAS mechanism is under a few assumptions.

Assumption (i). We consider the steady-state value of E{µm(k + 1)} by

lim
k→∞

E{µm(k + 1)} = lim
k→∞

E{µm(k)} = E{µm(∞)} ,

lim
k→∞

E{|ξm(k)|
2} = ξmin

m + ξex
m (∞) ,

where ξmin
m is the minimum mean square error (MMSE) and ξex

m (∞) is the excess of mean square error
(EMSE) related with the optimisation criterion in the steady-state condition.

Applying assumption (i) to (23), we obtain

E{µm(∞)} = γ E{µm(∞)}+ β (ξmin
m + ξex

m (∞))

(1 − γ) E{µm(∞)} = β (ξmin
m + ξex

m (∞))

E{µm(∞)} =
β (ξmin

m + ξex
m (∞))

(1 − γ)
. (24)

To simplify these expressions, let us consider another assumptions.

Assumption (ii). Let us consider that for (24), where

ξmin
m + ξex

m (∞) ≈ ξmin
m ,

and

(

ξmin
m + ξex

m (∞)
)2

≈
(

ξmin
m

)2
.

We then assume that ξex
m (∞) ≪ ξmin

m , when the algorithm is close to optimum.
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Employing assumption (ii) to (24), the steady-state step-size for the proposed MAS algorithm
becomes

E{µm(∞)} ≈
β (ξmin

m )

(1 − γ)
. (25)

It is noted that the steady-state performance of proposed MAS mechanism has derived in
(25) for predicting in the steady-state condition.

7.2. Convergence analysis of the proposed AAS mechanism

Following [20] and [22], the average estimate ζ̂m(k) in (22) can be rewritten as

ζ̂m(k) = (1 − α)
k−1

∑
i=0

αi ξ∗m(k − i) · ξm(k − i − 1) . (26)

and

|ζ̂m(k)|
2 = (1 − α)2

k−1

∑
i=0

k−1

∑
j=0

αi αj ξ∗m(k − i) · ξm(k − i − 1) · ξ∗m(k − j) · ξm(k − j − 1) . (27)

We assume that the proposed algorithm has converged in the steady-state condition. Also,

the expectation of (27) can be expressed as

E{|ζ̂m(k)|
2} = (1 − α)2

k−1

∑
i=0

α2i E{|ξm(k − i)|2} · E{|ξm(k − i − 1)|2} , (28)

where α is an exponential weighting parameter.

Using assumption (i) into (28), we have

E{|ζ̂m(k)|
2} = (1 − α)2 (1 + α2 + α4 + · · ·+ α2k) · (ξmin

m + ξex
m (∞))2 . (29)

For convenience of computation, let

E{|ζ̂m(k)|
2} = (1 − α)2 A , (30)

where

A = (1 + α2 + α4 + · · ·+ α2k) · (ξmin
m + ξex

m (∞))2 . (31)
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By multiplying α2 on both sides of A in (31), if k → ∞ and 0 < α < 1, we get

α2 A = α2 · (1 + α2 + α4 + . . . + α2(k−1) + α2k) · (ξmin
m + ξex

m (∞))2

= (α2 + α4 + α6 + . . . + α2(k−1) + α2k) · (ξmin
m + ξex

m (∞))2

= A− (ξmin
m + ξex

m (∞))2 . (32)

Rearranging (32) to get A, we arrive at

(1 − α2) · A = (ξmin
m + ξex

m (∞))2

A =
(ξmin

m + ξex
m (∞))2

(1 − α2)
. (33)

Substituting (33) into (30), we get

E{|ζ̂m(k)|
2} =

(1 − α)2 · (ξmin
m + ξex

m (∞))2

(1 − α2)

=
(1 − α) · (1 − α) · (ξmin

m + ξex
m (∞))2

(1 + α) · (1 − α))

=
(1 − α) · (ξmin

m + ξex
m (∞))2

(1 + α)
. (34)

Taking the expectation on both sides of (21), the mean behaviour of step-size µ̃m(k) is given
as

E{µ̃m(k + 1)} = γ E{µ̃m(k)}+ β E{|ζ̂m(k)|
2} . (35)

Using assumption (i) and (34) into (35), we get

E{µ̃m(∞)} = γ E{µ̃m(∞)}+
β (1 − α) · (ξmin

m + ξex
m (∞))2

(1 + α)

(1 − γ) · E{µ̃m(∞)} =
β (1 − α) · (ξmin

m + ξex
m (∞))2

(1 + α)

E{µ̃m(∞)} =
β (1 − α) · (ξmin

m + ξex
m (∞))2

(1 − γ) · (1 + α)
. (36)

where ξmin
m is the steady-state minimum value and ξex

m (∞) is the steady-state excess error of
mixed-tone cost function.
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By using assumption (ii), the steady-state value of E{µ̃m(∞)} in (36) is approximately
as

E{µ̃m(∞)} ≈
β (1 − α) ·

(

ξmin
m

)2

(1 − γ) · (1 + α)
. (37)

We note that (37) has proven for predicting the steady-state performance of proposed AAS
algorithm.

7.3. Stability and performance analysis

We introduce the stability and performance analysis of proposed algorithm that is based on
the mean-square value of the mixed-tone estimated ξm(k).

Let us denote the weight-error vector εm(k) at symbol k for each tone m by following [23]
and [24]

εm(k) = popt,m − p̂m(k) , (38)

where popt,m denotes as the optimum Wiener solution for the tap-weight vector.

The estimate tap-weight PTEQ vector p̂m(k) can be introduced as

p̂m(k) = p̂m(k − 1) + µm(k)
k

∑
i=1

λk−i ỹm(i) ξ∗m(i)

‖ỹH
m (i) ỹm(i)‖

, (39)

where ξm(k) is the a priori mixed-tone estimated error at symbol k for tone m as

ξm(k) = x̃m(k)− p̂H
m (k − 1)ỹm(k)−

L

∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k) .

for m 6= l , L ≤ M − 1 (40)

Subtracting popt,m from both sides of (39) and using (40) to eliminate p̂m(k), we may rewrite
as

popt,m − p̂m(k) = popt,m − p̂m(k − 1) + µm(k)
k

∑
i=1

λk−i ỹm(i)

‖ỹH
m (i)ỹm(i)‖

{

x̃m(i)− p̂H
m (k − 1)ỹm(i)

−
L

∑
l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i)

}∗

+ µm(k)
k

∑
i=1

λk−i ỹm(i)

‖ỹH
m (i)ỹm(i)‖

(

pH
opt,mỹm(i)

)∗

− µm(k)
k

∑
i=1

λk−i ỹm(i)

‖ỹH
m (i)ỹm(i)‖

(

pH
opt,mỹm(i)

)∗
.

(41)
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Substituting (38) in (41), we get

εm(k) = εm(k − 1)− µm(k)
k

∑
i=1

λk−i ỹm(i)ỹ
H
m (i)εm(k − 1)

‖ỹH
m (i)ỹm(i)‖

+ µm(k)
k

∑
i=1

λk−i ỹm(i)

‖ỹH
m (i)ỹm(i)‖

{

x̃m(i)− pH
opt,mỹm(i)−

L

∑
l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i)

}∗

.

(42)

Then, the weight-error vector εm(k) can be expressed as

εm(k) =

[

I − µm(k)
k

∑
i=1

λk−i ỹm(i)ỹ
H
m (i)

‖ỹH
m (i)ỹm(i)‖

]

εm(k − 1) + µm(k)
k

∑
i=1

λk−i
ỹm(i) ξ∗opt,m

‖ỹH
m (i)ỹm(i)‖

. (43)

where ξ∗opt,m is the complex conjugate of estimation mixed-tone error produced in the
optimum Wiener solution as

ξopt,m = x̃m(i)− pH
opt,mỹm(i)−

L

∑
l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i) .

for m 6= l , L ≤ M − 1 (44)

Assumption (iii). We consider the condition necessary for the convergence of mean, that is

E{ ‖εm(k)‖ } → 0 , as k → ∞

or equivalently,

E{ p̂m(k) } → popt,m , as k → ∞

where ‖εm(k)‖ is the Euclidean norm of the weight-error vector εm(k).

We denote the mixed-tone estimated error for tone m at symbol k as

ξm(k) = x̃m(k)− p̂H
m (k) ỹm(k)−

L

∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k) .

for m 6= l , L ≤ M − 1 (45)

Using (38) into (45), the estimation mixed-tone error ξm(k) at symbol k for each tone m is
given as in (46), where ξopt,m is the estimation mixed-tone error in the optimum Wiener
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solution shown in (44).

ξm(k) = x̃m(k)− p̂
H
m (k) ỹm(k)−

L

∑
l=1

(Π⊥
l (k)p̂l(k))

H
ỹl(k)

= x̃m(k)− (popt,m − εm(k))
H

ỹm(k)−
L

∑
l=1

(Π⊥
l (k)p̂l(k))

H
ỹl(k)

= x̃m(k)− p
H
opt,m ỹm(k)−

L

∑
l=1

(Π⊥
l (k)p̂l(k))

H
ỹl(k) + ε

H
m (k) ỹm(k)

= ξopt,m + ε
H
m (k) ỹm(k) . (46)

Let Ĵm(k) denotes as the expectation of mean square mixed-tone error at tone m for m ∈ M

Ĵm(k) = E{ |ξm(k)|
2 }

= E{
(

ξopt,m + ε
H
m (k)ỹm(k)

)∗(
ξopt,m + ε

H
m (k)ỹm(k)

)

}

= E{|ξopt,m|
2}+ E{ỹ

H
m (k)εm(k)ξopt,m}

+ E{εH
m (k)ỹm(k)ξ

∗
opt,m}

+ E{εH
m (k)εm(k)ỹ

H
m (k)ỹm(k)} . (47)

By using assumption (iii), we assume that

Ĵm(k) = Jmin
m + Jex

m (k) , (48)

where Jmin
m is the minimum mean square mixed-tone error produced by the optimum Wiener

filter for tone m as

Jmin
m (k) = E{|ξopt,m|

2}+ E{εH
m (k)ỹm(k)ξ

∗
opt,m}+ E{ỹ

H
m (k)εm(k)ξopt,m} , (49)

and Jex
m (k) is called the excess mean square mixed-tone error (EMSE) at symbol k for tone m

as

Jex
m (k) = E{ εH

m (k)εm(k)ỹ
H
m (k)ỹm(k) } . (50)

Since

Rỹỹ = E{ỹm(k) ỹ
H
m (k)} , (51)

and by the orthogonality principle

E{ξopt,m ỹm(k)} ≈ 0 , (52)
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the excess in mean square mixed-tone error is given by

Jex
m (k) = E{ εH

m (k)Rỹỹ εm(k) } . (53)

where εm(k) denotes as the weight-error vector at symbol k for each tone m shown in (38).

8. Simulation results

In this section, we implemented transmission simulations for the ADSL-based downstream
including additive white Gaussian noise (AWGN) and near-end crosstalk (NEXT) detailed
as follows. The used tones for downstream transmission were starting at active tones 38
to 255 and unused tones including tones 8 to 32 for upstream transmission were set to
zero. The samples of reference carrier serving area (CSA) loop were used for the entire
test channel, which comprises 512 coefficients of channel impulse response. The ADSL
downstream simulations with the CSA loop #4 was the representative of simulations with all
8 CSA loops detailed in [25] as follows. The CSA#4 loop is consisting of 26-gauge bridged
tap of length of 400 ft. at 550 ft., of 800 ft. at 6800 ft. and 26-gauge loop of length of 800 ft.
at 7600 ft., respectively. Other parameters were as the sampling rate fs = 2.208 MHz and the
size of FFT N = 512. The length of CP (ν) was identical to 32. The synchronisation delay
was of 45. The SNR gap of 9.8dB, the coding gain of 4.2dB, the noise margin of 6 dB, and
the input signal power of -40 dBm/Hz were used for all active tones [1]. With the power
of AWGN of -140dBm/Hz and NEXT from 24 ADSL disturbers were included in the test
channel. The bit allocation calculation requires an estimate of signal to noise ratio (SNR) on
tone n ∈ Nd, when the noise energy is estimated after per-tone equalisation.

We compare the proposed MAS-MTNOGA and AAS-MTNOGA PTEQs with variable
step-size parameters compared with the fixed step-size MT-NOGA [11] PTEQ. The proposed

algorithms were initialised with T = 32, p̂m(0) = [ 0 0 0 . . . 0 ]T , d̃m(0) = g̃m(0) =

[ 1 0 0 . . . 0 ]T and Π
⊥
m(0) = I, where λm(0) = 0.95, ζ̂m(0) = σ2

η . The matrix I is the identity

matrix and the parameter σ2
η is the variance of AWGN and NEXT. We considered the use of

the combining estimated of 3-adjacent tones (M = 3). All the following results were obtained
by averaging over 50 Monte Carlo trials.

Fig. 4 and Fig. 5 show the sum of squared mixed-tone errors learning curves of proposed
AAS-MTNOGA, MAS-MTNOGA and MT-NOGA PTEQs are illustrated with the different
values of fixed step-size parameters for the samples of the active tone at m = 200 and 250,
respectively. It is observed that the proposed AAS-MTNOGA algorithm can converge more
rapidly to steady-state condition than MT-NOGA with the fixed step-size. Learning curves
of the excess mean square mixed-tone errors (EMSE) Jex

m (k) of proposed AAS-MTNOGA,
MAS-MTNOGA and MT-NOGA PTEQs in Fig. 6 and Fig. 7 are depicted with the different
values of fixed step-size parameters for the samples of the active tone at m = 200 and 250,
respectively. Fig. 8 and Fig. 9 depict the trajectories of step-size parameters µm(k) of proposed
MAS-MTNOGA and AAS-MTNOGA algorithms at different initial step-size settings with
the sample of the active tone at m = 250, respectively. It is shown to converge to its own
equilibrium despite large variations of initial step-size parameters.
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Figure 4. Learning curves of sum of squared mixed-tone errors of the proposed MAS-MTNOGA, AAS-MTNOGA and

MTNOGA [11] algorithms with the sample of active tone m = 200. The other fixed parameters of the proposed ASS-MTNOGA

algorithm are γ = 0.985, β = 1.25 × 10
−2, and α = 0.995.
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Figure 5. Learning curves of sum of squared mixed-tone errors of the proposed MAS-MTNOGA, AAS-MTNOGA and

MTNOGA [11] algorithms with the sample of active tone m = 250. The other fixed parameters of the proposed ASS-MTNOGA

algorithm are γ = 0.985, β = 1.25 × 10
−2, and α = 0.995.
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the sample of active tone m = 200. The other fixed parameters of the proposed ASS-MTNOGA algorithm are γ = 0.985,

β = 1.25 × 10
−2, and α = 0.995.
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Figure 7. Learning curves of EMSE Jex
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Figure 9. Trajectories of the adaptive step-size µm(k) of the proposed AAS-MTNOGA algorithm using different setting of
µ(0) = 1 × 10−1, 1 × 10−2 and 1 × 10−4 with the sample of active tone m = 250.
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9. Conclusion

In this chapter, we present the proposed MAS-MTNOGA and AAS-MTNOGA algorithm
for per-tone equalisation in DMT-based systems. We describe the tap-weight estimated
PTEQ vector p̂m(k) for m ∈ M of M-combining tones. The mixed-tone cost function is
demonstrated as the sum of mixed-tone weight estimated errors of adjacent tones. With
the method of adaptive step-size approach and the normalised orthogonal gradient adaptive
algorithm, two of low complexity adaptive step-size mechanisms can be achieved for per-tone
equalisation based on the mixed-tone criterion. The derivation and analysis of two low
complexity adaptive step-size schemes are presented. The adaptation of mean square
mixed-tone errors (MSE) and excess mean square mixed-tone errors (EMSE) curves of
proposed MAS-MTNOGA and AAS-MTNOGA algorithms are shown to converge rapidly
to steady-state condition in the simulated channel. According to simulation results, the
proposed algorithms can provide the good performance and are appeared to be robust in
AWGN and NEXT channel in comparison with the fixed step-size algorithm of MTNOGA
algorithm.
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