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1. Introduction 

The practical importance of the string matching problem should be obvious to everyone. For 

typical word-processing applications, immense amounts of work have been done on this 

subject. However, with the developments in bioinformatics (Cole et al., 2005), information 

retrieval (Califf et al., 2003), pattern mining (Xie et al., 2010; Ji et al., 2007; He et al., 2007), etc, 

sequential Pattern Matching with Wildcards and Length constraints (PMWL) has attracted 

more and more attention. It is not difficult to think up realistic cases where PMWL plays an 

important role. In Dan Gusfield’s book (Gusfield, 1997), they give an example about 

transcription factor to illustrate the concept of wildcard. A transcription factor is a protein that 

binds to specific locations in DNA and regulates the transcription of the DNA into RNA. In 

this way, production of the protein that the DNA codes for is regulated. Many transcription 

factors are found and can be separated into families characterized by specific substrings 

containing wildcards. They use Zinc Finger, a common transcription factor as an example. It 

has the following signature: 

CYS¢¢CYS¢¢¢¢¢¢¢¢¢¢¢¢¢HIS¢¢HIS 

Where CYS is the amino acid cysteine and HIS is the amino acid histidine. They also give a 

conclusion that if the number of wildcards is bounded by a fixed constant, the problem can 

be solved in linear time.  

Another respective example is about promoter. In bioinformatics, promoter will help 

researchers to quickly locate the starting position of the intron from hundreds of millions of 

the sequence of ACGT. Among these promoters, TATA box is a common one (Manber & 

Baeza-Yates, 1991). It has very loose sequence specificity, so many TATA sequences are not 
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TATA box. As a result, indirect positioning by pairs of sites is needed. The commonly used one 

is CAATCT sequence. The DNA sequence TATA is a common promoter that often occurs after 

the sequence CAATCT within 30-50 wildcards. Therefore, matching patterns with wildcards 

becomes especially crucial in exploring valuable information from DNA sequences. 

There are many applications that involve pattern matching with wildcards and various 

researches have provided many solutions to different forms of this problem. Fischer and 

Paterson were the first to generalized pattern matching with wildcards (Fischer & Paterson, 

1974): given a pattern P and a text T, either of which may contain wildcards, denoted by ¢, 

the goal is to locate all P’s occurrences in T. ¢ can match any letter in a given alphabet, such 

as a¢¢c¢t. Unlike previous work, Chen, et al. proposed a PMWL problem integrating two 

problems(Chen et al., 2006): one is complex local constraints which means the user can 

specify a different range of wildcards between each two consecutive letters of P, for 

example, a¢[0,3]c¢[1,3]t. Another one is global length constraints. The user can constrain the 

length of each matching substring of T in which P occurs. Therefore, flexible constraints of 

wildcards conduct flexible jump of the matching positions. The definition of PMWL 

problem is an extension of Fischer and Paterson’s definition and the introduction of complex 

local constraints increase the flexibility. On one hand, this definition of pattern is more 

suitable for areas such as bioinformatics; on the other hand, the size of the matching 

candidate positions is in the exponential increment which greatly increases the complexity 

of the problem solving. 

 

Figure 1. The flexibility and complexity of PMWL problem 

From a view of practical point, they also proposed two issues: with and without the one-off 

condition (Chen et al., 2006; Min et al., 2009). In their problem definition, users have more 

flexibility to search on sequences and the one-off condition has both theoretical and practical 

significance. One-off condition means that every letter in T can be used once at most. In 

practical applications, with and without the one-off condition has practical meaning in specific 
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areas. For example, in sequential pattern analysis in data mining, P can be treated as a 

candidate shopping pattern, the user is interested in how frequently P occurs in one document, 

it makes sense to count each occurrence for once, what is more, the one-off condition also 

makes the problem solving possible. However, under the one-off condition, how to allocate 

limited text resource to each matching occurrences, in order to obtaining the maximum 

number of occurrences, belongs to optimization problem. In the allocation of resources, the 

matching of different letters in the pattern possess a strong correlation, which conducts the 

selection of matching positions in the combination of explosive growth. Since it is difficult to 

develop a complete matching strategy in this problem, almost existed algorithms for PMWL 

are using greedy matching strategies, which is the root reason why matching algorithm is not 

complete. This article will focus on SAIL algorithm (Chen et al., 2006) which is a representative 

algorithm for PMWL problem and will also describe RSAIL (Wang et al., 2010), SBO (Wu et al., 

2011), BPBM (Guo et al., 2011) algorithm which are all designed to solve PMWL problem in 

different conditions. The each of above algorithms has its own characteristics in the data 

structures and matching strategies, which will be analyzed in this paper. 

What is more, since the theoretic and practical importance of the definition of PMWL, we 

need to research the nature of this problem. To our best knowledge, there are still no efficient 

methods on this problem, because as for completeness of the problem, we still do not know 

whether it could be solved in polynomial time. In this article, we will research the 

completeness of PMWL under certain condition. In the traditional matching problem, 

description of pattern and text information is the key to the algorithm design, however, 

flexibility and complexity of the PMWL problem all depends on the pattern features, so this 

article will focus on pattern information, especially the pattern features including the size of 

alphabet, the length of pattern, the gap of wildcards in the pattern, etc. We will also investigate 

the relationship between pattern features and completeness, and use the approximate ratio 

judgment. Further more, since the definition itself is produced in realistic background, we 

need to consider the situation in real biological background and improve the solution of the 

problem. Based on the above, we choose this topic as a research object in this book.  

This capture is organized as follows: In section 2 we will give the development, definition 

and application of PMWL problem; Section 3 will show the representative algorithms, we 

will introduce their structure, strategy, complexity and completeness; Section 4 will analyze 

the PMWL problem completeness based on pattern features. We will give our conclusions in 

section 5. 

2. Pattern matching with wildcards and length constraints 

The sequential pattern matching problem is to given a Text T and a pattern P as input, and 

output all the occurrences of P in T. After Fischer and Paterson’s work, there are a variety of 

non-standard definitions of the pattern matching problem: the approximate matching (He et 

al., 2007), the swapped matching (Amir et al., 2000), the Parameterized matching (Amir et 

al., 2009), etc. They all belong to Non-standard Stringology problem (Muthukrishnan, 1994). 

Many of them are still open problems. 
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2.1. The development of PMWL problem 

After years of development, these Non-standard Stringology problems always focus on a 

problem: that is, how to conduct the traditional pattern matching definition to be more 

flexible to adapt the development of application. The don’t cares problem always focus on 

how to combine the wildcards and the pattern. After Fischer and Paterson’s work, Cole et al. 

considered a slightly different problem (Cole et al., 2004), where instead of fixing the 

number of ¢s between two consecutive letters in P and T, they fixed the total number of ¢s in 

P. The disadvantage of these problem definitions is that the number of ¢s is a constant but 

not a range. This limits flexibilities for the user’s queries. To alleviate the problem of a fixed 

number of ¢s, Kucherov et al. (Kucherov et al., 1995) proposed a solution to allow an 

unbounded number of ¢s between two consecutive letters in a given pattern. Given a set of 

such patterns, their objective is to find whether any of these patterns matches some 

substring of the text that does not contain any ¢.Obviously, allowing an unbounded number 

of ¢s still does not offer the users enough flexibilities to control their queries. Manber et al. 

(Manber & Baeza-Yates, 1991) proposed an algorithm for string matching with a sequence of 

wildcards. They considered the following problem: given two pattern strings P and Q, each 

of which consists of letters, and an integer g, all occurrences of the form P¢0−gQ in the text are 

returned. The number of ¢s between P and Q is in the range of [0, g], and the text does not 

contain any ¢. This problem was so-called exact string matching with variable-length don’t 

cares. Chen et al. sum up all these definitions into three conditions (Chen et al., 2006): firstly, 

there is a wildcard between two consecutive letters in P, for example A¢[0,1]T¢[0,2]G¢[1,3]C; 

secondly, every letter in T can only be used once for matching; thirdly, there is a global 

constraint to limit the matching occurrence length. We call the problem satisfying above 

definition PMWL problem, which has been used in approximate matching, pattern mining, 

information retrieval, etc. 

2.2. The potential applications of the PMWL problem 

1. Text Indexing: There is a large amount of hypertext information on the Internet. How to 

effectively obtain information that meet users’ needs is becoming more and more 

urgent. Text indexing is a method to solve this problem. How to determine the position 

of user-specified pattern (may contain wildcards) is a challenge task. 

2. Data stream is becoming more and more crucial in many new database applications 

such as data warehouse and sensor network. Mining dependence or association in large 

amounts of data flow has practical value and during which the sequential pattern 

matching with wildcards is the first and the most important step. In addition, in data 

mining, sequential pattern mining also search frequent patterns as in transaction 

sequence, a typical instance is the similar consuming pattern of many consumers, for 

example, buying a desktop, a laser printer, a digital camera and an LCD screen monitor 

in turn, between each of them exists a certain time interval. Mining such typical user 

mode, which is obviously a pattern matching with wildcards, will has a great influence 

on the market. 
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3. Network Security: Pattern matching methods in network security and intrusion 

detection need high performance. A complete IDS (Intrusion Detection System) based 

on Snort rules needs to optimize hundreds of rules and many of them need to do 

pattern matching efficiently for the entire data partition of a package. Efficient pattern 

matching and mining with wildcards constraints give the system administrator a more 

flexible and accurate solution to locate the suspicious users. 

2.3. Problem statement for PMWL 

Definition 1 Let   be an alphabet, T = t0t1…tn-1 ∈ *  is called a text of   where n = |T| is the 

length of T. A pattern is a tuple P = (p, g) where p = p0p1…pm-1 is a sequence of characters, 

which belong to the alphabet  , and g = g0g1…gm-2 is a sequence of wildcards. And m = |P| is 

the length of P. The interval of wildcards between pi and pi+1 is denoted by gi = g(Ni, Mi) 

where 0 ≤ i ≤ m - 1, called the local constraints. Ni and Mi is the upper and lower limit of 

wildcard. Such as P = a¢[1,3]g, where 1, 3 is respectively the lower and upper limit of local 

constraints. ¢[1,3] means the wildcards between a and g is referring to a string which length 

is 1~3. Given interval [minLen, maxLen], set globalLength = t[am-1] - t[a0] +1, if globalLength 

∈[minLen, maxLen], then it is called global constraint (Chen et al., 2006). 

Definition 2 Given a pattern P = (p, g), p = p0p1…pm-1, gi = g(Ni, Mi). The max {Mi - Ni} where 0 

≤ i ≤ m - 1 is called the gap of local constraints, named Gap for short. For example, P = 

a¢[0,2]g¢[1,4]g, then gap = max{2 - 0, 4 - 1} = 3. 

PMWL problem can be defined by the above definition: 

Definition 3 PMWL problem (Pattern Matching with Wildcards and Length constraints) 

Pattern Matching with Wildcards and Length constraints meets the following conditions: 

1. ¢s can occur between each two consecutive letters in pattern and are independent to 

each other; 

2. ¢s between two consecutive letters can match a string which length is limited by local 

constraints, and the total length of pattern is limited by global constraint; 

3. One-off condition is taken into consideration that every letter in T can only be used once 

for matching pj (0 ≤ j ≤ m - 1) and as soon as there exists one occurrence of P in T when T 

is being scanned from left to right it will be returned. 

Definition 4 Given a text T and a pattern P, if there is a sequence of matching positions A = 

(a1, a2, …, am-1), where t[ai] = p[i] for every 0 1i m   , we say A is a matching occurrence of 

P. A set of occurrences A1, A2, ..., At constitute an occurrence set U where t is the number of 

occurrences, and also named matching number in our paper. 

Definition 5 Let t be the matching number of A, if there is no occurrence set A’ with the 

matching number t’, and t’ > t, then A is called a complete occurrence set. If there is another 

occurrence set U, with the matching number tu = t, the U is equivalent to A. Specially, if A is 

complete, and so is U. So the complete occurrence set is not always unique. 
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3. Algorithms for PMWL  

The results of traditional matching algorithm are complete, so the focus of research is to 

improve the matching efficiency. As a kind of searching problem, the key to solving 

matching problem is how to use and extract information getting from text and pattern. 

KMP, BM algorithm uses automata to describe the pattern characteristics, and deposit 

information obtained from scanning during matching process into automata. Algorithm 

visits the automata, when the jump distance needs to be calculated, thus to avoid obtaining 

the pattern information repeatedly and to ensure the jump in matching process does not 

affect the final result. The basic idea the suffix tree is to use the tree structure to describe the 

text information, and to avoid scanning the same text repeatedly when matching a set of 

patterns. We believe that data structure and search strategy are crucial for traditional 

algorithms to access to information of text and pattern. Reasonable data structure is better to 

explore the potential of the computer, such as bit parallel technology, and can also be a more 

reasonable representation of the sequence information, such as automata. In addition, there 

exist the sliding window, indexes and other data structures. Reasonable matching strategy 

makes better use of sequence information. These strategies can approximately be divided 

into prefix searching, suffix searching and factor searching (Navarro & Raffinot, 2001). 

 

 Characteristics Representative 

algorithms 

Methods Remarks 

prefix 

searching 

Forward search to find 

the longest common 

prefix of text and pattern 

strings in searching 

window 

KMP Deterministic 

automata 

Most of them are 

sliding window 

technique, the scope 

of algorithm 

application depends 

on the alphabet size 

and the pattern 

length 

Shift-And Bit parallel, non-

deterministic 

automata 

suffix 

searching 

Backward search to find 

the longest common 

suffix of text and pattern 

strings, can skip some text 

characters, the difficulty 

is how to safely move the 

window 

BM Pre-calculation of 

the three functions 

used to determine 

the safe jumping 

distance 

Horspool Improve the 

function of the BM, 

can have a greater 

jump distance, 

especially suitable 

for larger alphabet 

factor 

searching 

Backward search to 

determine whether  the 

suffix of text in searching 

window is a substring of 

pattern string 

BDM Suffix automaton 

BNDM Bit parallel 

BOM Factor Oracle 

automaton, suitable 

for longer pattern 

Table 1. Analysis of the traditional pattern matching algorithms 
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As different extension of traditional matching problem, PMWL problem, approximate 

matching, and swap matching all belong to the Non-standard Stringology problem. Problems 

in this field mostly belong to the optimization problem, and most of them have not yet been 

completely solved, such as PMWL and approximate matching problems with wildcards etc. 

What PMWL and traditional matching problem have in common are: 

1. From the view of algorithm itself, the data structures and matching strategies are as the 

key of algorithm design.  

2. From the view of describing the object, how to effectively describe the patterns and text 

information is the key to solve the problem. 

What PMWL and traditional matching problem have in difference are: 

1. For PMWL, there is no complete solving yet, so algorithm evaluation criteria include 

both time efficiency and solution quality; but traditional matching algorithm is only 

concerned with matching time. 

2. The flexibility and complexity of the PMWL problem definition are reflected in the 

pattern, therefore, compared with traditional matching, PMWL pay more attention to 

the description of the pattern information. Pattern characteristics are extremely 

associated with the solution of PMWL problem. 

Next, we will give the representative algorithms for solving PMWL problem, and detailed 

description of their design ideas from the perspective of data structure and matching 

strategy. 

3.1. The SAIL Algorithm 

Description of SAIL Algorithm (Chen et al., 2006): 

Input: A text T = t0t1…tn-1, a pattern P = p0p1…pm-1, local constraints gi = g(Ni, Mi), global 

constraints [minLen, maxLen].  

Output: Occurrences of P in T satisfying the constraints. 

The Steps of the algorithm:  

1. Location: ① Search position i where t[i] = p[m-1], and locate position k where t[k] = p[0] 

by considering the global constraint. ② Cut out a substring in T from t[k] to t[i] named 

T’. ③ Build the table with the row and column according to T’ and P. 

2. Forward: Scan the table forward, and mark all the positions satisfying the local and 

global constraints. They are the potential matching positions. 

3. Backward: Scan the table backward, and select the left-most position in the marked cells 

every row that compose an occurrence. Then mark them used. 

Generally, SAIL starts from the beginning of T to search position i where t[i] = p[m-1]. After 

that, SAIL conducts two phases, the Forward phase and the Backward phase. In the Forward 

phase, SAIL determines whether there is a potential matching occurrence by using a search 

table. Afterwards, if a potential matching occurrence can be determined, Backward phase is 

triggered out to output an optimal occurrence by using the left-most strategy.  
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A running example for SAIL: 

In this subsection, we show how SAIL works with a running example where P, T and 

constraints are given as follows. 

 0 1 2 3 4 5 6 7 8 9 

T t t a a g g c c c c 

P a¢[0,1]g¢[0,1]c¢[0,1]c, minLen = 6, maxLen = 7 

Table 2. A running example for SAIL 

Step 1. Scan the P[m-1], that is the letter ‘c’, in T from left to right. The first matching 

position is 6, and then SAIL enters the Location phase. Use the global constraint [6, 7] to 

locate P[0]’s position, that is the letter ‘a’. We get the scanning range is [6-6, 7-6]. 

However there are no matching in [0, 1]. Then SAIL move on. 

Step 2. The second matching position is 7, and we can locate P[0] in position 2. Then we 

get the substring “aaggcc” from T. In this way global constraint is satisfied. 

Step 3. Build a 4×6 table. The row stand for character in P, and the column is the substring. 

Then set the position pos[3][5], pos[0][0] and pos[0][1] to 1. 

Step 4. Enter Forward and set all the positions to 1 in the table, which satisfy the local 

constraints. 
 

Positions in Text 

Positions in Table 

 

a 

g 

c 

c 

Table 3. The constructed search table pos[j][i-start] when P[m-1] is 7 

Step 5. Enter Backward and select the left-most one from the marked positions in each row, 

and they are highlighted. In this way, we will get an occurrence {2, 4, 6, 7} and mark the 

four positions used. 

Step 6. Go on to execute Location and get the third matching position is 8, then we can 

build the table below. Notice the positions of 6, 7 have been used. Under the one-off 

condition, all used positions (marked as * in Table) of T are never considered for further 

matching again. If the one-off condition is not considered, SAIL will get another two 

occurrences {2, 4, 6, 8} and {3, 5, 7, 9}. Then the Forward phase returns false, and SAIL go 

back to Location. 

Step 7. In position 9, the Forward also returns false. Finally, SAIL output only one 

occurrence {2, 4, 6, 7}. 



 
Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 307 

Positions in Text 

Positions in Table 

 

* * * 

a 

g 

c 

c 

Table 4. The constructed search table pos[j][i-start] when P[m-1] is 8 

The time complexity and completeness analysis: 

O(SAIL) = O(n + klmg) where n is the length of T, k is the frequency of P’s last letter 

occurring in T, l is the user-specified maximum length for each matching substring, m is the 

length of P, and g is the maximum gap of wildcards in P.  

Two important issues, Online searching and Optimization, are taken into consideration to 

design SAIL. As for optimization, under the one-off condition, SAIL determines which 

occurrence is an optimal one if multiple occurrences end at a P[m-1]’s position by applying 

the left-most strategy. As a heuristic algorithm, SAIL utilizes a kind of greedy strategy to 

select a set of occurrences; consequently, SAIL may obtain locally optimal solution which 

lead to losing occurrences in offline searching. 

Form the above example, we can know that a complete occurrence set for text T is {{2, 4, 6, 

8}, {3, 5, 7, 9}}, but SAIL’s output is {{2, 4, 6, 7}}. 

We believe that the SAIL’s data structure is based on the sliding window, the Location also 

uses the left-most strategy, so it is possible to lose occurrences, for instance: 

 

Figure 2. A sliding window in SAIL 

Obviously, in the above example, SAIL loses occurrences in offline condition because of the 

selection of character c’s matching position. For further observation, it is not difficult to find 

that character c appears in the pattern twice. If pattern is a¢[0,1]g¢[0,1]c, SAIL will get a 

complete occurrence set, that is, {{2, 4, 6},{3, 5, 7}}. Further experiments show that, the 

recurring appearances of pattern characters influence the quality of matching occurrences 

obtained by the algorithm. In next part, we will analyze the completeness of PMWL based 

on pattern features.  
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3.2. The RSAIL Algorithm 

Description of RSAIL Algorithm (Wang et al., 2010): 

Definition 6 Given a pattern P, if there are letters p[i] = p[j] where 0 ≤ i ≤ m-1,0 ≤ j ≤ m-1, P is 

called a pattern with Recurring characters, and R pattern in short, such as 

a¢[0,1]c¢[0,1]c¢[0,1]t. 

Definition 7 Given a pattern P, if all the letters in P are different, P is called a pattern with 

No-Recurring characters and NR Pattern for brevity, such as a¢[0,1]c¢[0,1]g¢[0,1]t. 

Definition 8 Given a pattern P, if there is a position i such that p[i] = p[i+1] =……= p[m-1] 

where 1 ≤ i < m-1, P is called a pattern with recurring tail characters and RT pattern in short. 

Such as a¢[0,1]c¢[0,1]c. As we can see, the RT pattern is a special form of the R pattern. 

From the above discussion, in the research of Chen et al., since they only concern about 

the on-line situation, their proof of SAIL’s completeness is incomplete, which is only 

suitable for the on-line situation. What is more, it ignores the interaction between different 

occurrences. 

We find that SAIL satisfies the completeness under a certain restriction, i.e. the pattern with 

no-recurring character (NR pattern), such as a¢[0, 1]t¢[0, 1]g¢[0, 1]c¢[0, 1]. The concept of 

NR pattern has practical significance, for example, in text mining, where the text is a 

sequence of words, the NR pattern reflects the semantic relation between words. 

We utilize the symmetry to scan the text and the pattern. Then convert an RT pattern into an 

R pattern.  

1. According to the characteristic of P, if it is not an RT pattern, we directly call SAIL; 

otherwise go to (2); 

2. Reverse T and P, respectively get T’, P’; 

3. Call SAIL, and obtain the occurrences of P’ in T’; 

4. Obtain the occurrences of P in T by coordinate transformation of the obtained solution. 

Obviously, since the time of the identification of pattern’s characteristics is linear, O (RSAIL) 

= O (SAIL). 

Experiments and Analysis: 

We will give a set of experiments to illustrate two problems: 

1. Analysis of the complete extent of the SAIL algorithm; 

2. The comparison of the complete extent of RSAIL and SAIL algorithm; 

Considering there is no algorithm can obtain the completeness occurrences of PMWL 

problem in polynomial time, we have developed a text generator (Xie et al., 2010) to 

generate experimental text, by which way we can know the completeness occurrences in 

order to analyze the complete extent of algorithm. In addition, the patterns used in these 

experiments are all RT patterns. 
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 Experiment1 Experiment 2 Experiment 3 Experiment 4 

Size of alphabet ∑ 4 4 4 7 

Length of pattern m 3 4 5 5 

gap 0~30 0~30 0~30 0~30 

Table 5. The parameters in the experiments. 

The experimental results and analysis: 

 

Figure 3. The approximate ratio experimental results of RSAIL and SAIL 

From the above images, SAIL itself is already a near-complete algorithm, in the above 

graphs, the average approximation ratio of SAIL is higher than 0.94;For the RT patterns, 

the completeness of RSAIL is better than SAIL in different  , m and gap. Thus, not only a 

revised algorithm is obtained, the SAIL’s deficiency on handling RT patterns is also 

proved from another aspect. 

3.3. The BPBM Algorithm 

Description of BPBM Algorithm (Guo et al., 2011): 

Like the SAIL algorithm, the BPBM algorithm also focuses on pattern matching in online 

sequential text with both flexible gap constraints by user’s specification and the one-off 

condition. BPBM is based on bit-parallel technology to simulate the matching process and 

adopt two nondeterministic finite state automatons (NFAs). One is a search mechanism to 

identify all pattern P’s suffix, and another one is a security window transition mechanism 

which accelerates the scanning process by dropping useless sequences in text.  
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BPBM has following characteristics: 

1. BPBM also uses the left-most strategy to obtain the maximal occurrence of pattern in 

text, and return all these matching position sequences. This algorithm combines bit-

parallel technology with nondeterministic finite state automatons. It also simplifies the 

calculation of shift distance of the security window transition, which gets good results. 

BPBM inherits the advantage of BM algorithm to skip some of characters in text, which 

conducts the algorithm with a sub linear average time complexity. Therefore, the time 

complexity of BPBM is lower compared to SAIL. 

2. Compared with Gaps-Shift-And algorithm and Gaps-BNDM algorithm, since they are 

all based on bit-parallel technology, their time performances are equal, however, 

because BPBM improves the formula of ε-transition in matching process, BPBM is fit for 

all patterns. In addition, BPBM returns a concrete set of matching position sequence, 

which makes it more applicable.  

3. Compared with SAIL, SAIL applies two-dimensional table as data structure, but BPBM 

is base on bit-parallel technology. Since the difference in data structure, BPBM has a 

better time performance. The similarity between these two algorithms is they all utilize 

the left-most strategy, therefore, they are all heuristic algorithm with greedy strategy. In 

addition, the matching occurrences of these two algorithms are same and both 

incomplete. 

3.4. The SBO Algorithm 

Description of BPBM Algorithm (Wu et al., 2011): 

Wu et al. propose a new nonlinear structure called Nettree to deal with pattern matching 

with flexible constraints of wildcards. A Nettree is a kind of directed acyclic graph (DAG) 

with edge labels. They apply a heuristic algorithm to select better occurrence (SBO). In this 

algorithm, they use two strategies: Strategy of Greedy-Search Parent, SGSP and Strategy of 

right-most Parent, SRMP to two occurrences of the same leaf, and select the better one as 

occurrence. The core idea of SGSP is finding an approximately optimal parent (AOP) of 

current node in each step; while the core idea of SRMP is finding the right-most parent node 

of current node in each step.  

In off-line conditions, owing to its heuristic strategy, SBO can obtain more occurrences than 

SAIL and BPBM in most cases, but it is still incompleteness. However, the time complexity 

of SBO algorithm is O(gap*n*(n+m2)) which is nonlinear of length of text. Further more, 

experiments show that, in general, SBO indeed consumes more time than SAIL. In SBO, the 

improvement of solution’s quality is relying on using heuristic strategies repeatedly, and 

this also consumes a lot of time. Therefore, we need consider the balance between 

completeness and time efficiency of algorithm. What is more, SAIL originally is not 

designed for off-line condition, as an on-line algorithm, it only has current information, so 

when applying it to off-line matching it will definitely be imperfect. But SBO uses global 

information to search occurrences, it also uses heuristic strategies to search on solution 

space. With the improvement of occurrences’ quality, there are two problems: more 
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information need more place to store, so the space complexity of SBO is O(gap*m*n), the next 

one is more information means more calculations thus consuming more time. 

3.5. Other algorithms 

In many literatures, similar problems are defined and various algorithms are put out to 

solve certain problems. Morgante, et al. (Morgante, et al., 2004) described a structured 

model, which can be considered as ‘compound patterns’ made of a list of simple motifs and 

a list of intervals that specify at what distances adjacent motifs should occur. They gave a 

detailed description of the biological background of the problem definition. For example, 

many retrotransposons belonging to the Ty1-copia group contain a match of 

MT¢[115,136]MTNTAYGG¢[121,151]GTNGAYGAY, which consists of three patterns and 

two intervals. As the paper pointed out, structured motifs are called classes of Characters 

and Bounded Gaps (CBG) expressions in Navarro and Raffinot, but use of these expressions 

is quite different: the underlying motivation for CBG expressions is searching in database 

like PROSITE and a sequence of this kind is usually not very long, while structured motifs 

can be very long since gaps may span many letters. As we can see, the concept of CBG and 

structured motifs are all have practical meaning. Because of the different application 

background, they design different algorithms to solve their problems. From the application 

point, this paper also considered a problem of q-approximation match which means just 

finding partial motifs in the sequence. In this paper, they proposed a two-step procedure 

which is used in many algorithms for PMWL: firstly, finding the occurrences of all the 

component patterns; secondly, combining the occurrences that satisfy the distance 

constraints into a structured motif. For step two, they gave a detailed algorithm to build a 

directed acyclic graph according to the positions of the component patterns and interval 

constraints. Then they discussed how to output all the occurrences in detail. In (Rahman et 

al., 2006), the definition of their problem likes SAIL, but they don’t consider global 

constraints and the one-off searching. In addition, just like paper (Chen et al., 2006), the local 

constraints exist between two substrings, while in SAIL, exist between any two consecutive 

letters. Certainly, a single character is a substring, but in this paper, all these substrings are 

used to build an AC automaton. It is not efficient to build a Trie structure over a set of single 

letters. This paper also used a two-step procedure: firstly using AC automaton to get 

occurrences of each sub-patterns in orders and combine them. They built an implicit graph, 

in which vertices are partitioned into several sets in order according to the corresponding 

sub-pattern and edges between two consecutive sets means two positions in these two 

consecutive sets fit corresponding local constraints. To output all P in T, we have to 

enumerate all possible paths in the implicit directed graph which length is the number of 

sub-patterns in the pattern. Morgante, et al. (Morgante, et al., 2004) applied a revised depth 

first searching algorithm. Philip Bille et al. (Bille et al., 2010) defined a concept named 

variable length gap (VLG) which is a pattern formed by a sequence of strings and variable 

length gaps. Obviously, this definition is almost the same with above works. Unlike 

Rahman’s work, although this paper also applies AC automaton, it maintains a sorted list 

containing the ranges defined by previously reported relevant occurrences, and naturally it 
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uses the left-most strategy to count an occurrence as soon as it appears. Haapasalo et al. 

(Haapasalo et al., 2011) extended the usual dictionary matching problem to the case in 

which patterns may include single wildcards, or wildcard strings of variable length with 

fixed or unlimited upper bound. And their algorithm is designed for on-line matching: the 

text is scanned only once, and the matches for all patterns are reported at the point of 

occurrence. Firstly, they constructed an AC PMA (pattern matching automaton) with output 

tuples identifying the keywords of the patterns to be matched. The idea in their algorithm is 

that they recognize keywords by the PMA and check whether or not a newly found 

keyword forms a continuation of a pattern prefix found thus far. 

3.6. Discussion 

Because of the complexity of the PMWL problem definition, we believe that the matching 

occurrence of PMWL problem is with high degrees of freedom. In traditional matching 

problem with fixed-length wildcard, the positions of each match in the same set of the 

matching occurrence are relatively fixed to each other. Therefore, to determine the position 

of any one character, a set of matching occurrences have been identified. We believe that 

matching of each character in above problem has a strong correlation. For instance, in 

pattern a¢g¢¢c, p[2] – p[1] = 1, p[3] – p[2] = 2. However, for pattern in PWML, matching 

positions of adjacent characters are bounded by local constraints, which means matching of 

each character has a weak correlation, and to determine the positions of all characters, a set 

of matching occurrences could have been identified, that is, freedom degree of matching 

increases. This is an important factor leads to  the complexity of the PMWL problem, which 

greatly increases the difficulties of searching process in matching algorithms. In order to get 

a complete solution, a lot of backtracking operation are required, making it difficult to be 

completed in polynomial time, therefore, almost all PMWL algorithms use greedy strategies 

in matching process. This is destined to incomplete results. However, on the other hand, 

although the above algorithms are not complete, we find that when length of pattern is 

shorter than 6, the approximation ratio of these algorithms are more than 0.9. Consequently, 

the next work can be considered form two aspects: 1, based on SAIL algorithm etc, 

improving the time efficiency, like BPBM; 2, designing algorithm for PMWL under certain 

conditions, such as RSAIL’s work for RT pattern. We believe that the pattern features, data 

structures and matching strategies will continue to be the center for PMWL algorithm 

design. 

 

 SAIL RSAIL BPBM SBO 

Matching  

strategy 

left-most 

(greedy strategy)

left-most, right-most

(greedy strategy) 

left-most 

(greedy strategy)

SGSP,SRMP 

(greedy strategy)

Data structure Sliding window Sliding window Bit-parallel  Nettree 

Time consumption All polynomial time and SBO > RSAIL = SAIL > BPBM 

Completeness All incompleteness, in general SBO > RSAIL > SAIL = BPBM 

Table 6. The strategy, structure, time consumption and completeness of PMWL methods 
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4. Analysis of PMWL based on pattern features 

In the traditional matching problems, how to search pattern in text much faster as well as 

the correlation between pattern and text are paid more attention. But the characteristics of 

the pattern itself are paid little direct attention, because traditional matching problems can 

always have complete occurrences. The main characteristic of PMWL is with flexible 

wildcards, which leads to a large number of candidate matching positions. And the conflict 

between these occurrences will cause the final output incompleteness. However, our 

research shows that the direct cause which impacts PMWL incompleteness is not wildcards; 

it is the pattern characteristics directly conduct PMWL incompleteness. This is much 

different from traditional matching problems. 

4.1. The impact of the alphabet, the length of pattern and the gap on 

completeness 

In the traditional pattern matching research, the length of pattern and the size of alphabet 

are key elements influencing time complexity when analyzing traditional matching 

problems. Taking into account PMWL problem definition, upper and lower limits of the 

length constraints probably affect problem solving. Especially, instead of upper and lower 

limits themselves, the distance between the upper and lower limits, that is gap, are taken 

into consideration. Therefore, the parameters related to the algorithm completeness may be 

the size of alphabet, the length of pattern and distance between the upper and lower limits, 

denoted as Σ, m, and gap respectively. In this article, the approximate degree of 

completeness of the algorithm will be measured by approximation ratio ε. Consequently, we 

try to build following model: 

 ε = F (Σ, m, gap) (1) 

Taking into account that the size of Σ is determined in a specific area, for example, in 

bioinformatics, DNA sequences can be defined on Σ = {a, c, g, t}, the above formula can be 

simplified as ε = F (m, gap). In experiment project, input text is a biology DNA sequence, so 

Σ = {a, c, g, t}. Then the remaining parameter values are as follows: gap ∈ [1, 30], m ∈ [3, 9], 

consequently, there are 30*7 = 210 groups of experiments. The aim is to find approximation 

ratio ε. 

Firstly, pattern P is generated randomly by pattern generator according to Σ, m, and gap. For 

example, when m = 5, Σ = {a, c, g, t}, gap = 2, a¢[0,2]c¢[0,2]c¢[0,2]t¢[0,2]g is a qualified pattern. 

For simplicity, in generated patterns, each two consecutive characters have the same length 

constraints i.e. gap. Then, what needs to be done is calculating approximate ratio ε for each 

pattern. Since ε = N(UALG) / N(Uopt), we need to know N(Uopt). However, it is not desirable to 

directly solve this from a text T, since there is no any known algorithm to obtain the 

completeness solution. If we use a simple brute-force, the exponential time will be need. 

Therefore, we have developed a text generator, which can generate text T according to P and 

N(UALG). In addition, SAIL algorithm is currently regarded as the most representative 

algorithm for PMWL problem, since SAIL firstly adopts the left-most strategy which is 
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applied in different situations and technologies such as BPBM(Guo et al., 2011) algorithm 

and the mining algorithm MAIL(Xie et al., 2010). Based on the above analysis, we have SAIL 

as a research object, that is, N(UALG) = N(USAIL).  

In summary, the concrete steps of the experiment are as follows: 

1. For given Σ, m and gap, 100 patterns pi are generated randomly, where i = 1, 2,.., 100; 

2. For pattern pi, given N(Uopt) = 100, text length n = 2000, generate text Ti; 

3. For Ti, call SAIL algorithm to get N(USAIL); 

4. Calculating εi = N(UALG) / N(Uopt); 

5. Calculating
100

0

/ 100i
i

 


 .  

 
 

 Experiment1 Experiment 2 

∑ 4 7 

m 3~9 3~9 

gap 1~29 1~29 

Table 7. Parameters in experiments for ε = F (gap) 

The experimental results： 

 

Figure 4. Curves of ε = F (gap) in experiment 1 

By the figure 4, as m increases, ε is gradually decreasing. As the gap increases, the trend of ε 
is decreasing first and then increases, especially when gap = 1 and ε = 1, since the left-most 

strategy can obtain a complete occurrence set. With the increase of gap, ε begin to decline 

because when the gap is becoming greater, the probability of matching occurrences overlap 

is becoming greater and the algorithm is becoming more easily to lose occurrences; when 

gap is sufficient, although matching occurrences are still overlap, greater gap reserve enough 

space for matching, making the remaining occurrences which have not yet been still have 

enough resources. Moreover, it is worth noting that the minimum of these curves can be 

reached when gap is about 7, and have nothing to do with the pattern length.  
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Figure 5. Curves of ε = F (gap) in experiment 2 

In figure 5, the trend of curves is the same as in figure 4. The difference between them is 

curves in figure 5 reach the minimum when gap is about 9~11. It can be found that the impact 

of Σ, m, and gap on the curves is that the change of gap determines the trend of the curve, m 

affects the magnitude of this change, and Σ makes the curve do translational move.  
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88 
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96 
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Table 8. Parameters in mathematic model 
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After a series of experiments, we speculate that ε = A*gap4+ B*gap3+ C*gap2+ D*gap +E, where 

A, B, C, D and E are parameters and for different m there are different parameters. We try to 

use this model to illustrate the relation between gap and approximation ratio ε. 

Use this parameter table, some of illustrations for m = 3, 4……14 are listed below, where 

horizontal axis is the gap, vertical axis is the ε. 

 

Figure 6. Model fitting 

We believe this model can be used to predict the completeness of solutions given a certain 

pattern. For example, given m = 10, Σ = {a, c, g, t}, gap = 5, this model shows the prediction of 

approximation ratio ε of SAIL algorithm is about 0.878. Therefore, this model can be used in 

pattern mining showed as below. 

PMWL pattern mining evaluation mechanism 

Input: Given T, Σ, m, gap, support sup 

Output: pattern P 
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As we know, mining algorithm strategy is to learn from the strategy of matching algorithm, 

so PMWL pattern mining problem is naturally based on PMWL matching problem. For 

example, in mining algorithm MAIL (Xie et al., 2010), although a graph structure is utilized 

which conducts it different from SAIL; it is still based on the left-most strategy. As a result, 

they have the same degree of completeness. Therefore, our model can propose an evaluation 

mechanism for mining. 

4.2. The impact of pattern rep on completeness 

In next part, we will put forward another important concept, named rep, and analyze its 

impact on completeness. We first give an example to illustrate the reason why this concept is 

needed. Given m = 4, Σ = {a, c, g, t}, gap = 2, the corresponding patterns maybe P1 = 

a¢[0,2]c¢[0,2]g¢[0,2]t or P2 = a¢[0,2]c¢[0,2]c¢[0,2]t. They have the same Σ, m and gap. 

However, when applying SAIL or BPBM, the completeness of solutions is not the same, 

since for P1 algorithms can obtain complete solutions while for P2 can not. 

Considering two examples below: 

 

 

 
 0 1 2 3 4 5 6 

T b c b b b c c 

P b¢[1,2] b¢[1,2]c 
 

Table 9. Example 1 for rep concept 

A complete occurrence set of this example is {{0, 3, 5}, {2, 4, 6}}, the number of matching 

occurrences is 2. It is not difficult to find that, in SAIL algorithm, for position 5, the selection 

of position 2 as p[1]’s occurrence by the left-most strategy will consume the position for the 

next matching occurrence. We can guess that, the recurring 'b' character in this pattern affect 

the quality of matching occurrences. 

 
 

 0 1 2 3 4 5 

T a a c c c c 

P a¢[0,1] c¢[0,1]c 

 

Table 10. Example 1 for rep concept 

In this example, A complete occurrence set is {{0, 2, 4}, {1, 3, 5}}, the number of matching 

occurrences is 2. If we use SAIL algorithm and first obtain {0, 2, 3}, then we will only get this 

occurrence and lose {0, 2, 4}, {1, 3, 5}. Obviously, the recurring 'b' character in this pattern 

affects the completeness. 
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From above examples, the matching of recurring character in the pattern may determine the 

completeness of the algorithm. As a result, we consider this repeatability as an element to 

influence the completeness. 

In order to quantify the repeatability, the concept of repeatability, rep, is proposed in this 

paper. 

Definition 9 Given a pattern P = p0p1…pm-1, let fij = (pi, pj) be all binary combinations of 

characters in pattern P 

Let
0,

1,

i j

ij
i j

p p
f

p p

   
, and

1 1

0 0

m m

ij
i j

rep f
 

 
   , where 0 ≤ i, j ≤ m-1, and i ≠ j. then rep is the 

repeatability of characters in pattern. It shows the number of pairs of the same characters in 

pattern. 

Definition 10 Given occurrences A and S, if a[i] = s[k] where 0 ≤ i ≤ m-1, 0 ≤ k ≤ m-1, we say A 

conflicts with S. For example, T = aacccc, P = a¢[0,1]c¢[0,1]c, {0,2,3} conflicts with {0,2,4} and 

{1,3,5}. And “c” is the conflict letter.  

For simplicity, global length constraint is deliberately ignored in our proof, and it does not 

affect the conclusion. 

LEMMA 1 Given two occurrences A, S, if A and S come from the same occurrence set, then 

a[i] ≠ s[k] where 0 ≤ i ≤ m-1, 0 ≤ k ≤ m-1.  

Proof: Assume a[i] = s[k], then A conflicts with S, so they can not belong to the same set. The 

contradiction is achieved. Lemma 1 is proved.  

LEMMA 2 Given two occurrences A and S where S∈USAIL. If there is a conflict between A 

and S, and let a[t] and s[i] be the conflict positions. According to the definition 10, under the 

one-off condition, A should be discarded. Moreover, if i = t, then s[i] = a[i]; if i ≠ t, s[i] < a[i] 

where 0 ≤ i ≤ m-1. For instance, S = {0, 2, 3}, A = {1, 2, 4}, for s[1] = a[1], the conflict position is 

1, and the other positions satisfy s[0] < a[0], s[2] < a[2]. 

Proof: Assume s[i] > a[i], then a[i] is in the left of s[i] in T. In accordance with the left-most 

strategy of SAIL, the left-most one prior to others is selected, which is a[i]. Due to the issue, 

S∈USAIL, so s[i] should be selected. The contradiction is achieved. Thus, s[i] ≤ a[i]. If i = t, s[i] = 

a[t] = a[i], and if i ≠ t, s[i] = a[t] ≠ a[i]. It is obvious to concluded that s[i] < a[i]. 

LEMMA 3 Given a text T, a pattern P and an occurrence S. Let USAIL be the occurrence set of 

SAIL. If S ∉ USAIL, S conflicts with at least one occurrence in USAIL. 

Proof: Assume S does not conflict with any occurrence in USAIL. Then it indicates that the 

reason why SAIL lose S can only be the length constraint. According to the definition 4, all 

the occurrences satisfy the length constraint. The contradiction is achieved. So the lemma is 

proved. 

LEMMA 4 Let USAIL be the occurrence set of SAIL, and Uopt be the optimal one. Let NSAIL 

(Nopt) be the matching number in USAIL (Uopt).  
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(1) If USAIL is the completeness set, NSAIL = Nopt is satisfied. 

(2) Otherwise, NSAIL < Nopt is obtained and there is a conflict between USAIL and Uopt. 

(3) If the condition holds Nopt = 1, NSAIL = Nopt is obtained. 

(4) If there is no conflict, NSAIL = Nopt is achieved. 

Proof: It is obvious to conclude (1) is obviously true. According to the definition 5, if NSAIL < 

Nopt, there is an occurrence S satisfying S∈Uopt and S ∉ USAIL. Due to LEMMA 3, S conflicts 

with at least one occurrence in USAIL. That is Uopt is conflict with USAIL. So (2) is proved. With 

regard to (3), let S be the unique occurrence of Uopt. Assume NSAIL < Nopt, then NSAIL = 0. That is 

SAIL has no occurrence. In accordance with LEMMA 3, S conflicts with at least one 

occurrence of SAIL. But USAIL is empty, so there is no conflict. Thus the contradiction is 

achieved. And (3) is proved. With regard to (4), it is obvious NSAIL ≤ Nopt. We assume NSAIL < 

Nopt, then there is an occurrence S satisfying S∈Uopt and S ∉ USAIL. Due to LEMMA 3, S 

conflicts with at least one occurrence in USAIL. That is Uopt and USAIL have a conflict. The 

contradiction is achieved. So (4) is proved. 

LEMMA 5 Given two occurrence sets U1,U2, if U1 conflict with U2, there are two sub-sets 
u1,u2 with a conflict where u1

U1, u2
U2. 

Proof: Assume there is no sub-sets with a conflict. All the matching positions of U1 and U2 

have no conflict. According to definition 10, U1 and U2 have no conflict and satisfy the one-off 

condition. The contradiction is achieved. Lemma 5 is proved. 

LEMMA 6 Given two occurrence sets U1, U2, U2 is Uopt. If there is a conflict between U1 and 
U2, and N(U1) < N(U2), there are two subsets u1,u2 where u1

U1, u2
U2, u1 is conflict with u2 

and N(u1) < N(u2). 

Proof: In accordance with LEMMA 5, there are subsets u1,u2 where u1
U1,u2

U2 with 

conflict. Let U1 = u11∪u12∪ ……∪u1n, U2 = u21∪u22∪ ……∪u2m, and u1i, u2j are arbitrary 

subsets where u1i
U1, u2j

U2, 1 ≤ i ≤ n, 1 ≤ j ≤ m. We discuss in three conditions: ①u1i, u2j 

have no conflict and do not satisfy N(u1i) < N(u2j), then U1,U2 have no conflict and N(U1) = 

N(U2), the contradiction is achieved. ② u1i, u2j have a conflict and do not satisfy N(u1i) < 

N(u2j), then U1,U2 have no conflict, the contradiction is achieved. ③ u1i, u2j have no conflict 

and satisfy N(u1i) < N(u2j), then N(U1) = N(U2), the contradiction is achieved. So u1i, u2j have a 

conflict and satisfy N(u1i) < N(u2j). Lemma 6 is proved. 

THEOREM 1 Given a text T, a pattern P, if SAIL is incomplete, P must be R pattern. 

Proof: Let USAIL be the occurrence set of SAIL, Uopt is the completeness set, NSAIL is the 

matching number of SAIL, and Nopt is the complete matching number. Consider the SAIL is 

incompleteness, according to LEMMA 4, NSAIL < Nopt, and USAIL conflicts with Uopt. Due to 

LEMMA 6, we get two subsets u1, u2 with conflict, which are satisfying N(u1) < N(u2) where 

u1
USAIL, u2

Uopt. Without loss of generality, let N(u1) = 1, N(u2) = 2. Set u1 = {S}, u2 = {A, B}, 

that is S∈USAIL, A∈Uopt, B∈Uopt. Let: 

T = t[0], t[1]… t[i]… t[n-1], t[i] is stand for the ith letter in T where i = 0,1,2……n-1 
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P = p[0], p[1]… p[i]… p[m-1], p[i] is stand for the ith letter in P where i = 0,1,2……m-1 

A = a[0], a[1]… a[u]… a[m-1], a[i] is stand for the ith character maching position of 

occurrence A where i = 0,1,2…m-1 

B = b[0], b[1]… b[w]… b[m-1], another occurrece. 

S = s[0], s[1]… s[i]… s[k]… s[m-1], another occurrece. 

Let a[u], b[w] be the positions in A, B, which conflict with s[i], s[k] in S separately. We assume 

other positions in A and B do not conflict with the occurrences in USAIL. ∴ a[u] = s[i], b[w] = 

s[k] ∴t[a[u]] = t[s[i]], t[b[w]] = t[s[k]] ∵According to the definition 4, t[a[u]] = p[u], t[s[i]] = 

p[i], t[ b[w] ] = p[w], t[s[k]] = p[k] ∴ p[u] = p[i], p[w] = p[k] 

It would be discussed in the following two cases: 

① u ≠ i or w ≠ k 

② u = i and w = k 

For ①, when if u ≠ i, ∵p[u] = p[i] ∴There are two of the same letters from different positions 

in P. ∴According to definition 6, P is an R pattern. For the case of w ≠ k, similarly, it can be 

proved.  

Then we will prove the other condition is impossible, and conclude P is R pattern. 

For ②, we obtain a[u] = s[i] = s[u], b[w] = s[k] = s[w]. There is u ≠ w. ∵ Assume u = w, then u = 

i = w = k ∴a[u] = s[i] = s[k] = b[w]. Consider A, B belong to the same occurrence set, which 

contradicts with LEMMA 1 ∴ u ≠ w. Without loss of generality, let u < w, according to 

LEMMA 2 ∵ SAIL adopts the left-most strategy, and S∈USAIL,A,B ∉ USAIL ∴ s[u] < b[u], s[w] < 

a[w] ∵ a[u] = s[u], b[w] = s[w] 

 ∴ a[u] < b[u], b[w] < a[w]  (1) 

And∵ u < w, we can obtain b[u] < b[w] 

A = …a[u]…………..a[w]… 

B = ……..b[u]…b[w]……… 

The occurrence {b0, b1,…, bu,…,aw,…, am-1} can be considerd as {{b0, b1,…,bu}, {bu,…,aw}, {aw,…, 

am-1}}. 

According to the definition 4, {a0, a1,…,au,…,aw,…,am-1} and {b0, b1,…,bu,…,bw,…,bm-1} satisfy the 

local constraints. So {aw,…, am-1} and {b0, b1,…,bu} satisfy the local constraints. 

Due to {bu,…,aw}, we can get { bu, bu+1…, aw-1, aw }. 

From the equation (1), a[u] < b[u], b[w] < a[w], and according to the definition 4: 

 b[i] < b[i+1], a[i] < a[i+1] where u ≤ i ≤ w-1 (2) 

There is a t satisfying: 
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 b[t+1] < a[t+1] and a[t] < b[t] where u ≤ t ≤ w-1  (3) 

A = …a[u]……a[t]……………a[t+1]……..a[w]… 

B = ……..b[u] ……b[t]……b[t+1]……b[w]……… 

Assume there is no t satisfying the condition, consider b[t] ≠ a[t] where u ≤ t ≤ w.Then due to 

any t there is a[t+1] < b[t+1] or a[t] > b[t] where u ≤ t ≤ w-1.Consider a[u] < b[u], there is a[u+1] 

< b[u+1].Due to a[u+k] < b[u+k], we can obtain a[u+k+1] < b[u+k+1] where 0 ≤ k ≤ w-u-1.Then 

we can induce a[i] < b[i] where u ≤ i ≤ w.It contradicts b[w] < a[w], so the assume is incorrect 

Due to equation (2) and (3), a[t] < b[t] < b[t+1] < a[t+1] where u ≤ t ≤ w-1. 

 b[t+1] - b[t] < a[t+1] - b[t] < a[t+1] - a[t]  (4) 

That is a[t] and b[t-1] satisfy the local constraints. In this way, { bu, bu+1…, aw-1, aw }can be 

considered as {{ bu, bu+1…,bt-1},{bt, at+1},{ at+2 …, aw-1, aw }}. In accordance with definition 4, { bu, 

bu+1…,bt-1},{ at+2 …, aw-1, aw } satisfy the local constraints. ∴{ bu, bu+1…, aw-1, aw } satisfy the local 

constraints. ∴From the above analysis, {b0, b1,…,bu,…,aw,…, am-1} satisfy the local constraints. 

However, according to the theorem, the other positions in A,B do not conflict with USAIL 

except for a[u], b[w]. That is, {b0, b1,…,bu,,aw,…,am-1} satisfies the one-off condition. ∴{b0, 

b1,…,bu, aw,…, am-1} is another occurrence, and does not conflict with any occurrences in USAIL. 

But USAIL does not include this occurrence. It contradicts with LEMMA 3. Thus, condition ② 

is impossible. And from the analysis of ①, under the condition of the theorem, P must be R 

pattern. The theorem 1 is proved. 

THEOREM 2 Given a text T, a pattern P, if P is NR pattern, then SAIL is complete. 

Proof: It is the inverse negation of THEOREM 1. Apparently, THEOREM 2 is true. 

THEOREM 3 Given a text T, a pattern P, if P is R pattern, then SAIL is incomplete. 

Proof: It can be concluded from the analysis and example in section 2. 

THEOREM 4 If the pattern fulfills gap = 0, SAIL is complete. 

Proof: If gap = 0, the wildcard is a constant. For example a¢[1,1]c¢[2,2]c is converted into 

a¢c¢¢c. There won’t be any conflict or exist seizing between occurrences. SAIL will perform 

complete.  

Experiment design1: ∑= 4, m = {5,7,9}, gap = [0,3], rep = {0,1,2,3,4,6,7,10,11,15, 21,28,35}. In 

each set of experiments, 20 patterns are randomly generated; the final result is the average. 

Analysis of experimental results: with increment of rep, the curve of approximation ratio 

gradually decreases, followed by a slight increase. The reason for decline is that rep lead to 

more nested occurrences, resulting in a greater degree of the possibility of losing 

occurrences; the reason for the increscent is that larger rep can cause more extreme pattern. 

For instance, when ∑ = 4, m = 7, rep = 21, patterns like P1 = 

                                                                 
1 When ∑ and m are determined, rep can only be some certain values, because rep has correlation with ∑ and m 
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a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a which is difficult to find a special text containing 

nested occurrences of such pattern, will be produced. For P1, the text like “aaaaaaaaaaaaaa” 

contains nested occurrences of this pattern. Obviously, this extreme text is very rare. 

Therefore, under the premise of nested occurrences are not easily to be formed, the 

approximation ratio will be increased slightly. 

 

Figure 7. The relation between rep and approximation ratio ε 

Next we will analyze the relationship between the repeatability rep and alphabet size ∑, 

pattern length m. Original problem: a pattern which length is m, and alphabet size is ∑, what 

is the expectation of repeatability E(rep)?  

This description is equivalent to the model of ‘taking ball from the bag’ in the combination 

mathematics:  

There is a bag of balls, and |Σ| kinds of colors, taking m balls from the bag with 

replacement, then in fetched balls, how many pairs of the same color?  

 

m 

Σ 
3 4 5 6 …… m 

3 3/3 6/3 10/3 15/3 …… 2 / 3mC  

4 3/4 6/4 10/4 15/4 …… 2 / 4mC  

5 3/5 6/5 10/5 15/5 …… 2 / 5mC  

6 3/6 6/6 10/6 15/6 …… 2 / 6mC  

…… …… …… …… …… …… …… 

Σ 3/| |  6/| |  10/| |  15/| |  …… 2 /| |mC   

Table 11. The relationship between ∑, m and rep 
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Finally, we can deduce: 

 
2

( )
| |

mC
E rep 


 (2) 

5. Conclusions 

As an extension of traditional matching problem, the PMWL problem has aroused more 

and more attention because of its unique flexibility and complexity. Based on problem 

definition and drawing on research idea in traditional matching problem, this article 

introduces SAIL, RSAIL, SBO and BPBM which are representative algorithms for PMWL 

in three important respects: the data structures, the matching strategies and the 

characteristics of pattern. The article also analyzes the pros and cons of the above 

algorithms from the point of quality of the solution and time complexity, and gives 

experimental matching results by using real DNA data. Among them, the SAIL algorithm 

is the first to propose the method of solving PMWL problem, it uses the sliding window 

structure and the representative left-most matching strategy. This paper finds that in short 

patterns, the approximation ratio of SAIL is higher than 0.9, while in longer patterns, the 

occurrences obtained by SAIL are of poor quality; the quality of occurrences obtained by 

SBO is best, but its time consumption has a non-linear relationship with the length of text; 

BPBM utilizes bit parallel technology to improve the efficiency of matching greatly, but 

also is impact by the machine word; for pattern with repeated letters in tail, RSAIL uses 

symmetry to improve the quality of occurrences under certain conditions, thus providing 

a solving idea to PMWL problem, but in longer patterns and wilder gaps, the efficiency is 

not obvious. 

Afterwards, this article focus on relationship between approximation ratio ε and alphabet 

size ∑, pattern length m, wildcards span gap and repeatability rep. Firstly, this article 

proposes the model ε = F (Σ, m, gap), describing the functional relationship between pattern 

characteristics and approximation ratio approximately; secondly, this article proves 

PMWL’s completeness under the conditions of rep = 0; finally, the relationship between the 

pattern features are also analyzed andm in addition, relationship that
2

( )
| |

mC
E rep 


 is 

proposed. 

In future work, the formal description of the PMWL problem will be considered, in order to 

explain the complexity of the problem better, thus helping algorithm design and analysis for 

problem complexity. 
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