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1. Introduction 

1.1. Trypanosomiasis 

A group of animal and human diseases caused by parasitic protozoan trypanosomes is 

called trypanosomiases. The final decade of the 20th century witnessed a frightening revival 

in sleeping sickness (human African trypanosomiasis) in sub-Saharan Africa. Meanwhile, 

Chagas' disease (American trypanosomiasis) remains one of the most widespread infectious 

diseases in South and Central America. Arthropod vectors are responsible for the spread of 

African and American trypanosomiases, and disease restraint through insect control 

programs is an attainable target. However, the existing drugs for both illnesses are far from 

ideal. The trypanosomes are some of the earliest diverging members of the Eukaryotae and 

share several biochemical oddities that have inspired research into discovery of new drug 

targets. Nevertheless, discrepancies in mode of interactions between trypanosome species 

and their hosts have spoiled efforts to design drugs effective against both species. 

Heightened awareness of these neglected diseases might result in progress towards control 

through increased financial support for drug development and vector eradication [1]. 

Trypanosome is a group of unicellular parasitic flagellate protozoa which mostly infects the 

vertebrate genera. A number of trypanosome species cause important veterinary diseases, 

but only two cause significant human diseases. In sub-Saharan Africa, Trypanosoma brucei 

causes sleeping sickness or human African trypanosomiasis whilst in America, Trypanosoma 

cruzi causes Chagas' disease (Figure 1) [2]. Meanwhile, the life cycle of these parasitic 

protozoa engage insect vectors and mammalian hosts (Figure 2) [1]. All trypanosomes 

require more than one obligatory host to complete their life cycle and are transmitted via 

vectors. Most of the species are transmitted by blood-feeding invertebrates, however there 
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Figure 1. Geographic distribution of Trypanosoma brucei and Trypanosoma cruzi, showing endemic 

countries harboring these diseases [2]. 

 

Figure 2. Life cycles of (A) Trypanosoma cruzi and (B) Trypanosoma brucei. Upper cycles represent 

different stages that take place in the insect vectors. Lower cycles represent different stages in man and 

other mammalian hosts [1]. 
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are distinct mechanisms among the varying species. In the invertebrate hosts they are 

generally found in the intestines as opposed to the bloodstream or any other intracellular 

environment in the mammalian host. As trypanosomes develop through their life cycle, they 

undergo a series of morphological changes [3] as is typical of trypanosomatids.   

The life cycle often consists of the trypomastigote form in the vertebrate host and the 

trypomastigote or promastigote form in the gut of the invertebrate host. Intracellular 

lifecycle stages are normally found in the amastigote form. The trypomastigote morphology 

is unique to species in the genus Trypanosoma.  

The genome organization of T. brucei is splitted into nuclear and mitochondrial genomes. 

The nuclear genome of T. brucei is made up of three classes of chromosomes according to 

their size on pulsed-field gel electrophoresis,  large chromosomes (1 to 6 megabase pairs), 

intermediate chromosomes (200 to 500 kilobase pairs) and mini chromosomes (50 to 100 

kilobase pairs) [4]. The large chromosomes contain most genes, while the small 

chromosomes tend to carry genes involved in antigenic variation, including the variant 

surface glycoprotein (VSG) genes. Meanwhile, the mitochondrial genome of the 

Trypanosoma, as well as of other kinetoplastids, known as the kinetoplast, is characterized 

by a highly complex series of catenated circles and minicircles and requires a cohort of 

proteins for organisation during cell division. The genome of T. brucei has been completely 

sequenced and is now available online [5].  

1.2. Nuclear transport 

Nuclear transport of proteins and ribonucleic acids (RNAs) between the nucleus and 

cytoplasm is a key mechanism in eukaryotic cells [6]. The transport between the nucleus and 

cytoplasm involves primarily three classes of macromolecules: substrates, adaptors, and 

receptors. The transport complex is formed when the substrates bind to an import or an 

export receptor. Some transport substrates require one or more adaptors to mediate 

formation of a transport complex. Once assembled, these transport complexes are 

transferred in one direction across the nuclear envelope via aqueous channels that are part 

of the nuclear pore complexes (NPCs). Following dissociation of the transport complex, both 

adaptors and receptors are recycled through the NPC to allow another round of transport to 

occur. Directionality of either import or export therefore depends on the formation of 

receptor-substrate complex on one side of the nuclear envelope and the dissociation of the 

complex on the other. The Ran GTPase is vital in producing this asymmetry. Modulation of 

nuclear transport generally involves specific inhibition of the formation of a transport 

complex, however, more global forms of regulation also occur [7]. The general concept of 

import and export process is shown in Figure 3 [8]. 

1.3. In silico approach 

In silico study is defined as an analysis which is performed using computer or via computer 

simulation. It involves the strategy of managing, mining, integrating, and interpreting  
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Key: 

GTP Guanine triphosphate 

GDP Guanine diphosphate 

NTF2 Nuclear transport factor 2 

RCC1 Regulator of chromosome condensation 1 

Figure 3. For import of molecules, cytoplasmic cargo is identified by Importin a, which then binds to 

Importin b (1). This ternary complex translocates through the nuclear membrane and into the nucleus. 

Once there, RanGTP binds to Importin b and causes a dissociation of the complex, which releases cargo 

to the nucleus (2). Import receptors are then recycled back to the nucleus (3) through binding of 

RanGTP and export to the cytosol. RanGTP is then hydrolyzed to the GDP-bound state and causes the 

release of the import receptors (4) and the cycle starts over again. Export of cargo undergoes a similar 

mechanism. Exported molecules will bind to the export receptor with RanGTP and exit the nucleus (5). 

Next RanGTP is hydrolyzed to cause release of cargo into the cytoplasm (6). NTF2 specifically identifies 

RanGDP and returns it to the nucleus (7) for RCC1 to then exchange it to RanGTP (8) [8]. 
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information from biological data at the genomic, metabalomic, proteomic, phylogenetic, 

cellular, or whole organism levels. The bioinformatics instruments and skills become crucial 

for in silico research as genome sequencing projects have resulted in an exponential growth 

in protein and nucleic acid sequence databases. Interaction among genes that gives rise to 

multiprotein functionality generates more data and complexity. In silico approach in 

medicine is not only reducing the need for expensive lab work and clinical trials but also is 

possible to speed the rate of drug discovery. In 2010, for example, researchers found 

potential inhibitors to an enzyme associated with cancer activity in silico using the protein 

docking algorithm EADock [9]. About 50 % of the molecules were later shown to be active 

inhibitors in vitro [9]. A unique advantage of the in silico approach is its worldwide 

accessibility. In some cases, having internet access or even just a computer is sufficient 

enough. Laboratory experiments either in vivo or in vitro both require more materials. In 

protein sequence analysis, in silico approach gives highly reproducible results in many cases 

or even exactly the same results because it only relies on comparison of the query sequence 

to a database of previously annotated sequences. However, in sophisticated analysis such as 

development of the 3-D structure of proteins from their primary sequences, discrepancies in 

results are to be expected due to the manual optimization which must consider several 

crucial steps such as template selection, target-template alignment, model construction and 

model evaluation.   

1.4. Problem statements 

Considering the importance of nuclear shuttling in many cellular processes, proteins 

responsible for the nuclear transport are vital for parasite survival. The presence of nuclear 

transport machinery was highlighted in the eukaryotic parasites such as Plasmodium 

falciparum, Toxoplasma gondii and Cryptosporidium parvum. However, the nuclear transport in 

T. brucei has not been established. Nuclear shuttling is one of the overlooked aspects of drug 

design and delivery. Exploitation of macromolecules movement across the nuclear envelope 

promises to be an exciting area of drug development. Furthermore, the divergence between 

host and parasite systems is always exploited as a strategy in drug development. Therefore, 

the exploitation of peculiarities of T. brucei nuclear transport machinery as compared to its 

host might be a promising strategy for the control of trypanosomiasis, which remains to be 

further investigated. 

1.5. Objectives 

This study is carried out to investigate the nuclear transport constituents of T. brucei by 

determining the functional characteristics of the parasite proteins. This includes functional 

protein domain, post translational modification sites and protein-protein interaction. The 

parasite proteins identified to exhibit the relevant functional protein domains, post 

translational modification sites and protein-protein interaction, are predicted as the true 

components for nuclear transport mechanism. This study also aims to evaluate the unique 

characteristics of proteins responsible for nuclear transport machinery between the parasites 
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and human by determining the degree of protein sequence similarity. The information on 

the sequence level divergence between T. brucei proteins and their human counterparts may 

provide an insight into drug target discovery. 

2. Materials and methods 

Our in silico analyses were carried out using the public databases and web based programs 

(Table 1). The programs were employed to identify and annotate the parasite proteins 

involved in the nuclear transport mechanism. The identified parasite proteins were then 

compared with the human counterparts. 

 

Analysis Programme name 
URL and Reference where 

available 

Protein sequence 

retrieval 

National Centre for Biotechnology 

Information (NCBI) 
www.ncbi.nlm.nih.gov/ 

 

Universal Protein 

Knowledgebase/SwissProt 

(UniProtKB/ SwissProt) 

http://www.uniprot.org/ 

TriTrypDB http:// tritrypdb.org/ tritrypdb/ 

Clustering of 

protein sequences 
BLASTClust 

www.vardb.org/vardb/analysis/bla

stclust.html 

Identification of 

protein domains 

Conserved Domain Database 

(CDD) 
http://www.ncbi.nlm.nih.gov/cdd/ 

 

Simple Modular Architecture 

Research Tool (SMART) 
http://smart.embl-heidelberg.de/ 

InterPro http://www.ebi.ac.uk/interpro/ 

Identification of 

post translational 

modification sites 

PROSITE http://prosite.expasy.org/ 

Sequence similarity 

search 
BLASTp (NCBI) http://blast.ncbi.nlm.nih.gov/ 

Table 1. Databases and web-based programs used in the analysis of nuclear transport of T. brucei. 

We utilized a personal computer equipped with AMD Turion 64x2 dual-core processor, 

memory size of 32 gigabytes and NVIDIA graphics card to perform the analyses. Our in 

silico work is summarized in Figure 4. 

The nuclear transport refers to a process of entry and exit of large molecules from the cell 

nucleus. To identify T. brucei proteins of nuclear transport, the protein sequences of other 

various eukaryotic organisms were retrieved in FASTA format from National Centre for 

Biotechnology Information (NCBI) server and Universal Protein Knowledgebase/SwissProt 

(UniProtKB/ SwissProt) database based on biological processes and protein name search. 

The number of hits obtained for the query was recorded after manual inspection. The 

retrieved protein sequences were clustered into groups with more than 30% similarity using 
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BLASTClust [10] to reduce non-redundant protein sequences. The non-redundant data set 

was subjected to BLASTp [11] analyses against an integrated genomic and functional 

genomic database for eukaryotic pathogens of the family Trypanosomatidae, TriTrypDB. 

The analysis was using cutoff point with E-value of less than 1e-06 and score of more than 

100. Hits that pointed to the same location or overlapped location were removed manually. 

The identified protein sequences then were then retrieved from the TriTrypDB.  

 

Figure 4. In silico analysis workflow. 

A portion of protein that can evolve, function, and exist independently is called protein 

domain. It is a compact three dimensional structure, stable and distribution of polar and 

non-polar side chains contribute to its folding process. To determine the functional protein 

domains, all identified protein sequences of T. brucei from TriTrypDB were subjected to 

Keyword search 

Retrieval of raw protein 

sequences from two 

public databases 

Removal of unreviewed 

and partial raw protein 

sequences  

Clustering of reviewed 

raw protein sequences  

Sequence similarity 

search against T. brucei 

database 

Retrieval of identified 

parasite protein 

sequences  

Functional annotation 

of identified parasite 

proteins 

Identification of protein 

domains 

Identification of post 

translational 

modification sites 

Database mining of 

functional protein-

protein interactions 

Sequence similarity 

search against Homo 

sapiens  
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functional annotation which makes use of Conserved Domain Database (CDD) [12], Simple 

Modular Architecture Research Tool (SMART) [13] and InterPro [14] programs. The protein 

sequences were submitted in FASTA format as queries. 

Posttranslational modification (PTM) is the chemical modification of a protein after its 

translation. It is one of the later steps in protein biosynthesis, and thus gene expression, for 

many proteins. In this part of study, in relation to regulatory aspects of nuclear transport 

mechanism, we focused on potential glycosylation and phosphorylation sites. To analyze 

the post translational modification sites, all protein sequences of T. brucei from TriTrypDB 

were subjected to PROSITE [15] programme. The proteins sequences were submitted in 

FASTA format as queries.  

Protein–protein interactions occur when two or more proteins bind together, often to carry 

out their biological function. Proteins might interact for a long time to form part of a protein 

complex, a protein may be carrying another protein, or a protein may interact briefly with 

another protein just to modify it. To analyze the participation of parasite proteins in protein-

protein interactions, all protein sequences of T. brucei from TriTrypDB were subjected to 

mining of STRING 8.2 database [16]. The STRING 8.2 database integrates information from 

numerous sources, including experimental repositories, computational prediction methods 

and public text collections. The proteins sequences were submitted in FASTA format as 

queries. All information on protein-protein interaction were recorded and evaluated 

accordingly.  

The degree of similarity between amino acids occupying a particular position in the protein 

sequence can be interpreted as a rough measure of how conserved a particular region or 

sequence motif is. To compare the parasite proteins with human homologues, all protein 

sequences of T. brucei from TriTrypDB were subjected to BLASTp analysis against Homo 

sapiens proteins. The proteins sequences were submitted in FASTA format as queries. The 

criteria such as cutoff point with E-value of less than 1e-06 and score of more than 100 were 

used. 

3. Results and discussions 

3.1. Parasite proteins involved in the nuclear transport machinery 

Table 2 shows a summary of protein sequences used in this in silico analysis. A total of 904 

and 642 protein sequences were retrieved in FASTA format from NCBI server and 

UniProt/SwissProt database respectively. A total of 18 protein sequences with less than 100 

amino acid residues were excluded from the study as they were considered not completely 

functional [17]. Hence, 1528 protein sequences were used for protein sequence clustering. 

The 30% identity and above at the amino acid level is considered sufficient to imply 

functional relatedness [17]. Therefore, protein clustering with more than 30% similarity on 

the retrieved protein sequences produced a non-redundant data set of 248 protein 

sequences.  
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Protein sequences Total 

Raw protein sequences retrieved from NCBI and UniProtKB 1546 

Raw protein sequences subjected to BLASTClust programme 1548 

Non redundant protein sequences resulting from BLASTClust analysis 248 

Query sequences for BLASTp analysis against TritrypDB database 248 

Table 2. Summary of protein sequences retrieved in in silico analysis. 

The BLASTp analyses against TriTrypDB using cut off point with E-value of less than 1e-06 

and score of more than 100 for the whole 248 query protein sequences resulted in 34 hits of 

parasite proteins. However our approach failed to identify a Ran GTPase-activating protein 

(RanGAP) protein in this parasite. In reference [18] also reported that sequence similarity 

searches have been unable to identify a RanGAP protein in any protozoan. Keyword 

searches among annotated proteins in the T. gondii genome database identified one 

candidate which was shown to have strong similarity to Ran-binding protein 1 (RanBP1) 

based on sequence analysis. Perhaps the RanGAP function in apicomplexans is performed 

by a single protein with multiple cellular responsibilities (i.e., a fusion of Ran binding 

protein 1 and RanGAP). It is also possible that a completely unique parasite protein 

possesses the RanGAP function. 

Table 3 shows the identified and characterized parasite proteins involved in the nuclear 

transport machinery. The functional annotation based on protein domains, showed that, out 

of 34, only 22 parasite protein sequences were predicted with high confidence level to be 

involved in the nuclear transport mechanism with the presence of relevant protein domains. 

This includes guanine triphosphate (GTP)-binding domain, Nucleoporin (NUP) C terminal 

domain, Armadillo repeat, Importin B N-terminal domain, regulator of chromosome 

condensation 1 (RCC1) repeat and Exportin domain (Table 4). All these protein domains 

were experimentally verified to regulate the nuclear transport mechanism in eukaryotes. 

There were seven T. brucei proteins that exhibited functional features of the Importin 

receptor. This finding is consensus with the number of Importin receptors in another 

eukaryotic pathogen, Toxoplasma gondii [8]. In addition, our results of other nuclear transport 

constituents in T. brucei such as RCC1, Ran, nuclear transport factor 2 (NTF2), cell apoptosis 

susceptibility (CAS), Exportin and Ran binding proteins were also in agreement with 

reference [18].  

The nuclear and cytoplasmic compartments are divided by the nuclear envelope in 

eukaryotes. By using this compartmentalization and controlling the movement of molecules 

between the nucleus and the cytosol, cells are able to regulate numerous cellular 

mechanisms such as transcription and translation. Proteins with molecular size lower than 

40 kDa are able to passively diffuse through the nuclear pore complex (NPC), whereas 

larger proteins require active transport through the assistance of Karyopherins, specific 

transport receptors that shuttle between the nucleus and cytosol. Karyopherins which are 

able to distinguish between the diverse proteome to target specific cargo molecules for 

transport, can be subdivided into those that transport molecules into the nucleus (Importins) 

and those that transport molecules out of the nucleus (Exportins). It has been reported that 
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more than 2000 proteins are shuttled between the nucleus and the cytoplasm in yeast [19]. 

From our result, with the identification of Karyopherin and Nucleoporin proteins in T. 

brucei, we expect that the parasite employs the typical components for the nuclear transport 

machinery. 

 

Subject 

sequences 
E-value Score Functional protein domains 

Tb927.3.1120 1.70E-72 718 Ran GTPase, GTP-binding domain 

Tb09.211.4360 5.50E-33 348 Karyopherin Importin Beta, Armadillo repeat 

Tb11.01.5940 9.30E-149 1391 

Exportin-1 C terminal, Importin Beta N terminal 

domain 

Tb11.02.0870 3.20E-16 187 Ran binding domain 

Tb927.2.2240 2.40E-15 190 Exportin-like protein 

Tb927.6.2640 9.10E-83 815 Karyopherin Importin Beta, Armadillo repeat 

Tb927.6.4740 1.10E-75 748 CAS/CSE domain, Importin Beta N terminal domain 

Tb927.7.1190 6.90E-20 172 RCC1 repeat 

Tb11.03.0140 5.80E-09 107 NUP C terminal domain 

Tb927.10.8170 2.10E-28 315 NUP C terminal domain 

Tb927.8.3370 2.50E-48 281 Ran-binding protein Mog1p 

Tb11.01.7010 8.20E-42 464 Armadillo repeat, Karyopherin Importin Beta 

Tb11.02.1720 2.60E-26 276 Armadillo-like helical 

Tb11.01.8030 1.70E-18 218 
HEAT repeat, Armadillo repeat, Importin Beta N 

terminal domain 

Tb11.01.7200  7.10E-07 137 Nsp1-like 

Tb927.7.6320 1.20E-11 136 RCC1 repeat 

Tb927.3.4600 3.70E-08 149 Armadillo-like helical 

Tb09.160.2360 1.40E-36 379 WD40 repeat 

Tb927.6.3870 8.50E-14 164 RNA recognition motif 

Tb927.7.5760 1.30E-08 115 Nuclear transport factor 2 domain 

Tb10.70.4720 4.60E-77 761 

Importin Beta N terminal domain, Karyopherin 

domain 

Tb927.8.4280 2.90E-08 112 Nuclear transport factor 2 domain 

Key: 

GTP Guanine triphosphate 

CAS Cell apoptosis susceptibility 

CSE Chromosome seggregation 

RCC1 Regulator of chromosome condensation 1 

NUP Nucleoporin 

HEAT Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast PI3-kinase TOR1 

WD Trp-Asp (W-D) dipeptide 

RNA Ribonucleic acid 

Table 3. Identified and characterized T. brucei proteins of nuclear transport. Protein domain 

identification involved CDD, SMART, InterPro and PROSITE programs. 
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Protein domain Accession Description 

Ran GTPase  SM00176 
Ran is involved in the active transport of proteins through 

nuclear pores. 

Ran binding 

domain 
PDOC50196 

This domain binds RanGTP and increases the rate of 

RanGAP1-induced GTP hydrolysis. 

Armadillo IPR000225 

The Armadillo (Arm) repeat is an approximately 40 amino 

acid long tandemly repeated sequence motif first identified in 

the Drosophila melanogaster segment polarity gene armadillo 

involved in signal transduction through wingless. Animal 

Arm-repeat proteins function in various processes, including 

intracellular signalling and cytoskeletal regulation, and 

include such proteins as beta-catenin, the junctional plaque 

protein plakoglobin, the adenomatous polyposis coli (APC), 

tumour suppressor protein, and the nuclear transport factor 

importin-alpha, amongst others 

Importin beta IPR001494 

Members of the Importin-beta (Karyopherin-beta) family can 

bind and transport cargo by themselves, or can form 

heterodimers with importin-alpha. As part of a heterodimer, 

Importin-beta mediates interactions with the pore complex, 

while Importin-alpha acts as an adaptor protein to bind the 

nuclear localisation signal (NLS) on the cargo through the 

classical NLS import of proteins. 

HEAT IPR000357 

Arrays of Huntingtin, elongation factor 3 (EF3), protein 

phosphatase 2A (PP2A), and the yeast PI3-kinase TOR1 

(HEAT) repeats consists of 3 to 36 units forming a rod-like 

helical structure and appear to function as protein-protein 

interaction surfaces. It has been noted that many HEAT 

repeat-containing proteins are involved in intracellular 

transport processes. 

Exportin 1-like 

protein 
pfam08389 

The sequences featured in this family are similar to a region 

close to the N-terminus of yeast exportin 1 (Xpo1, Crm1). This 

region is found just C-terminal to an importin-beta N-

terminal domain (pfam03810) in many members of this 

family. Exportin 1 is a nuclear export receptor that interacts 

with leucine-rich nuclear export signal (NES) sequences, and 

Ran-GTP, and is involved in translocation of proteins out of 

the nucleus. 
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Protein domain Accession Description 

CAS/CSE IPR005043 

In the nucleus, cell apoptosis susceptibility (CAS) acts as a 

nuclear transport factor in the importin pathway. The 

Importin pathway mediates the nuclear transport of several 

proteins that are necessary for mitosis and further 

progression. CAS is therefore thought to affect the cell cycle 

through its effect on the nuclear transport of these proteins 

WD40 IPR001680 

WD-repeat proteins are a large family found in all eukaryotes 

and are implicated in a variety of functions ranging from 

signal transduction and transcription regulation to cell cycle 

control and apoptosis. Repeated WD40 motifs act as a site for 

protein-protein interaction, and proteins containing WD40 

repeats are known to serve as platforms for the assembly of 

protein complexes or mediators of transient interplay among 

other proteins. 

RCC1 PDOC00544 

The regulator of chromosome condensation (RCC1) is a 

eukaryotic protein which binds to chromatin and interacts 

with ran, a nuclear GTP-binding protein (see <PDOC00859>), 

to promote the loss of bound GDP and the uptake of fresh 

GTP, thus acting as a guanine-nucleotide dissociation 

stimulator (GDS) 

NUP C-

terminal 
PDOC51434 

Communication between the nucleus and cytoplams of an 

eukaryotic cell is mediated by the nuclear pore complexes 

(NPCs), which act as selective molecular gateways. Through 

these gateways, ribonucleic acids (RNAs) and proteins are 

exported into the nucleus. Each NPC consists of ~30 distinct 

proteins termed Nucleoporins, each present in at least eight 

copies, reflecting the octagonal symmetry of the complex. 

NSP 1 IPR007758 

The NSP1-like protein appears to be an essential component of 

the nuclear pore complex, for example preribosome nuclear 

export requires the Nup82p-Nup159p-Nsp1p complex. 

NTF 2 IPR002075 

Nuclear transport factor 2 (NTF2) is a homodimer which 

stimulates efficient nuclear import of a cargo protein. NTF2 

binds to both RanGDP and FxFG repeat-containing 

Nucleoporins. 

Table 4. Summary of protein domains 

3.2. Regulatory aspect of the parasite nuclear transport 

Table 5 shows the presence of phosphorylation and glycosylation sites in the parasite 

proteins. The phosphorylation sites were found to be present in all parasite proteins. It was 
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predicted that the parasite proteins could be phosphorylated at Serine, Threonine and 

Tyrosine amino residues. However, the O-glycosylation sites were not present in three 

parasite proteins, namely Tb11.02.0870, Tb927.8.3370 and Tb927.7.5760.  

 

Subject sequences Phosphorylation site Glycosylation site 

Tb927.3.1120 + + 

Tb09.211.4360 + + 

Tb11.01.5940 + + 

Tb11.02.0870 + - 

Tb927.2.2240 + + 

Tb927.6.2640 + + 

Tb927.6.4740 + + 

Tb927.7.1190 + + 

Tb11.03.0140 + + 

Tb927.10.8170 + + 

Tb927.8.3370 + - 

Tb11.01.7010 + + 

Tb11.02.1720 + + 

Tb11.01.8030 + + 

Tb11.01.7200  + + 

Tb927.7.6320 + + 

Tb927.3.4600 + + 

Tb09.160.2360 + + 

Tb927.6.3870 + + 

Tb927.7.5760 + - 

Tb10.70.4720 + + 

Tb09.211.2550 + + 

Tb927.8.4280 + + 

Key: 

(+) indicates presence 

(-) indicates absence 

Table 5. Phosphorylation and O-glycosylation sites in the T. brucei proteins. Identification of these 

functional sites involved ScanProsite programme. 

Most of the parasite proteins were predicted to be involved in O-linked glycosylation. In 

eukaryotes, the O-linked glycosylation takes place in the Golgi apparatus. It also occurs in 

archaea and bacteria. Phosphorylation was reported to be crucial in the regulation of 

protein-protein interactions of the NADPH oxidase in the phagocytic cells [20]. The 

phosporylation-based signaling in T. brucei has been reported by reference [21]. Thus we 
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believe that the phosphorylation could also regulate the nuclear transport components of T. 

brucei to participate in various functional interactions. Meanwhile, it was suggested that O-

linked glycosylation may be analogous to protein phosphorylation. According to [22], 

phosphorylation by proline-directed kinases share the same sites with those potentially O-

glycosylated by O-linked N-acetylglucosamine transferase (OGT). From this it is possible 

that O-glycosylation and phosphorylation may compete for sites of modification. Therefore, 

it is a strong likelihood that the nuclear transport of T. brucei could be regulated by both 

phosphorylation and O-glycosylation. 

Apart from acting simply as an architectural structure which facilitates nuclear transport, 

the NPC may also play a more dynamic role in regulating transport. The specificity of 

import and export may be influenced by recognition of different substrates and alteration of 

the Nucleoporin expression. This would allow different interaction between the NPC and 

Karyopherins and modulate the nuclear import and export. However, the most common 

impact on nucleocytoplasmic movement stems comes from the post translational 

modifications of the cargo proteins themselves [23]. The post translational modification of 

NPC was reported by [24]. Post-translational modification of NUPs by ubiquitylation and 

phosphorylation can affect NUP turnover and pore disassembly, respectively. Our study 

identified four parasite proteins containing the Nucleoporin-related domain. We anticipate 

that the assembly and disassembly of the parasite Nucleoporin proteins might also be 

modulated by phosphorylation. 

The NPC becomes an ideal target for inhibition of nuclear import or export. One of the most 

common features of Nucleoporins is the presence of conserved FG or FXFG repeats that 

bind to the Importin family members [25]. The monoclonoal antibodies such as mAb414 and 

RL2 can interrupt translocation through the NPC by blocking the FG and FXFG epitopes of 

the Nucleoporins. Consequently, several Nucleoporin proteins were identified by their 

reactivity against the anti-FG antibodies. Most of these FG repeat proteins exist as the 

cytoplasmic fibrils or projections on the nuclear side of the NPC. The monoclonal antibodies 

prevent cargo from associating with the edge of an NPC so it cannot cross the membrane 

[26]. Thus, there is a possibility that the pathogenesis of T. brucei could be controlled by 

inhibiting its Nucleoporin proteins. 

3.3. Participation of parasite proteins in functional interaction network 

Figure 5 illustrates the protein interaction data obtained from STRING 8.2 database. The 

mining of protein interaction data which is useful in contextual annotation of protein 

function showed that, out of 22 parasite homologues, only nine parasite proteins were 

interacting with each other. Out of the seven identified T. brucei Importins, only two namely 

Tb927.6.2640 and Tb10.70.4720 were found to be involved in that protein interaction 

network. This database mining approach indicated that T. brucei nuclear transport is typical 

of eukaryotic organisms. Importins initially recruit cargo at low RanGTP concentrations in 

the cytoplasm and release cargo at high RanGTP levels in the nucleus. Importin–RanGTP 

complexes return afterwards to the cytoplasm, where the Ran-bound GTP is finally 



 
Investigation on Nuclear Transport of Trypanosoma brucei: An in silico Approach 45 

hydrolysed and Ran dissociates from the receptor. The Importin can then bind and import 

another cargo molecule, while nuclear transport factor 2 (NTF2) recycles RanGDP back to 

nucleus. The cargo binding to exportins is controlled in a reverse manner compared to 

Importins; they recruit cargo at high RanGTP levels in the nucleus and release cargo at low 

RanGTP concentrations in the cytoplasm.  

 

 
 

Figure 5. Protein functional interaction network in the nuclear transport of T. brucei. This protein 

interaction data was obtained from STRING 8.2 database. The letters (a-i) indicate the parasite proteins 

involved in the nuclear transport. 

Table 5 shows evaluation of the obtained protein interaction data of the parasite nuclear 

transport. There were 13 functional interactions between parasite proteins identified from 

the mining of STRING 8.2 database. The score values of functional interactions range from 

0.45 to 0.976. The Importin alpha (Tb927.6.2640) was found to be the most interactive 

parasite proteins by participating in six functional interactions. Based on the relevant protein 

domains and previous reports, four out of 13 functional interactions were considered with 

high confidence level. It should be emphasized that our approach only considered the protein 

interaction data derived from experiments, gene fusion and text mining. To our knowledge, 

this is the first report of functional protein interactions in the nuclear transport of the 

eukaryotic parasites. Whether other eukaryotic parasites share the common protein interaction 

network for the nuclear transport machinery remains to be elucidated. 
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Subject 

sequence 

Interacting 

partner 
Source Score

Confidence 

level 
Reference 

Tb927.3.1120 Tb11.01.5940 Experiment 0.45 High 
Lounsbury and 

Macara (1997) 

Tb927.3.1120 Tb11.02.0870 Experiment,Text mining 0.512 Moderate None 

Tb927.3.1120 Tb927.8.4280 Experiment 0.534 High 
Fried and Kutay 

(2003) 

Tb11.01.5940 Tb11.02.0870 Experiment,Text mining 0.88 High 
Lounsbury and 

Macara (1997) 

Tb11.01.5940 Tb927.6.2640
Experiment,Text 

mining,Co-expression 
0.812 Moderate None 

Tb11.01.5940 Tb927.6.4740
Text mining,Co-

expression 
0.46 Moderate None 

Tb11.02.0870 Tb927.6.2640 Experiment,Text mining 0.453 Moderate None 

Tb927.6.2640 Tb927.6.4740
Experiment,Text 

mining,Co-expression 
0.976 Moderate None 

Tb927.6.2640 Tb09.160.2360 Experiment,Text mining 0.647 Moderate None 

Tb927.6.2640 Tb10.70.4720 Experiment,Text mining 0.769 High 
Fried and Kutay 

(2003) 

Tb927.6.2640 Tb927.8.4280 Experiment,Text mining 0.641 Moderate None 

Tb10.70.4720 Tb927.8.4280 Experiment,Text mining 0.535 Moderate None 

Tb927.8.4280 Tb927.8.3370 Experiment 0.502 Moderate None 

Table 6. Evaluation on protein interaction data obtained from STRING 8.2 database. The evaluation 

was based on the identified protein domains. 

To gain an insight into nuclear transport, understanding on interactions between transport 

receptors and proteins of the nuclear pore complex (NPC) is essential. According to [27], the 

fluorescence resonance energy transfer (FRET) can be employed between enhanced cyan 

and yellow fluorescent proteins (ECFP, EYFP) in living cells in order to explain the transport 

of receptor through the NPC. A FRET assay has been used to analyze a panel of yeast strains 

expressing functional receptor--ECFP and nucleoporin-EYFP fusions. Based on this 

approach, points of contact in the NPC for the related Importin Pse1/Kap121 and Exportin 

Msn5 were successfully characterized. That study proved the advantage of FRET in 

mapping dynamic protein interactions in a genetic system. In addition, both Importin and 

Exportin have overlapping pathways through the NPC. However, our database mining 

approach did not reveal any functional interaction between Nucleoporin and Karyopherin 

proteins of T. brucei.   

3.4. Sequence similarity between parasite proteins and their human counterparts 

Table 6 shows the degree of protein sequence similarity between parasite and human 

proteins. The similarity search for the sequence was carried out with the help of BLASTp 

tool. All the parasite proteins of nuclear transport machinery were found to have their 
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counterparts in human. The degree of sequence similarity between parasite proteins and 

human counterparts range from 19% to 72%. The resulting score values range from 49.3 to 

558. Meanwhile, all the identified human proteins contain the same protein domains 

involved in the nuclear transport.  
 

Subject sequence Human counterparts Score E-value 
Sequence 

similarity (%) 

Tb927.3.1120 NP_006316.1 313 1.00E-109 72% 

Tb09.211.4360 NP_694858.1 221 6.00E-62 25% 

Tb11.01.5940 NP_003391.1 558 0 33% 

Tb11.02.0870 AAA85838.1 79.3 5.00E-20 40% 

Tb927.2.2240 AAH20569.1 79.3 2.00E-16 29% 

Tb927.6.2640 NP_036448.1 360 4.00E-119 42% 

Tb927.6.4740 AAC50367.1 368 9.00E-113 29% 

Tb927.7.1190 AAI42947.1 453 2.00E-27 27% 

Tb11.03.0140 AAH45620.2 258 2.00E-09 38% 

Tb927.10.8170 NP_705618.1 134 1.00E-33 28% 

Tb927.8.3370 AAF36156.1 70.9 2.00E-17 27% 

Tb11.01.7010 NP_002262.3 207 2.00E-56 23% 

Tb11.02.1720 NP_006382.1 156 9.00E-28 24% 

Tb11.01.8030 NP_002262.3 101 3.00E-23 21% 

Tb11.01.7200  CAA41411.1 59.7 4.00E-10 19% 

Tb927.7.6320 NP_001041659.1 146 4.00E-17 28% 

Tb927.3.4600 NP_006381.2 65.9 2.00E-12 20% 

Tb09.160.2360 NP_003601.1 142 2.00E-39 30% 

Tb927.6.3870 NP_001073956.2 75.5 8.00E-18 31% 

Tb927.7.5760 NP_037380.1 49.3 6.00E-11 26% 

Tb10.70.4720 NP_002256.2 277 2.00E-81 28% 

Tb927.8.4280 NP_005787.1 73.6 1.00E-19 31% 

Table 7. Comparison of the identified parasite proteins with human counterparts at protein sequence 

level. This comparison involved BLASTp programme.  

A study reported by [28] showed that despite the high degree of similarity in the primary 

structure of human and T. cruzi ubiquitins, the three amino acid difference is sufficient to 

distinguish parasite versus host proteins. In this study, a simplified one step purification 
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procedure to partially purify T. cruzi ubiquitin was performed. Following this 

preparation, ELISA and Western blots were carried out to show that chagasic sera 

recognise T. cruzi but not human or Leishmania ubiquitin indicating a species-specific 

response. Thus, it is probable that the T. brucei proteins could also be distinguished from 

human counterparts at primary sequence level by using the immunodetection method. 

4. General discussions 

4.1. Transport of cargoes  

In RanGTPase system, Ran-binding protein 1 (RanBP1) which is cytoplasmic localized 

binds RanGTP and eases the RanGAP-dependent conversion of RanGTP to RanGDP [29]. 

This indicates that RanBP1 catalyses the cytoplasmic disassembly of RanGTP–transport 

receptor complexes. These complexes are kinetically so stable that RanGAP alone fails to 

trigger GTP hydrolysis [30-32]. RanBP2 [33] is a major constituent of the cytoplasmic 

filaments of NPCs and exhibits similar functions as RanBP1. It has four RanBP1 homology 

domains and forms a stable complex with sumoylated RanGAP [34,35], in order to 

dismantle the RanGTP–transport receptor complexes that exit the nucleus. Importin- and 

exportin-mediated transport cycles can accumulate cargoes against gradients of chemical 

activity, which is an energy-dependent process. The RanGTPase system hydrolyses one 

GTP molecule per transport cycle, and a number of evidences suggest that this contains 

the sole input of metabolic energy [36-39]. We have successfully identified all the required 

key components in the T. brucei nuclear transport. Whether their functionalities in vivo are 

consensus with the known ones still remains to be further investigated. 

4.2. Relationship between signaling pathways and nuclear transport 

Many aspects of cell physiology are greatly dependent on the signaling pathways. This 

includes members of the mitogen activated protein (MAP) kinase family as well as 

phosphatidyl inositol 3 (PI3) and adenosine monophosphate (AMP) kinases which are 

crucial in controlling the cell growth, proliferation, apoptosis and the response to stress.  

By activating the signaling pathway through multiple kinase cascades, various stressors 

are able to regulate the nuclear transport. For example, oxidative and heat stress activate 

both MAP kinase kinase (MEK)-extracellular signal regulated kinase 1/2 (ERK1/2) and PI3 

kinase-Akt pathways [40]. Based on these observations and the fact that many of the 

transport components are modified post-translationally, it was sensible to investigate 

whether these modifications are regulated by stress. A study reported by [41] showed that 

oxidant treatment induced phosphorylation and/or GlcNAc modification of soluble 

transport factors and nucleoporins. Interestingly, changes in transport factor 

modifications are not limited to stress conditions, as modifying ERK or PI3 kinase 

activities in unstressed cells also affect the transport factors. This is exemplified by the 

regulation of RanBP3 through ERK1/2-ribosomal S6 kinase (RSK) signaling, a regulatory 
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link which ultimately controls the Ran concentration gradient. Furthermore, 

phosphorylation of Nup50 which is dependent on ERK, reduces its association with 

importin-β1 and transportin in vitro, and ERK2 is responsible to the oxidant-induced 

collapse of the Ran gradient [42]. It remains unknown how much modulating individual 

transport factors contributes to the overall regulation of nuclear trafficking. However, it is 

noteworthy that the kinase inhibitor PD98059, which targets ERK1/2 and ERK5, 

significantly increases classical nuclear import, both under normal and stress conditions. 

Taken together, these results highlight a critical role of ERK activity in nuclear transport, 

with ERK kinases targeting both soluble factors and nucleoporins [41]. Thus, there is an 

urgent need to investigate the possible connection between upstream signaling apparatus 

with nuclear transport components in T. brucei. 

4.3. In silico approach for drug target discovery 

We have provided interpretation of heterologous data sets for nuclear transport system of T. 

brucei from various resources. With the availability of protein databases and computer-aided 

softwares, we are able to explain various functional interactions between identified parasite 

proteins and how these functional interactions give rise to functionality and behavior of the 

parasite nuclear transport. This would partially facilitate the exhausted effort to obtain 

system-level understanding of T. brucei pathogenesis. Our in silico approach has the 

potential to speed up the rate of drug target discovery while reducing the need for 

expensive lab work and clinical trials. The conventional approaches in vivo and in vitro have 

high tendencies to produce inefficient results when investigating complex large scale data 

such as proteins associated with nuclear shuttling of macromolecules across the nuclear 

envelope. Therefore, the systematic in silico approach from this study provides a 

tremendous opportunity of cost effective drug target discovery for the pharmaceutical 

industry.  

4.4. Experimental validation of in silico data 

Experimental techniques such as yeast two-hybrid assay and affinity purification combined 

with mass spectrometry are useful to investigate the possible protein-protein interaction. 

However, they have their limitations in detecting certain types of interactions. They also 

have technical problems to scale-up for high-throughput analysis. In conjunction with this, 

in silico approach may solve those problems in inferring the protein function. The scope of 

experimental data can be expanded to increase the confidence of certain interacting protein 

pairs with the availability of databases containing in silico data such as protein domain and 

3D structure. The databases integrate information from various resources such as 

computational prediction methods and public text collections. Since in silico and 

experimental approaches are complementary to each other, the combination of these 

different approaches is very useful to obtain a more accurate picture of T. brucei nuclear 

transport. 
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4.5. Our further direction 

In silico approach offers various advantages over in vivo and in vitro approaches such as 

non-use of animals, low costs, and reduced execution time. This approach allows 

identification of proteins of interest from a particular biological study. From a protein 

function standpoint, transfer of annotation from known proteins to a novel target is 

currently the only practical way to convert vast quantities of raw sequence data into 

meaningful information. Many bioinformatics tools now provide more sophisticated 

methods to transfer functional annotation, integrating sequence, family profile and 

structural search methodology. Thus, in addition to data mining for protein-protein 

interaction, further in silico approach should also consider structural alignment, molecular 

docking and pathway modeling in order to obtain a comprehensive and more reliable 

insight into protein-protein interaction of T. brucei nuclear transport. 

5. Conclusion 

The availability of protein databases and computer-aided softwares to identify probable 

components of cellular mechanisms has become a new trend in the present scientific era. 

We demonstrate here a computational analysis of nuclear transport in T. brucei as an 

initial step and proof of concept for further investigation. Our approach successfully 

identified 22 T. brucei proteins essential for nuclear transport. All those parasite proteins 

were found to contain relevant functional domains that drive the translocation of 

macromolecules in the parasite. The phosphorylation and O-glycosylation sites were also 

detected in all identified parasite proteins. This has given us an insight into the 

regulatory aspect of parasite nuclear transport. The database mining of protein 

interaction has shown that nine out of 22 parasite proteins possess relevant functional 

interactions for nuclear transport activities. However, more functional interactions from 

nuclear transport constituents of T. brucei are required to elucidate the exact mechanism. 

The homology between the parasite proteins and human counterparts was shown by 

BLASTp analyses. Whether there are structural differences between them remain 

unknown.  

The nuclear transport in T. brucei has been characterized by using the in silico approach. 

The predicted functionalities and regulatory aspects of parasite nuclear transport 

constituents were in agreement with the previous reports. Moreover, the protein 

interaction data derived from the public database has made the participation of parasite 

proteins in the mechanism more convincing. Thus, we have laid a path for understanding 

the nuclear transport machinery in T. brucei. The development of drugs that target as well 

as alter nuclear import and export will undoubtedly become beneficial in controlling 

Trypanosomiasis in future. Drugs that have a direct effect on a single protein must be able 

to localize to the same site as the protein and interact with one or more of its domains. 

Alternatively, a drug that effectively blocks the target protein from reaching its proper 

organelle can also inhibit the protein’s function. 
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