
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 14

© 2012 Wang et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research on Pattern Matching with

Wildcards and Length Constraints:

Methods and Completeness

Haiping Wang, Taining Xiang and Xuegang Hu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48574

1. Introduction

The practical importance of the string matching problem should be obvious to everyone. For

typical word-processing applications, immense amounts of work have been done on this

subject. However, with the developments in bioinformatics (Cole et al., 2005), information

retrieval (Califf et al., 2003), pattern mining (Xie et al., 2010; Ji et al., 2007; He et al., 2007), etc,

sequential Pattern Matching with Wildcards and Length constraints (PMWL) has attracted

more and more attention. It is not difficult to think up realistic cases where PMWL plays an

important role. In Dan Gusfield’s book (Gusfield, 1997), they give an example about

transcription factor to illustrate the concept of wildcard. A transcription factor is a protein that

binds to specific locations in DNA and regulates the transcription of the DNA into RNA. In

this way, production of the protein that the DNA codes for is regulated. Many transcription

factors are found and can be separated into families characterized by specific substrings

containing wildcards. They use Zinc Finger, a common transcription factor as an example. It

has the following signature:

CYS¢¢CYS¢¢¢¢¢¢¢¢¢¢¢¢¢HIS¢¢HIS

Where CYS is the amino acid cysteine and HIS is the amino acid histidine. They also give a

conclusion that if the number of wildcards is bounded by a fixed constant, the problem can

be solved in linear time.

Another respective example is about promoter. In bioinformatics, promoter will help

researchers to quickly locate the starting position of the intron from hundreds of millions of

the sequence of ACGT. Among these promoters, TATA box is a common one (Manber &

Baeza-Yates, 1991). It has very loose sequence specificity, so many TATA sequences are not

Bioinformatics 300

TATA box. As a result, indirect positioning by pairs of sites is needed. The commonly used one

is CAATCT sequence. The DNA sequence TATA is a common promoter that often occurs after

the sequence CAATCT within 30-50 wildcards. Therefore, matching patterns with wildcards

becomes especially crucial in exploring valuable information from DNA sequences.

There are many applications that involve pattern matching with wildcards and various

researches have provided many solutions to different forms of this problem. Fischer and

Paterson were the first to generalized pattern matching with wildcards (Fischer & Paterson,

1974): given a pattern P and a text T, either of which may contain wildcards, denoted by ¢,

the goal is to locate all P’s occurrences in T. ¢ can match any letter in a given alphabet, such

as a¢¢c¢t. Unlike previous work, Chen, et al. proposed a PMWL problem integrating two

problems(Chen et al., 2006): one is complex local constraints which means the user can

specify a different range of wildcards between each two consecutive letters of P, for

example, a¢[0,3]c¢[1,3]t. Another one is global length constraints. The user can constrain the

length of each matching substring of T in which P occurs. Therefore, flexible constraints of

wildcards conduct flexible jump of the matching positions. The definition of PMWL

problem is an extension of Fischer and Paterson’s definition and the introduction of complex

local constraints increase the flexibility. On one hand, this definition of pattern is more

suitable for areas such as bioinformatics; on the other hand, the size of the matching

candidate positions is in the exponential increment which greatly increases the complexity

of the problem solving.

Figure 1. The flexibility and complexity of PMWL problem

From a view of practical point, they also proposed two issues: with and without the one-off

condition (Chen et al., 2006; Min et al., 2009). In their problem definition, users have more

flexibility to search on sequences and the one-off condition has both theoretical and practical

significance. One-off condition means that every letter in T can be used once at most. In

practical applications, with and without the one-off condition has practical meaning in specific

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 301

areas. For example, in sequential pattern analysis in data mining, P can be treated as a

candidate shopping pattern, the user is interested in how frequently P occurs in one document,

it makes sense to count each occurrence for once, what is more, the one-off condition also

makes the problem solving possible. However, under the one-off condition, how to allocate

limited text resource to each matching occurrences, in order to obtaining the maximum

number of occurrences, belongs to optimization problem. In the allocation of resources, the

matching of different letters in the pattern possess a strong correlation, which conducts the

selection of matching positions in the combination of explosive growth. Since it is difficult to

develop a complete matching strategy in this problem, almost existed algorithms for PMWL

are using greedy matching strategies, which is the root reason why matching algorithm is not

complete. This article will focus on SAIL algorithm (Chen et al., 2006) which is a representative

algorithm for PMWL problem and will also describe RSAIL (Wang et al., 2010), SBO (Wu et al.,

2011), BPBM (Guo et al., 2011) algorithm which are all designed to solve PMWL problem in

different conditions. The each of above algorithms has its own characteristics in the data

structures and matching strategies, which will be analyzed in this paper.

What is more, since the theoretic and practical importance of the definition of PMWL, we

need to research the nature of this problem. To our best knowledge, there are still no efficient

methods on this problem, because as for completeness of the problem, we still do not know

whether it could be solved in polynomial time. In this article, we will research the

completeness of PMWL under certain condition. In the traditional matching problem,

description of pattern and text information is the key to the algorithm design, however,

flexibility and complexity of the PMWL problem all depends on the pattern features, so this

article will focus on pattern information, especially the pattern features including the size of

alphabet, the length of pattern, the gap of wildcards in the pattern, etc. We will also investigate

the relationship between pattern features and completeness, and use the approximate ratio

judgment. Further more, since the definition itself is produced in realistic background, we

need to consider the situation in real biological background and improve the solution of the

problem. Based on the above, we choose this topic as a research object in this book.

This capture is organized as follows: In section 2 we will give the development, definition

and application of PMWL problem; Section 3 will show the representative algorithms, we

will introduce their structure, strategy, complexity and completeness; Section 4 will analyze

the PMWL problem completeness based on pattern features. We will give our conclusions in

section 5.

2. Pattern matching with wildcards and length constraints

The sequential pattern matching problem is to given a Text T and a pattern P as input, and

output all the occurrences of P in T. After Fischer and Paterson’s work, there are a variety of

non-standard definitions of the pattern matching problem: the approximate matching (He et

al., 2007), the swapped matching (Amir et al., 2000), the Parameterized matching (Amir et

al., 2009), etc. They all belong to Non-standard Stringology problem (Muthukrishnan, 1994).

Many of them are still open problems.

Bioinformatics 302

2.1. The development of PMWL problem

After years of development, these Non-standard Stringology problems always focus on a

problem: that is, how to conduct the traditional pattern matching definition to be more

flexible to adapt the development of application. The don’t cares problem always focus on

how to combine the wildcards and the pattern. After Fischer and Paterson’s work, Cole et al.

considered a slightly different problem (Cole et al., 2004), where instead of fixing the

number of ¢s between two consecutive letters in P and T, they fixed the total number of ¢s in

P. The disadvantage of these problem definitions is that the number of ¢s is a constant but

not a range. This limits flexibilities for the user’s queries. To alleviate the problem of a fixed

number of ¢s, Kucherov et al. (Kucherov et al., 1995) proposed a solution to allow an

unbounded number of ¢s between two consecutive letters in a given pattern. Given a set of

such patterns, their objective is to find whether any of these patterns matches some

substring of the text that does not contain any ¢.Obviously, allowing an unbounded number

of ¢s still does not offer the users enough flexibilities to control their queries. Manber et al.

(Manber & Baeza-Yates, 1991) proposed an algorithm for string matching with a sequence of

wildcards. They considered the following problem: given two pattern strings P and Q, each

of which consists of letters, and an integer g, all occurrences of the form P¢0−gQ in the text are

returned. The number of ¢s between P and Q is in the range of [0, g], and the text does not

contain any ¢. This problem was so-called exact string matching with variable-length don’t

cares. Chen et al. sum up all these definitions into three conditions (Chen et al., 2006): firstly,

there is a wildcard between two consecutive letters in P, for example A¢[0,1]T¢[0,2]G¢[1,3]C;

secondly, every letter in T can only be used once for matching; thirdly, there is a global

constraint to limit the matching occurrence length. We call the problem satisfying above

definition PMWL problem, which has been used in approximate matching, pattern mining,

information retrieval, etc.

2.2. The potential applications of the PMWL problem

1. Text Indexing: There is a large amount of hypertext information on the Internet. How to

effectively obtain information that meet users’ needs is becoming more and more

urgent. Text indexing is a method to solve this problem. How to determine the position

of user-specified pattern (may contain wildcards) is a challenge task.

2. Data stream is becoming more and more crucial in many new database applications

such as data warehouse and sensor network. Mining dependence or association in large

amounts of data flow has practical value and during which the sequential pattern

matching with wildcards is the first and the most important step. In addition, in data

mining, sequential pattern mining also search frequent patterns as in transaction

sequence, a typical instance is the similar consuming pattern of many consumers, for

example, buying a desktop, a laser printer, a digital camera and an LCD screen monitor

in turn, between each of them exists a certain time interval. Mining such typical user

mode, which is obviously a pattern matching with wildcards, will has a great influence

on the market.

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 303

3. Network Security: Pattern matching methods in network security and intrusion

detection need high performance. A complete IDS (Intrusion Detection System) based

on Snort rules needs to optimize hundreds of rules and many of them need to do

pattern matching efficiently for the entire data partition of a package. Efficient pattern

matching and mining with wildcards constraints give the system administrator a more

flexible and accurate solution to locate the suspicious users.

2.3. Problem statement for PMWL

Definition 1 Let  be an alphabet, T = t0t1…tn-1 ∈ * is called a text of  where n = |T| is the

length of T. A pattern is a tuple P = (p, g) where p = p0p1…pm-1 is a sequence of characters,

which belong to the alphabet  , and g = g0g1…gm-2 is a sequence of wildcards. And m = |P| is

the length of P. The interval of wildcards between pi and pi+1 is denoted by gi = g(Ni, Mi)

where 0 ≤ i ≤ m - 1, called the local constraints. Ni and Mi is the upper and lower limit of

wildcard. Such as P = a¢[1,3]g, where 1, 3 is respectively the lower and upper limit of local

constraints. ¢[1,3] means the wildcards between a and g is referring to a string which length

is 1~3. Given interval [minLen, maxLen], set globalLength = t[am-1] - t[a0] +1, if globalLength

∈[minLen, maxLen], then it is called global constraint (Chen et al., 2006).

Definition 2 Given a pattern P = (p, g), p = p0p1…pm-1, gi = g(Ni, Mi). The max {Mi - Ni} where 0

≤ i ≤ m - 1 is called the gap of local constraints, named Gap for short. For example, P =

a¢[0,2]g¢[1,4]g, then gap = max{2 - 0, 4 - 1} = 3.

PMWL problem can be defined by the above definition:

Definition 3 PMWL problem (Pattern Matching with Wildcards and Length constraints)

Pattern Matching with Wildcards and Length constraints meets the following conditions:

1. ¢s can occur between each two consecutive letters in pattern and are independent to

each other;

2. ¢s between two consecutive letters can match a string which length is limited by local

constraints, and the total length of pattern is limited by global constraint;

3. One-off condition is taken into consideration that every letter in T can only be used once

for matching pj (0 ≤ j ≤ m - 1) and as soon as there exists one occurrence of P in T when T

is being scanned from left to right it will be returned.

Definition 4 Given a text T and a pattern P, if there is a sequence of matching positions A =

(a1, a2, …, am-1), where t[ai] = p[i] for every 0 1i m   , we say A is a matching occurrence of

P. A set of occurrences A1, A2, ..., At constitute an occurrence set U where t is the number of

occurrences, and also named matching number in our paper.

Definition 5 Let t be the matching number of A, if there is no occurrence set A’ with the

matching number t’, and t’ > t, then A is called a complete occurrence set. If there is another

occurrence set U, with the matching number tu = t, the U is equivalent to A. Specially, if A is

complete, and so is U. So the complete occurrence set is not always unique.

Bioinformatics 304

3. Algorithms for PMWL

The results of traditional matching algorithm are complete, so the focus of research is to

improve the matching efficiency. As a kind of searching problem, the key to solving

matching problem is how to use and extract information getting from text and pattern.

KMP, BM algorithm uses automata to describe the pattern characteristics, and deposit

information obtained from scanning during matching process into automata. Algorithm

visits the automata, when the jump distance needs to be calculated, thus to avoid obtaining

the pattern information repeatedly and to ensure the jump in matching process does not

affect the final result. The basic idea the suffix tree is to use the tree structure to describe the

text information, and to avoid scanning the same text repeatedly when matching a set of

patterns. We believe that data structure and search strategy are crucial for traditional

algorithms to access to information of text and pattern. Reasonable data structure is better to

explore the potential of the computer, such as bit parallel technology, and can also be a more

reasonable representation of the sequence information, such as automata. In addition, there

exist the sliding window, indexes and other data structures. Reasonable matching strategy

makes better use of sequence information. These strategies can approximately be divided

into prefix searching, suffix searching and factor searching (Navarro & Raffinot, 2001).

 Characteristics Representative

algorithms

Methods Remarks

prefix

searching

Forward search to find

the longest common

prefix of text and pattern

strings in searching

window

KMP Deterministic

automata

Most of them are

sliding window

technique, the scope

of algorithm

application depends

on the alphabet size

and the pattern

length

Shift-And Bit parallel, non-

deterministic

automata

suffix

searching

Backward search to find

the longest common

suffix of text and pattern

strings, can skip some text

characters, the difficulty

is how to safely move the

window

BM Pre-calculation of

the three functions

used to determine

the safe jumping

distance

Horspool Improve the

function of the BM,

can have a greater

jump distance,

especially suitable

for larger alphabet

factor

searching

Backward search to

determine whether the

suffix of text in searching

window is a substring of

pattern string

BDM Suffix automaton

BNDM Bit parallel

BOM Factor Oracle

automaton, suitable

for longer pattern

Table 1. Analysis of the traditional pattern matching algorithms

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 305

As different extension of traditional matching problem, PMWL problem, approximate

matching, and swap matching all belong to the Non-standard Stringology problem. Problems

in this field mostly belong to the optimization problem, and most of them have not yet been

completely solved, such as PMWL and approximate matching problems with wildcards etc.

What PMWL and traditional matching problem have in common are:

1. From the view of algorithm itself, the data structures and matching strategies are as the

key of algorithm design.

2. From the view of describing the object, how to effectively describe the patterns and text

information is the key to solve the problem.

What PMWL and traditional matching problem have in difference are:

1. For PMWL, there is no complete solving yet, so algorithm evaluation criteria include

both time efficiency and solution quality; but traditional matching algorithm is only

concerned with matching time.

2. The flexibility and complexity of the PMWL problem definition are reflected in the

pattern, therefore, compared with traditional matching, PMWL pay more attention to

the description of the pattern information. Pattern characteristics are extremely

associated with the solution of PMWL problem.

Next, we will give the representative algorithms for solving PMWL problem, and detailed

description of their design ideas from the perspective of data structure and matching

strategy.

3.1. The SAIL Algorithm

Description of SAIL Algorithm (Chen et al., 2006):

Input: A text T = t0t1…tn-1, a pattern P = p0p1…pm-1, local constraints gi = g(Ni, Mi), global

constraints [minLen, maxLen].

Output: Occurrences of P in T satisfying the constraints.

The Steps of the algorithm:

1. Location: ① Search position i where t[i] = p[m-1], and locate position k where t[k] = p[0]

by considering the global constraint. ② Cut out a substring in T from t[k] to t[i] named

T’. ③ Build the table with the row and column according to T’ and P.

2. Forward: Scan the table forward, and mark all the positions satisfying the local and

global constraints. They are the potential matching positions.

3. Backward: Scan the table backward, and select the left-most position in the marked cells

every row that compose an occurrence. Then mark them used.

Generally, SAIL starts from the beginning of T to search position i where t[i] = p[m-1]. After

that, SAIL conducts two phases, the Forward phase and the Backward phase. In the Forward

phase, SAIL determines whether there is a potential matching occurrence by using a search

table. Afterwards, if a potential matching occurrence can be determined, Backward phase is

triggered out to output an optimal occurrence by using the left-most strategy.

Bioinformatics 306

A running example for SAIL:

In this subsection, we show how SAIL works with a running example where P, T and

constraints are given as follows.

 0 1 2 3 4 5 6 7 8 9

T t t a a g g c c c c

P a¢[0,1]g¢[0,1]c¢[0,1]c, minLen = 6, maxLen = 7

Table 2. A running example for SAIL

Step 1. Scan the P[m-1], that is the letter ‘c’, in T from left to right. The first matching

position is 6, and then SAIL enters the Location phase. Use the global constraint [6, 7] to

locate P[0]’s position, that is the letter ‘a’. We get the scanning range is [6-6, 7-6].

However there are no matching in [0, 1]. Then SAIL move on.

Step 2. The second matching position is 7, and we can locate P[0] in position 2. Then we

get the substring “aaggcc” from T. In this way global constraint is satisfied.

Step 3. Build a 4×6 table. The row stand for character in P, and the column is the substring.

Then set the position pos[3][5], pos[0][0] and pos[0][1] to 1.

Step 4. Enter Forward and set all the positions to 1 in the table, which satisfy the local

constraints.

Positions in Text

Positions in Table

a

g

c

c

Table 3. The constructed search table pos[j][i-start] when P[m-1] is 7

Step 5. Enter Backward and select the left-most one from the marked positions in each row,

and they are highlighted. In this way, we will get an occurrence {2, 4, 6, 7} and mark the

four positions used.

Step 6. Go on to execute Location and get the third matching position is 8, then we can

build the table below. Notice the positions of 6, 7 have been used. Under the one-off

condition, all used positions (marked as * in Table) of T are never considered for further

matching again. If the one-off condition is not considered, SAIL will get another two

occurrences {2, 4, 6, 8} and {3, 5, 7, 9}. Then the Forward phase returns false, and SAIL go

back to Location.

Step 7. In position 9, the Forward also returns false. Finally, SAIL output only one

occurrence {2, 4, 6, 7}.

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 307

Positions in Text

Positions in Table

* * *

a

g

c

c

Table 4. The constructed search table pos[j][i-start] when P[m-1] is 8

The time complexity and completeness analysis:

O(SAIL) = O(n + klmg) where n is the length of T, k is the frequency of P’s last letter

occurring in T, l is the user-specified maximum length for each matching substring, m is the

length of P, and g is the maximum gap of wildcards in P.

Two important issues, Online searching and Optimization, are taken into consideration to

design SAIL. As for optimization, under the one-off condition, SAIL determines which

occurrence is an optimal one if multiple occurrences end at a P[m-1]’s position by applying

the left-most strategy. As a heuristic algorithm, SAIL utilizes a kind of greedy strategy to

select a set of occurrences; consequently, SAIL may obtain locally optimal solution which

lead to losing occurrences in offline searching.

Form the above example, we can know that a complete occurrence set for text T is {{2, 4, 6,

8}, {3, 5, 7, 9}}, but SAIL’s output is {{2, 4, 6, 7}}.

We believe that the SAIL’s data structure is based on the sliding window, the Location also

uses the left-most strategy, so it is possible to lose occurrences, for instance:

Figure 2. A sliding window in SAIL

Obviously, in the above example, SAIL loses occurrences in offline condition because of the

selection of character c’s matching position. For further observation, it is not difficult to find

that character c appears in the pattern twice. If pattern is a¢[0,1]g¢[0,1]c, SAIL will get a

complete occurrence set, that is, {{2, 4, 6},{3, 5, 7}}. Further experiments show that, the

recurring appearances of pattern characters influence the quality of matching occurrences

obtained by the algorithm. In next part, we will analyze the completeness of PMWL based

on pattern features.

Bioinformatics 308

3.2. The RSAIL Algorithm

Description of RSAIL Algorithm (Wang et al., 2010):

Definition 6 Given a pattern P, if there are letters p[i] = p[j] where 0 ≤ i ≤ m-1,0 ≤ j ≤ m-1, P is

called a pattern with Recurring characters, and R pattern in short, such as

a¢[0,1]c¢[0,1]c¢[0,1]t.

Definition 7 Given a pattern P, if all the letters in P are different, P is called a pattern with

No-Recurring characters and NR Pattern for brevity, such as a¢[0,1]c¢[0,1]g¢[0,1]t.

Definition 8 Given a pattern P, if there is a position i such that p[i] = p[i+1] =……= p[m-1]

where 1 ≤ i < m-1, P is called a pattern with recurring tail characters and RT pattern in short.

Such as a¢[0,1]c¢[0,1]c. As we can see, the RT pattern is a special form of the R pattern.

From the above discussion, in the research of Chen et al., since they only concern about

the on-line situation, their proof of SAIL’s completeness is incomplete, which is only

suitable for the on-line situation. What is more, it ignores the interaction between different

occurrences.

We find that SAIL satisfies the completeness under a certain restriction, i.e. the pattern with

no-recurring character (NR pattern), such as a¢[0, 1]t¢[0, 1]g¢[0, 1]c¢[0, 1]. The concept of

NR pattern has practical significance, for example, in text mining, where the text is a

sequence of words, the NR pattern reflects the semantic relation between words.

We utilize the symmetry to scan the text and the pattern. Then convert an RT pattern into an

R pattern.

1. According to the characteristic of P, if it is not an RT pattern, we directly call SAIL;

otherwise go to (2);

2. Reverse T and P, respectively get T’, P’;

3. Call SAIL, and obtain the occurrences of P’ in T’;

4. Obtain the occurrences of P in T by coordinate transformation of the obtained solution.

Obviously, since the time of the identification of pattern’s characteristics is linear, O (RSAIL)

= O (SAIL).

Experiments and Analysis:

We will give a set of experiments to illustrate two problems:

1. Analysis of the complete extent of the SAIL algorithm;

2. The comparison of the complete extent of RSAIL and SAIL algorithm;

Considering there is no algorithm can obtain the completeness occurrences of PMWL

problem in polynomial time, we have developed a text generator (Xie et al., 2010) to

generate experimental text, by which way we can know the completeness occurrences in

order to analyze the complete extent of algorithm. In addition, the patterns used in these

experiments are all RT patterns.

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 309

 Experiment1 Experiment 2 Experiment 3 Experiment 4

Size of alphabet ∑ 4 4 4 7

Length of pattern m 3 4 5 5

gap 0~30 0~30 0~30 0~30

Table 5. The parameters in the experiments.

The experimental results and analysis:

Figure 3. The approximate ratio experimental results of RSAIL and SAIL

From the above images, SAIL itself is already a near-complete algorithm, in the above

graphs, the average approximation ratio of SAIL is higher than 0.94;For the RT patterns,

the completeness of RSAIL is better than SAIL in different  , m and gap. Thus, not only a

revised algorithm is obtained, the SAIL’s deficiency on handling RT patterns is also

proved from another aspect.

3.3. The BPBM Algorithm

Description of BPBM Algorithm (Guo et al., 2011):

Like the SAIL algorithm, the BPBM algorithm also focuses on pattern matching in online

sequential text with both flexible gap constraints by user’s specification and the one-off

condition. BPBM is based on bit-parallel technology to simulate the matching process and

adopt two nondeterministic finite state automatons (NFAs). One is a search mechanism to

identify all pattern P’s suffix, and another one is a security window transition mechanism

which accelerates the scanning process by dropping useless sequences in text.

Bioinformatics 310

BPBM has following characteristics:

1. BPBM also uses the left-most strategy to obtain the maximal occurrence of pattern in

text, and return all these matching position sequences. This algorithm combines bit-

parallel technology with nondeterministic finite state automatons. It also simplifies the

calculation of shift distance of the security window transition, which gets good results.

BPBM inherits the advantage of BM algorithm to skip some of characters in text, which

conducts the algorithm with a sub linear average time complexity. Therefore, the time

complexity of BPBM is lower compared to SAIL.

2. Compared with Gaps-Shift-And algorithm and Gaps-BNDM algorithm, since they are

all based on bit-parallel technology, their time performances are equal, however,

because BPBM improves the formula of ε-transition in matching process, BPBM is fit for

all patterns. In addition, BPBM returns a concrete set of matching position sequence,

which makes it more applicable.

3. Compared with SAIL, SAIL applies two-dimensional table as data structure, but BPBM

is base on bit-parallel technology. Since the difference in data structure, BPBM has a

better time performance. The similarity between these two algorithms is they all utilize

the left-most strategy, therefore, they are all heuristic algorithm with greedy strategy. In

addition, the matching occurrences of these two algorithms are same and both

incomplete.

3.4. The SBO Algorithm

Description of BPBM Algorithm (Wu et al., 2011):

Wu et al. propose a new nonlinear structure called Nettree to deal with pattern matching

with flexible constraints of wildcards. A Nettree is a kind of directed acyclic graph (DAG)

with edge labels. They apply a heuristic algorithm to select better occurrence (SBO). In this

algorithm, they use two strategies: Strategy of Greedy-Search Parent, SGSP and Strategy of

right-most Parent, SRMP to two occurrences of the same leaf, and select the better one as

occurrence. The core idea of SGSP is finding an approximately optimal parent (AOP) of

current node in each step; while the core idea of SRMP is finding the right-most parent node

of current node in each step.

In off-line conditions, owing to its heuristic strategy, SBO can obtain more occurrences than

SAIL and BPBM in most cases, but it is still incompleteness. However, the time complexity

of SBO algorithm is O(gap*n*(n+m2)) which is nonlinear of length of text. Further more,

experiments show that, in general, SBO indeed consumes more time than SAIL. In SBO, the

improvement of solution’s quality is relying on using heuristic strategies repeatedly, and

this also consumes a lot of time. Therefore, we need consider the balance between

completeness and time efficiency of algorithm. What is more, SAIL originally is not

designed for off-line condition, as an on-line algorithm, it only has current information, so

when applying it to off-line matching it will definitely be imperfect. But SBO uses global

information to search occurrences, it also uses heuristic strategies to search on solution

space. With the improvement of occurrences’ quality, there are two problems: more

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 311

information need more place to store, so the space complexity of SBO is O(gap*m*n), the next

one is more information means more calculations thus consuming more time.

3.5. Other algorithms

In many literatures, similar problems are defined and various algorithms are put out to

solve certain problems. Morgante, et al. (Morgante, et al., 2004) described a structured

model, which can be considered as ‘compound patterns’ made of a list of simple motifs and

a list of intervals that specify at what distances adjacent motifs should occur. They gave a

detailed description of the biological background of the problem definition. For example,

many retrotransposons belonging to the Ty1-copia group contain a match of

MT¢[115,136]MTNTAYGG¢[121,151]GTNGAYGAY, which consists of three patterns and

two intervals. As the paper pointed out, structured motifs are called classes of Characters

and Bounded Gaps (CBG) expressions in Navarro and Raffinot, but use of these expressions

is quite different: the underlying motivation for CBG expressions is searching in database

like PROSITE and a sequence of this kind is usually not very long, while structured motifs

can be very long since gaps may span many letters. As we can see, the concept of CBG and

structured motifs are all have practical meaning. Because of the different application

background, they design different algorithms to solve their problems. From the application

point, this paper also considered a problem of q-approximation match which means just

finding partial motifs in the sequence. In this paper, they proposed a two-step procedure

which is used in many algorithms for PMWL: firstly, finding the occurrences of all the

component patterns; secondly, combining the occurrences that satisfy the distance

constraints into a structured motif. For step two, they gave a detailed algorithm to build a

directed acyclic graph according to the positions of the component patterns and interval

constraints. Then they discussed how to output all the occurrences in detail. In (Rahman et

al., 2006), the definition of their problem likes SAIL, but they don’t consider global

constraints and the one-off searching. In addition, just like paper (Chen et al., 2006), the local

constraints exist between two substrings, while in SAIL, exist between any two consecutive

letters. Certainly, a single character is a substring, but in this paper, all these substrings are

used to build an AC automaton. It is not efficient to build a Trie structure over a set of single

letters. This paper also used a two-step procedure: firstly using AC automaton to get

occurrences of each sub-patterns in orders and combine them. They built an implicit graph,

in which vertices are partitioned into several sets in order according to the corresponding

sub-pattern and edges between two consecutive sets means two positions in these two

consecutive sets fit corresponding local constraints. To output all P in T, we have to

enumerate all possible paths in the implicit directed graph which length is the number of

sub-patterns in the pattern. Morgante, et al. (Morgante, et al., 2004) applied a revised depth

first searching algorithm. Philip Bille et al. (Bille et al., 2010) defined a concept named

variable length gap (VLG) which is a pattern formed by a sequence of strings and variable

length gaps. Obviously, this definition is almost the same with above works. Unlike

Rahman’s work, although this paper also applies AC automaton, it maintains a sorted list

containing the ranges defined by previously reported relevant occurrences, and naturally it

Bioinformatics 312

uses the left-most strategy to count an occurrence as soon as it appears. Haapasalo et al.

(Haapasalo et al., 2011) extended the usual dictionary matching problem to the case in

which patterns may include single wildcards, or wildcard strings of variable length with

fixed or unlimited upper bound. And their algorithm is designed for on-line matching: the

text is scanned only once, and the matches for all patterns are reported at the point of

occurrence. Firstly, they constructed an AC PMA (pattern matching automaton) with output

tuples identifying the keywords of the patterns to be matched. The idea in their algorithm is

that they recognize keywords by the PMA and check whether or not a newly found

keyword forms a continuation of a pattern prefix found thus far.

3.6. Discussion

Because of the complexity of the PMWL problem definition, we believe that the matching

occurrence of PMWL problem is with high degrees of freedom. In traditional matching

problem with fixed-length wildcard, the positions of each match in the same set of the

matching occurrence are relatively fixed to each other. Therefore, to determine the position

of any one character, a set of matching occurrences have been identified. We believe that

matching of each character in above problem has a strong correlation. For instance, in

pattern a¢g¢¢c, p[2] – p[1] = 1, p[3] – p[2] = 2. However, for pattern in PWML, matching

positions of adjacent characters are bounded by local constraints, which means matching of

each character has a weak correlation, and to determine the positions of all characters, a set

of matching occurrences could have been identified, that is, freedom degree of matching

increases. This is an important factor leads to the complexity of the PMWL problem, which

greatly increases the difficulties of searching process in matching algorithms. In order to get

a complete solution, a lot of backtracking operation are required, making it difficult to be

completed in polynomial time, therefore, almost all PMWL algorithms use greedy strategies

in matching process. This is destined to incomplete results. However, on the other hand,

although the above algorithms are not complete, we find that when length of pattern is

shorter than 6, the approximation ratio of these algorithms are more than 0.9. Consequently,

the next work can be considered form two aspects: 1, based on SAIL algorithm etc,

improving the time efficiency, like BPBM; 2, designing algorithm for PMWL under certain

conditions, such as RSAIL’s work for RT pattern. We believe that the pattern features, data

structures and matching strategies will continue to be the center for PMWL algorithm

design.

 SAIL RSAIL BPBM SBO

Matching

strategy

left-most

(greedy strategy)

left-most, right-most

(greedy strategy)

left-most

(greedy strategy)

SGSP,SRMP

(greedy strategy)

Data structure Sliding window Sliding window Bit-parallel Nettree

Time consumption All polynomial time and SBO > RSAIL = SAIL > BPBM

Completeness All incompleteness, in general SBO > RSAIL > SAIL = BPBM

Table 6. The strategy, structure, time consumption and completeness of PMWL methods

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 313

4. Analysis of PMWL based on pattern features

In the traditional matching problems, how to search pattern in text much faster as well as

the correlation between pattern and text are paid more attention. But the characteristics of

the pattern itself are paid little direct attention, because traditional matching problems can

always have complete occurrences. The main characteristic of PMWL is with flexible

wildcards, which leads to a large number of candidate matching positions. And the conflict

between these occurrences will cause the final output incompleteness. However, our

research shows that the direct cause which impacts PMWL incompleteness is not wildcards;

it is the pattern characteristics directly conduct PMWL incompleteness. This is much

different from traditional matching problems.

4.1. The impact of the alphabet, the length of pattern and the gap on

completeness

In the traditional pattern matching research, the length of pattern and the size of alphabet

are key elements influencing time complexity when analyzing traditional matching

problems. Taking into account PMWL problem definition, upper and lower limits of the

length constraints probably affect problem solving. Especially, instead of upper and lower

limits themselves, the distance between the upper and lower limits, that is gap, are taken

into consideration. Therefore, the parameters related to the algorithm completeness may be

the size of alphabet, the length of pattern and distance between the upper and lower limits,

denoted as Σ, m, and gap respectively. In this article, the approximate degree of

completeness of the algorithm will be measured by approximation ratio ε. Consequently, we

try to build following model:

 ε = F (Σ, m, gap) (1)

Taking into account that the size of Σ is determined in a specific area, for example, in

bioinformatics, DNA sequences can be defined on Σ = {a, c, g, t}, the above formula can be

simplified as ε = F (m, gap). In experiment project, input text is a biology DNA sequence, so

Σ = {a, c, g, t}. Then the remaining parameter values are as follows: gap ∈ [1, 30], m ∈ [3, 9],

consequently, there are 30*7 = 210 groups of experiments. The aim is to find approximation

ratio ε.

Firstly, pattern P is generated randomly by pattern generator according to Σ, m, and gap. For

example, when m = 5, Σ = {a, c, g, t}, gap = 2, a¢[0,2]c¢[0,2]c¢[0,2]t¢[0,2]g is a qualified pattern.

For simplicity, in generated patterns, each two consecutive characters have the same length

constraints i.e. gap. Then, what needs to be done is calculating approximate ratio ε for each

pattern. Since ε = N(UALG) / N(Uopt), we need to know N(Uopt). However, it is not desirable to

directly solve this from a text T, since there is no any known algorithm to obtain the

completeness solution. If we use a simple brute-force, the exponential time will be need.

Therefore, we have developed a text generator, which can generate text T according to P and

N(UALG). In addition, SAIL algorithm is currently regarded as the most representative

algorithm for PMWL problem, since SAIL firstly adopts the left-most strategy which is

Bioinformatics 314

applied in different situations and technologies such as BPBM(Guo et al., 2011) algorithm

and the mining algorithm MAIL(Xie et al., 2010). Based on the above analysis, we have SAIL

as a research object, that is, N(UALG) = N(USAIL).

In summary, the concrete steps of the experiment are as follows:

1. For given Σ, m and gap, 100 patterns pi are generated randomly, where i = 1, 2,.., 100;

2. For pattern pi, given N(Uopt) = 100, text length n = 2000, generate text Ti;

3. For Ti, call SAIL algorithm to get N(USAIL);

4. Calculating εi = N(UALG) / N(Uopt);

5. Calculating
100

0

/ 100i
i

 


 .

 Experiment1 Experiment 2

∑ 4 7

m 3~9 3~9

gap 1~29 1~29

Table 7. Parameters in experiments for ε = F (gap)

The experimental results：

Figure 4. Curves of ε = F (gap) in experiment 1

By the figure 4, as m increases, ε is gradually decreasing. As the gap increases, the trend of ε
is decreasing first and then increases, especially when gap = 1 and ε = 1, since the left-most

strategy can obtain a complete occurrence set. With the increase of gap, ε begin to decline

because when the gap is becoming greater, the probability of matching occurrences overlap

is becoming greater and the algorithm is becoming more easily to lose occurrences; when

gap is sufficient, although matching occurrences are still overlap, greater gap reserve enough

space for matching, making the remaining occurrences which have not yet been still have

enough resources. Moreover, it is worth noting that the minimum of these curves can be

reached when gap is about 7, and have nothing to do with the pattern length.

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 315

Figure 5. Curves of ε = F (gap) in experiment 2

In figure 5, the trend of curves is the same as in figure 4. The difference between them is

curves in figure 5 reach the minimum when gap is about 9~11. It can be found that the impact

of Σ, m, and gap on the curves is that the change of gap determines the trend of the curve, m

affects the magnitude of this change, and Σ makes the curve do translational move.

A B C D E

1.79E-

07

-1.31E-

05

3.27E-

04

-2.98E-

03

1.00

32

4.97E-

07

-3.74E-

05

9.59E-

04

-8.81E-

03

1.00

72

9.95E-

07

-7.37E-

05

1.85E-

03

-1.65E-

02

1.01

42

1.98E-

06

-1.44E-

04

3.51E-

03

-3.05E-

02

1.02

76

2.45E-

06

-1.79E-

04

4.44E-

03

-3.94E-

02

1.03

8

3.20E-

06

-2.36E-

04

5.94E-

03

-5.40E-

02

1.06

1

3.55E-

06

-2.64E-

04

6.68E-

03

-6.16E-

02

1.06

72

0

3.84E-

06

-2.87E-

04

7.33E-

03

-6.82E-

02

1.06

88

1

4.11E-

06

-3.10E-

04

8.01E-

03

-7.61E-

02

1.07

96

2

4.58E-

06

-3.39E-

04

8.61E-

03

-8.13E-

02

1.08

09

3

4.79E-

06

-3.53E-

04

8.98E-

03

-8.57E-

02

1.08

05

4

5.44E-

06

-3.97E-

04

9.99E-

03

-9.47E-

02

1.09

22

Table 8. Parameters in mathematic model

Bioinformatics 316

After a series of experiments, we speculate that ε = A*gap4+ B*gap3+ C*gap2+ D*gap +E, where

A, B, C, D and E are parameters and for different m there are different parameters. We try to

use this model to illustrate the relation between gap and approximation ratio ε.

Use this parameter table, some of illustrations for m = 3, 4……14 are listed below, where

horizontal axis is the gap, vertical axis is the ε.

Figure 6. Model fitting

We believe this model can be used to predict the completeness of solutions given a certain

pattern. For example, given m = 10, Σ = {a, c, g, t}, gap = 5, this model shows the prediction of

approximation ratio ε of SAIL algorithm is about 0.878. Therefore, this model can be used in

pattern mining showed as below.

PMWL pattern mining evaluation mechanism

Input: Given T, Σ, m, gap, support sup

Output: pattern P

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 317

As we know, mining algorithm strategy is to learn from the strategy of matching algorithm,

so PMWL pattern mining problem is naturally based on PMWL matching problem. For

example, in mining algorithm MAIL (Xie et al., 2010), although a graph structure is utilized

which conducts it different from SAIL; it is still based on the left-most strategy. As a result,

they have the same degree of completeness. Therefore, our model can propose an evaluation

mechanism for mining.

4.2. The impact of pattern rep on completeness

In next part, we will put forward another important concept, named rep, and analyze its

impact on completeness. We first give an example to illustrate the reason why this concept is

needed. Given m = 4, Σ = {a, c, g, t}, gap = 2, the corresponding patterns maybe P1 =

a¢[0,2]c¢[0,2]g¢[0,2]t or P2 = a¢[0,2]c¢[0,2]c¢[0,2]t. They have the same Σ, m and gap.

However, when applying SAIL or BPBM, the completeness of solutions is not the same,

since for P1 algorithms can obtain complete solutions while for P2 can not.

Considering two examples below:

 0 1 2 3 4 5 6

T b c b b b c c

P b¢[1,2] b¢[1,2]c

Table 9. Example 1 for rep concept

A complete occurrence set of this example is {{0, 3, 5}, {2, 4, 6}}, the number of matching

occurrences is 2. It is not difficult to find that, in SAIL algorithm, for position 5, the selection

of position 2 as p[1]’s occurrence by the left-most strategy will consume the position for the

next matching occurrence. We can guess that, the recurring 'b' character in this pattern affect

the quality of matching occurrences.

 0 1 2 3 4 5

T a a c c c c

P a¢[0,1] c¢[0,1]c

Table 10. Example 1 for rep concept

In this example, A complete occurrence set is {{0, 2, 4}, {1, 3, 5}}, the number of matching

occurrences is 2. If we use SAIL algorithm and first obtain {0, 2, 3}, then we will only get this

occurrence and lose {0, 2, 4}, {1, 3, 5}. Obviously, the recurring 'b' character in this pattern

affects the completeness.

Bioinformatics 318

From above examples, the matching of recurring character in the pattern may determine the

completeness of the algorithm. As a result, we consider this repeatability as an element to

influence the completeness.

In order to quantify the repeatability, the concept of repeatability, rep, is proposed in this

paper.

Definition 9 Given a pattern P = p0p1…pm-1, let fij = (pi, pj) be all binary combinations of

characters in pattern P

Let
0,

1,

i j

ij
i j

p p
f

p p

   
, and

1 1

0 0

m m

ij
i j

rep f
 

 
   , where 0 ≤ i, j ≤ m-1, and i ≠ j. then rep is the

repeatability of characters in pattern. It shows the number of pairs of the same characters in

pattern.

Definition 10 Given occurrences A and S, if a[i] = s[k] where 0 ≤ i ≤ m-1, 0 ≤ k ≤ m-1, we say A

conflicts with S. For example, T = aacccc, P = a¢[0,1]c¢[0,1]c, {0,2,3} conflicts with {0,2,4} and

{1,3,5}. And “c” is the conflict letter.

For simplicity, global length constraint is deliberately ignored in our proof, and it does not

affect the conclusion.

LEMMA 1 Given two occurrences A, S, if A and S come from the same occurrence set, then

a[i] ≠ s[k] where 0 ≤ i ≤ m-1, 0 ≤ k ≤ m-1.

Proof: Assume a[i] = s[k], then A conflicts with S, so they can not belong to the same set. The

contradiction is achieved. Lemma 1 is proved.

LEMMA 2 Given two occurrences A and S where S∈USAIL. If there is a conflict between A

and S, and let a[t] and s[i] be the conflict positions. According to the definition 10, under the

one-off condition, A should be discarded. Moreover, if i = t, then s[i] = a[i]; if i ≠ t, s[i] < a[i]

where 0 ≤ i ≤ m-1. For instance, S = {0, 2, 3}, A = {1, 2, 4}, for s[1] = a[1], the conflict position is

1, and the other positions satisfy s[0] < a[0], s[2] < a[2].

Proof: Assume s[i] > a[i], then a[i] is in the left of s[i] in T. In accordance with the left-most

strategy of SAIL, the left-most one prior to others is selected, which is a[i]. Due to the issue,

S∈USAIL, so s[i] should be selected. The contradiction is achieved. Thus, s[i] ≤ a[i]. If i = t, s[i] =

a[t] = a[i], and if i ≠ t, s[i] = a[t] ≠ a[i]. It is obvious to concluded that s[i] < a[i].

LEMMA 3 Given a text T, a pattern P and an occurrence S. Let USAIL be the occurrence set of

SAIL. If S ∉ USAIL, S conflicts with at least one occurrence in USAIL.

Proof: Assume S does not conflict with any occurrence in USAIL. Then it indicates that the

reason why SAIL lose S can only be the length constraint. According to the definition 4, all

the occurrences satisfy the length constraint. The contradiction is achieved. So the lemma is

proved.

LEMMA 4 Let USAIL be the occurrence set of SAIL, and Uopt be the optimal one. Let NSAIL

(Nopt) be the matching number in USAIL (Uopt).

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 319

(1) If USAIL is the completeness set, NSAIL = Nopt is satisfied.

(2) Otherwise, NSAIL < Nopt is obtained and there is a conflict between USAIL and Uopt.

(3) If the condition holds Nopt = 1, NSAIL = Nopt is obtained.

(4) If there is no conflict, NSAIL = Nopt is achieved.

Proof: It is obvious to conclude (1) is obviously true. According to the definition 5, if NSAIL <

Nopt, there is an occurrence S satisfying S∈Uopt and S ∉ USAIL. Due to LEMMA 3, S conflicts

with at least one occurrence in USAIL. That is Uopt is conflict with USAIL. So (2) is proved. With

regard to (3), let S be the unique occurrence of Uopt. Assume NSAIL < Nopt, then NSAIL = 0. That is

SAIL has no occurrence. In accordance with LEMMA 3, S conflicts with at least one

occurrence of SAIL. But USAIL is empty, so there is no conflict. Thus the contradiction is

achieved. And (3) is proved. With regard to (4), it is obvious NSAIL ≤ Nopt. We assume NSAIL <

Nopt, then there is an occurrence S satisfying S∈Uopt and S ∉ USAIL. Due to LEMMA 3, S

conflicts with at least one occurrence in USAIL. That is Uopt and USAIL have a conflict. The

contradiction is achieved. So (4) is proved.

LEMMA 5 Given two occurrence sets U1,U2, if U1 conflict with U2, there are two sub-sets
u1,u2 with a conflict where u1

U1, u2
U2.

Proof: Assume there is no sub-sets with a conflict. All the matching positions of U1 and U2

have no conflict. According to definition 10, U1 and U2 have no conflict and satisfy the one-off

condition. The contradiction is achieved. Lemma 5 is proved.

LEMMA 6 Given two occurrence sets U1, U2, U2 is Uopt. If there is a conflict between U1 and
U2, and N(U1) < N(U2), there are two subsets u1,u2 where u1

U1, u2
U2, u1 is conflict with u2

and N(u1) < N(u2).

Proof: In accordance with LEMMA 5, there are subsets u1,u2 where u1
U1,u2

U2 with

conflict. Let U1 = u11∪u12∪ ……∪u1n, U2 = u21∪u22∪ ……∪u2m, and u1i, u2j are arbitrary

subsets where u1i
U1, u2j

U2, 1 ≤ i ≤ n, 1 ≤ j ≤ m. We discuss in three conditions: ①u1i, u2j

have no conflict and do not satisfy N(u1i) < N(u2j), then U1,U2 have no conflict and N(U1) =

N(U2), the contradiction is achieved. ② u1i, u2j have a conflict and do not satisfy N(u1i) <

N(u2j), then U1,U2 have no conflict, the contradiction is achieved. ③ u1i, u2j have no conflict

and satisfy N(u1i) < N(u2j), then N(U1) = N(U2), the contradiction is achieved. So u1i, u2j have a

conflict and satisfy N(u1i) < N(u2j). Lemma 6 is proved.

THEOREM 1 Given a text T, a pattern P, if SAIL is incomplete, P must be R pattern.

Proof: Let USAIL be the occurrence set of SAIL, Uopt is the completeness set, NSAIL is the

matching number of SAIL, and Nopt is the complete matching number. Consider the SAIL is

incompleteness, according to LEMMA 4, NSAIL < Nopt, and USAIL conflicts with Uopt. Due to

LEMMA 6, we get two subsets u1, u2 with conflict, which are satisfying N(u1) < N(u2) where

u1
USAIL, u2

Uopt. Without loss of generality, let N(u1) = 1, N(u2) = 2. Set u1 = {S}, u2 = {A, B},

that is S∈USAIL, A∈Uopt, B∈Uopt. Let:

T = t[0], t[1]… t[i]… t[n-1], t[i] is stand for the ith letter in T where i = 0,1,2……n-1

Bioinformatics 320

P = p[0], p[1]… p[i]… p[m-1], p[i] is stand for the ith letter in P where i = 0,1,2……m-1

A = a[0], a[1]… a[u]… a[m-1], a[i] is stand for the ith character maching position of

occurrence A where i = 0,1,2…m-1

B = b[0], b[1]… b[w]… b[m-1], another occurrece.

S = s[0], s[1]… s[i]… s[k]… s[m-1], another occurrece.

Let a[u], b[w] be the positions in A, B, which conflict with s[i], s[k] in S separately. We assume

other positions in A and B do not conflict with the occurrences in USAIL. ∴ a[u] = s[i], b[w] =

s[k] ∴t[a[u]] = t[s[i]], t[b[w]] = t[s[k]] ∵According to the definition 4, t[a[u]] = p[u], t[s[i]] =

p[i], t[b[w]] = p[w], t[s[k]] = p[k] ∴ p[u] = p[i], p[w] = p[k]

It would be discussed in the following two cases:

① u ≠ i or w ≠ k

② u = i and w = k

For ①, when if u ≠ i, ∵p[u] = p[i] ∴There are two of the same letters from different positions

in P. ∴According to definition 6, P is an R pattern. For the case of w ≠ k, similarly, it can be

proved.

Then we will prove the other condition is impossible, and conclude P is R pattern.

For ②, we obtain a[u] = s[i] = s[u], b[w] = s[k] = s[w]. There is u ≠ w. ∵ Assume u = w, then u =

i = w = k ∴a[u] = s[i] = s[k] = b[w]. Consider A, B belong to the same occurrence set, which

contradicts with LEMMA 1 ∴ u ≠ w. Without loss of generality, let u < w, according to

LEMMA 2 ∵ SAIL adopts the left-most strategy, and S∈USAIL,A,B ∉ USAIL ∴ s[u] < b[u], s[w] <

a[w] ∵ a[u] = s[u], b[w] = s[w]

 ∴ a[u] < b[u], b[w] < a[w] (1)

And∵ u < w, we can obtain b[u] < b[w]

A = …a[u]…………..a[w]…

B = ……..b[u]…b[w]………

The occurrence {b0, b1,…, bu,…,aw,…, am-1} can be considerd as {{b0, b1,…,bu}, {bu,…,aw}, {aw,…,

am-1}}.

According to the definition 4, {a0, a1,…,au,…,aw,…,am-1} and {b0, b1,…,bu,…,bw,…,bm-1} satisfy the

local constraints. So {aw,…, am-1} and {b0, b1,…,bu} satisfy the local constraints.

Due to {bu,…,aw}, we can get { bu, bu+1…, aw-1, aw }.

From the equation (1), a[u] < b[u], b[w] < a[w], and according to the definition 4:

 b[i] < b[i+1], a[i] < a[i+1] where u ≤ i ≤ w-1 (2)

There is a t satisfying:

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 321

 b[t+1] < a[t+1] and a[t] < b[t] where u ≤ t ≤ w-1 (3)

A = …a[u]……a[t]……………a[t+1]……..a[w]…

B = ……..b[u] ……b[t]……b[t+1]……b[w]………

Assume there is no t satisfying the condition, consider b[t] ≠ a[t] where u ≤ t ≤ w.Then due to

any t there is a[t+1] < b[t+1] or a[t] > b[t] where u ≤ t ≤ w-1.Consider a[u] < b[u], there is a[u+1]

< b[u+1].Due to a[u+k] < b[u+k], we can obtain a[u+k+1] < b[u+k+1] where 0 ≤ k ≤ w-u-1.Then

we can induce a[i] < b[i] where u ≤ i ≤ w.It contradicts b[w] < a[w], so the assume is incorrect

Due to equation (2) and (3), a[t] < b[t] < b[t+1] < a[t+1] where u ≤ t ≤ w-1.

 b[t+1] - b[t] < a[t+1] - b[t] < a[t+1] - a[t] (4)

That is a[t] and b[t-1] satisfy the local constraints. In this way, { bu, bu+1…, aw-1, aw }can be

considered as {{ bu, bu+1…,bt-1},{bt, at+1},{ at+2 …, aw-1, aw }}. In accordance with definition 4, { bu,

bu+1…,bt-1},{ at+2 …, aw-1, aw } satisfy the local constraints. ∴{ bu, bu+1…, aw-1, aw } satisfy the local

constraints. ∴From the above analysis, {b0, b1,…,bu,…,aw,…, am-1} satisfy the local constraints.

However, according to the theorem, the other positions in A,B do not conflict with USAIL

except for a[u], b[w]. That is, {b0, b1,…,bu,,aw,…,am-1} satisfies the one-off condition. ∴{b0,

b1,…,bu, aw,…, am-1} is another occurrence, and does not conflict with any occurrences in USAIL.

But USAIL does not include this occurrence. It contradicts with LEMMA 3. Thus, condition ②

is impossible. And from the analysis of ①, under the condition of the theorem, P must be R

pattern. The theorem 1 is proved.

THEOREM 2 Given a text T, a pattern P, if P is NR pattern, then SAIL is complete.

Proof: It is the inverse negation of THEOREM 1. Apparently, THEOREM 2 is true.

THEOREM 3 Given a text T, a pattern P, if P is R pattern, then SAIL is incomplete.

Proof: It can be concluded from the analysis and example in section 2.

THEOREM 4 If the pattern fulfills gap = 0, SAIL is complete.

Proof: If gap = 0, the wildcard is a constant. For example a¢[1,1]c¢[2,2]c is converted into

a¢c¢¢c. There won’t be any conflict or exist seizing between occurrences. SAIL will perform

complete.

Experiment design1: ∑= 4, m = {5,7,9}, gap = [0,3], rep = {0,1,2,3,4,6,7,10,11,15, 21,28,35}. In

each set of experiments, 20 patterns are randomly generated; the final result is the average.

Analysis of experimental results: with increment of rep, the curve of approximation ratio

gradually decreases, followed by a slight increase. The reason for decline is that rep lead to

more nested occurrences, resulting in a greater degree of the possibility of losing

occurrences; the reason for the increscent is that larger rep can cause more extreme pattern.

For instance, when ∑ = 4, m = 7, rep = 21, patterns like P1 =

1 When ∑ and m are determined, rep can only be some certain values, because rep has correlation with ∑ and m

Bioinformatics 322

a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a¢[0,3]a which is difficult to find a special text containing

nested occurrences of such pattern, will be produced. For P1, the text like “aaaaaaaaaaaaaa”

contains nested occurrences of this pattern. Obviously, this extreme text is very rare.

Therefore, under the premise of nested occurrences are not easily to be formed, the

approximation ratio will be increased slightly.

Figure 7. The relation between rep and approximation ratio ε

Next we will analyze the relationship between the repeatability rep and alphabet size ∑,

pattern length m. Original problem: a pattern which length is m, and alphabet size is ∑, what

is the expectation of repeatability E(rep)?

This description is equivalent to the model of ‘taking ball from the bag’ in the combination

mathematics:

There is a bag of balls, and |Σ| kinds of colors, taking m balls from the bag with

replacement, then in fetched balls, how many pairs of the same color?

m

Σ
3 4 5 6 …… m

3 3/3 6/3 10/3 15/3 …… 2 / 3mC

4 3/4 6/4 10/4 15/4 …… 2 / 4mC

5 3/5 6/5 10/5 15/5 …… 2 / 5mC

6 3/6 6/6 10/6 15/6 …… 2 / 6mC

…… …… …… …… …… …… ……

Σ 3/| | 6/| | 10/| | 15/| | …… 2 /| |mC 

Table 11. The relationship between ∑, m and rep

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 323

Finally, we can deduce:

2

()
| |

mC
E rep 


 (2)

5. Conclusions

As an extension of traditional matching problem, the PMWL problem has aroused more

and more attention because of its unique flexibility and complexity. Based on problem

definition and drawing on research idea in traditional matching problem, this article

introduces SAIL, RSAIL, SBO and BPBM which are representative algorithms for PMWL

in three important respects: the data structures, the matching strategies and the

characteristics of pattern. The article also analyzes the pros and cons of the above

algorithms from the point of quality of the solution and time complexity, and gives

experimental matching results by using real DNA data. Among them, the SAIL algorithm

is the first to propose the method of solving PMWL problem, it uses the sliding window

structure and the representative left-most matching strategy. This paper finds that in short

patterns, the approximation ratio of SAIL is higher than 0.9, while in longer patterns, the

occurrences obtained by SAIL are of poor quality; the quality of occurrences obtained by

SBO is best, but its time consumption has a non-linear relationship with the length of text;

BPBM utilizes bit parallel technology to improve the efficiency of matching greatly, but

also is impact by the machine word; for pattern with repeated letters in tail, RSAIL uses

symmetry to improve the quality of occurrences under certain conditions, thus providing

a solving idea to PMWL problem, but in longer patterns and wilder gaps, the efficiency is

not obvious.

Afterwards, this article focus on relationship between approximation ratio ε and alphabet

size ∑, pattern length m, wildcards span gap and repeatability rep. Firstly, this article

proposes the model ε = F (Σ, m, gap), describing the functional relationship between pattern

characteristics and approximation ratio approximately; secondly, this article proves

PMWL’s completeness under the conditions of rep = 0; finally, the relationship between the

pattern features are also analyzed andm in addition, relationship that
2

()
| |

mC
E rep 


 is

proposed.

In future work, the formal description of the PMWL problem will be considered, in order to

explain the complexity of the problem better, thus helping algorithm design and analysis for

problem complexity.

Author details

Haiping Wang, Taining Xiang and Xuegang Hu

Hefei University of Technology, China

Bioinformatics 324

6. References

Amir, A., Aumann, Y., Landau, G., Lewenstein, M. & Lewenstein, N. (2000). Pattern

matching with swaps, Journal of Algorithms, 37(2): 247-266

Amir, A. & Navarro, G. (2009). Parameterized matching on non-linear structures, Information

processing letters, 109(15): 864-867

Baeza-Yates, R. & Gonnet, G. (1992). A new approach to text searching, Communications of the

ACM, 35(10): 74–82

Bille, P., Gørtz, I. L., Vildhøj, H. & Wind, D. (2010). String matching with variable length

gaps, Proceedings of 17th SPIRE, pp. 385–394

Brudno, M., Steinkamp, R. & Morgenstern, B. (2004). The CHAOS/DIALIGN WWW

server for multiple alignment of genomic sequences, Nucleic Acids Research, 32:

41–44

Califf, M. E. & Mooney, R. J. (2003). Bottom-up relational learning of pattern matching rules

for information extraction, Journal of Machine Learning Research, 4(6): 177-210

Chen, G., Wu, X. D., Zhu, X.Q., Arslan, A. N. & He, Y. (2006). Efficient string matching

with wildcards and length constraints, Knowledge and Information Systems, 10(4):

399–419

Cole, J.R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, D. M.,

McGarrell, D. M., Schmidt, T. M., Garrity, G. M. & Tiedje, J. M. (2005). The ribosomal

database project(RDP-11): Sequences and tools for high-throughput rRNA analysis,

Nucleic Acids Research, 33(1): 294-296

Cole, R., Gottlieb, L. A. & Lewenstein, M. (2004). Dictionary matching and indexing with

errors and don’t cares, Proceedings of the 36th ACM Symposium on the Theory of

Computing, ACM Press, New York, NY, USA, pp. 91–100

Fischer, M. J. & Paterson, M. S. (1974). String matching and other products, In Karp RM(ed)

Complexity of computation, Massachusetts Institute of Technology, Cambridge, MA, USA,

vol 7, pp. 113-125

Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science and

computational biology, chapter 6, Cambridge University Press

Guo, D., Hong, X. L., Hu, X. G., Gao, J., Liu, Y. L., Wu, G. Q. & Wu, X. D. (2011). A Bit-

Parallel Algorithm for Sequential Pattern Matching with Wildcards, Cybernetics and

Systems, 42(6): 382-401

He, D., Wu, X. D. & Zhu, X. Q. (2007). SAIL-APPROX: An efficient on-line algorithm for

approximate pattern matching with wildcards and length constraints, IEEE International

Conference on Bioinformatics and Biomedicine (BIBM’07), IEEE Computer Society, pp. 151–

158

He, Y., Wu, X. D., Zhu, X. Q. & Arslan, A. N. (2007). Mining Frequent Patterns with

Wildcards from Biological Sequences [C], IEEE International Conference on Information

Reuse and Integration, Las Vegas, IL, pp. 329-334

Research on Pattern Matching with Wildcards and Length Constraints: Methods and Completeness 325

Ji, X. N., Bailey, J. & Dong, G. Z. (2007). Mining minimal distinguishing subsequence

patterns with gap constraints, Knowledge and Information Systems, 11(3): 259-286

Kucherov, G. & Rusinowitch, M. (1995). Matching a set of strings with variable length don’t

cares, Proceedings of the 6th Symposium on Combinatorial Pattern Matching, Springer, Berlin

Heidelberg New York, pp. 230–247

Manber, U. & Baeza-Yates, R. (1991). An algorithm for string matching with a sequence of

don’t cares, Information Processing Letters, 37(3): 133–136

Min, F., Wu, X. D. & Lu, Z. Y. (2009). Pattern matching with independent wildcard gaps,

Eighth IEEE International Conference on Dependable, Autonomic and Secure

Computing(DASC-2009), Chengdu, China, pp. 194-199

Morgante, M., Policriti, A., Vitacolonna, N. & Zuccolo, A. (2004). Structured motifs search,

Proceedings of the 8th annual international conference on Computational molecular biology, In

print

Muth, R. & Manber, U. (1996). Approximate multiple string search, Combinatorial Pattern

Matching, Springer, pp. 75–86

Muthukrishnan, S. & Krishna, P. (1994). Non-standard stringology: algorithms and

complexity [C], Proceedings of the twenty-sixth annual ACM symposium on Theory of

computing New York, NY, USA, pp. 770-779

“National center for biotechnology information website”, [online], available:

 http://www.ncbi.nlm.nih.gov/

Navarro, G. & Raffinot, M. (2001). Flexible pattern matching in strings: practical

on-line search algorithms for texts and biological sequences, Cambridge University

Press

Rahman, M. S., Iliopoulos, C., Lee, I., Mohamed, M. & Smyth, W. F. (2006). Finding Patterns

with Variable Length Gaps or Don’t Cares, Computing and Combinatorics, 12th Annual

International Conference, COCOON 2006, Taipei, Taiwan, August 15-18, Proceedings.

Vol. 4112

Sagot, M. F. & Viari, A. (1996). A Double Combinatorial Approach to Discovering Patterns

in Biological Sequence, Proceedings of the 7th Symposium on Combinatorial Pattern

Matching, Springer, pp. 186-208

Wang, H. P., Xie, F., Hu, X. G., Li, P. P. & Wu, X. D. (2010). Pattern Matching with Flexible

Wildcards and Recurring Characters, Proceedings of 2010 IEEE International Conference on

Granular Computing, pp. 782-786

Wu, Y. X., Wu, X. D., Jiang, H. & Min, F. (2011). A Heuristic Algorithm for MPMGOOC,

Chinese Journal of Computers, 34(8): 1452-1462

Xie, F., Wu, X. D., Hu, X. G., Gao, J., Guo, D., Fei, Y. L. & Ertian, H. (2010). Sequential Pattern

Mining with Wildcards [C], 22nd IEEE International Conference on Tools with Artificial

Intelligence (ICTAI), pp. 241-247

Bioinformatics 326

Zhang, M. H., Kao, B., Cheung, D. W. & Yip, K. Y. (2005). Mining periodic patterns with gap

requirement from sequences, Proceedings of ACM SIGMOD, Baltimore Maryland, pp.

623–633

