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1. Introduction

Nanotechnology is a rapidly evolving field of research and industrial innovation with many
potentially promising applications in agriculture, healthcare, engineering, processing, pack‐
aging or delivery of drugs or food supplements. Engineered nanomaterials (ENMs) already
became part of our daily life as food packaging agents, drug delivery systems, therapeutics,
biosensors, etc. In 2011, according to the Woodrow Wilson Nanotechnology Consumer
Products Inventory, Ag nanoparticles (Ag-NPs) were the most commonly consumed ENMs,
followed by TiO2, SiO2, ZnO, Au, Pt, etc (http://www.nanotechproject.org). By the most re‐
cent definition of European Parliament and Council [1] ‘nanomaterial’ (NM) is any material
that is characterized to have at least one dimension ≤ 100 nm, or that comprises of separate
functional parts either internal or on the surface, which have one or more dimensions ≤ 100
nm, including structures, e.g. agglomerates or aggregates, which may be larger than 100 nm,
but which retain the typical properties of nanoscale.

In many countries ENMs are already used as food supplements and in food packaging: (i)
nanoclays as diffusion barriers [2]; (ii) Ag-NPs as antimicrobial agent [3,4]; (iii) silicates and
aluminosilicates (E554, E556, E559) as anti-caking and anti-clumping agents and in tooth‐
pastes, cheeses, sugars, powdered milks, etc [5]; (iv) TiO2 (E171) for whitening and brighten‐
ing, e.g. in sauces and dressings, in certain powdered foods [6], etc. According to
FAO/WHO report [7] the ENMs have several current or projected applications in the agro‐
food sector: nanostructured food ingredients; nanodelivery systems; organic and inorganic
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nanosized additives; nanocoatings on food contact surfaces; surface functionnalized NMs;
nanofiltration; nanosized agrochemicals; nanosensors; water decontamination, …

With an increasing number of ENMs present in consumer and industrial products, the risk
of human exposure increases and this may become a threat to human health and the envi‐
ronment [8]. Individual ENMs may lead to one or more endpoints, which are not unique to
NMs, but which need to be taken into account, e.g. cytotoxicity, stimulation of an inflamma‐
tory response, generation of reactive oxygen species (ROS) and/or genotoxicity. Although
the exact mechanism underlying NPs toxicity is yet to be elucidated, studies have suggested
that oxidative stress and lipid peroxidation regulate the NP-induced DNA damage, cell
membrane disruption and cell death [9-12]. It has been suggested that ROS, in turn, modu‐
late intracellular calcium concentrations, activate transcription factors, induce cytokine pro‐
duction [13], as well as lead to increased inflammation [14,15]. Small sized metallic NPs, e.g.
Ag-NPs, TiO2, Co-NPs may also cause DNA damage [16-20]. In vitro studies with different
types of NPs (metal/metal oxide, TiO2, carbon nanotubes, silica) on various cell lines have
demonstrated oxidative stress-related inflammatory reactions. It is believed that this re‐
sponse is largely driven by the specific surface area of the NPs and/or their chemical compo‐
sition [21-25]. Typically, the biological activity of particles increases with the particle size
decrease [26-29]. Moreover, depending on their chemistry, NPs show different cellular up‐
take, subcellular localization and ability to induce the ROS production [30]. On the contrary,
there are also cases reported of NPs having anti-inflammatory properties, such as certain Ce
oxide [31] and Ag-NPs [32]. Nanocrystalline Ag has been demonstrated to have antimicrobi‐
al and anti-inflammatory properties and was found to reduce colonic inflammation follow‐
ing oral administration in a rat model of ulcerative colitis, suggesting that nano-silver may
have therapeutic potential for treatment of this condition [32].

To sum up, based on the information currently available, no generic assumptions can be
made regarding the toxicity upon exposure to NMs, their endpoints and the implications of
different organs and tissues.

2. Behavior and fate of ENMs in the GIT

The gastrointestinal tract (GIT) is a complex barrier-exchange system and is one of the most
important routes for macromolecules to enter the body, as well as a key actor of the immune
system. The epithelium of the small and large intestines is in close contact with ingested ma‐
terials, which are absorbed by the villi. To date, studies on exposure, absorption and bioa‐
vailability are mainly focused on the inhalation and dermal routes, and little is known about
the toxicokinetic and toxicodynamic processes following oral exposure, particularly in rela‐
tion to ingestion of ENMs that are present in food.

ENMs can reach the GIT either after mucociliary clearance from the respiratory tract af‐
ter  being  inhaled  [33],  or  can  be  ingested  directly  in  food,  water,  drugs,  drug delivery
devices,  etc  [8,34].  The dietary consumption of  NPs in developed countries  is  estimated
around 1012  particles/person per day,  consisting mainly of  TiO2  and mixed silicates [35].
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It has been shown that several characteristics, such as (i) the particle size [36], (ii) surface
charge [37],  (iii)  attachment  of  ligands [38,39],  (iv)  coating with surfactants  [40],  as  well
as (v)  the administration time and dose [41] affect  the fate and extent of  ENMs absorp‐
tion in GIT. The published literature on the safety of oral exposure to food-related ENMs
currently  provides insufficient  reliable  data  to  allow a clear  safety assessment  of  ENMs
[42]  that  is  connected primarily  with  inadequate  characterization  of  ENMs [43].  For  in‐
stance, it has been demonstrated that smaller particles cross the colonic mucus layer fast‐
er  than  larger  ones  [37].  The  NPs  kinetics  in  the  GIT  also  depends  strongly  on  their
charge,  i.e.  positively  charged  latex  particles  remain  trapped  in  the  negatively  charged
mucus,  while  negatively charged ones diffuse across  the mucus layer  and their  interac‐
tion with epithelial cells becomes possible [41].

NPs that pass the mucus barrier may be translocated through the intestinal epithelium,
which will depend not only on physicochemical characteristics of NPs [36-41], but also on
the physiological state of the GIT [44]. The translocation of NPs potentially used as food
components through the GIТ remains to be explored [45]. Much of the current knowledge
concerning the potential toxicity of NPs has been gained from in vitro or in silico test sys‐
tems. Following ingestion, translocation of particles across the GIT can occur via different
pathways:

1. Endocytosis through ‘regular’ epithelial cells (NPs < 50 - 100 nm) [46].

2. Transcytosis via microfold (M) cell uptake at the surface of intestinal lymphoid tissue
(NPs of 20 - 100 nm and small microparticles i.e. 100 - 500 nm) [47]. M cells are special‐
ized phagocytic enterocytes that are localized in intestinal lymphatic tissue – Peyer’s
Patches (PP). This transcytotic pathway occurs via vesicle formation at the apical (i.e.
luminal) cell membrane that engulfs some extracellular material, which then moves
across the cell, escaping therefore to fusion with lysosomes, fuses with the basolateral
membrane (i.e. serosal) and releases the material at the opposite side of the intestinal
barrier. The mechanism is size-dependent - the smaller the particle, the easier is the pas‐
sage through the epithelium [48-50].

3. Persorption, where ‘old’ enterocytes are extruded from the villus into the gut lumen,
leaving ‘holes’ in the epithelium, which allow translocation of even large particles, such
as starch and pollen [51-53].

4. Another possible route by which NPs can gain access to the gastrointestinal tissue is the
paracellular route across tight junctions (TJs) of the epithelial cell layer. TJs are remarka‐
bly efficient at preventing paracellular permeation, although their integrity can be af‐
fected by diseases, e.g. inflammation, and/or by metabolites (e.g. glucose), calcium
chelators (e.g. citrate) [54] and even particle endocytosis [55].

All above-mentioned routes could be involved in NPs translocation. There are a number of
published reports stating the involvement of different types of endocytosis in the process of
NPs internalization: clathrin-mediated pathway, caveolin-mediated endocytosis and macro‐
pinocytosis for TiO2 [56], size-dependent endocytosis for Au-NPs [57]; endocytotic path‐
ways were described for SiO2 [58,59] and Ag-NPs [60], etc.
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Several studies demonstrated that the phenomenon of persorption is also true for NPs, e.g.
in the case of colloidal Au-NPs [36]. Small and large NPs gain potentially access to this
route, nevertheless its quantitative relevance remains low, as it seems to be very inefficient
compared to the active uptake of particles by M-cells. For instance, it was indicated that one
lymphoid follicle dome of the rabbit PP could transport about 105 microparticles of 460 nm
diameter in 45 min [61]. It could be assumed that for smaller particles this would be even
more efficient.

Particulate uptake may occur not only via the M-cells of the lymphoid follicle-associated ep‐
ithelium (FAE) in PP [49,62], but also via the normal intestinal enterocytes [46]. A number of
reports on intestinal uptake of micro- and nanoparticles state that the uptake of inert parti‐
cles occurs trans-cellularly through normal enterocytes and via M-cells [61,63-65], as well as,
to a lesser extent, through paracellular pathway [66].

3. Appropriate in vitro model of the intestinal barrier

There are several recognized parameters currently used for in vitro cytotoxicity assessment
of ENMs, such as cell viability, stress and inflammatory responses, genotoxicity, etc [67].
However, it should be noted that due to specific physicochemical properties of ENMs, cur‐
rently existing in vitro toxicity assays may have limited use and the methods should be care‐
fully designed in order to discard the influence of nano-sized materials on the assay itself
[28]. The risk assessment is further impaired by the lack of standardized test systems that
fulfil these criteria. According to the new European Chemicals Legislation (REACH), new
test systems for toxicity screening of ENMs should be developed, e.g. cell culture systems
that will better reflect in vivo toxicity parameters [68].

Human colon adenocarcinoma (Caco-2) cells reproducibly display a number of properties
characteristic to differentiated enterocytes and are the most popular cell culture system for
studying intestinal passage and transport [69,70]. Cultured Caco-2 cells differentiate sponta‐
neously into polarized monolayers [71] that possess an apical brush border and express
functional TJs, biotransformation enzymes and efflux pumps [72]. Caco-2 cells grow as a
monolayer and fully differentiate also on semi-permeable membranes of bicameral inserts.
This permits to separate the apical (AP) compartment from the basolateral (BL) one, reflect‐
ing the intestinal lumen and the serosal side, respectively [65]. Transport of molecules and
ions from the AP to the BL side and vice versa requires the passage either through the cells
(transcellular route) or between the cells through TJs (paracellular route).

The gut lining epithelium is for the most part impermeable to microorganisms and micro‐
particles, except for the lymphoid FAE found in PP [49,73,74]. M cells are responsible for
transport of antigens, bacteria, viruses, as well as micro- and NPs to the antigen presenting
cells within and under the epithelial barrier as the first step in developing immune respons‐
es [75]. There is only an incomplete and inadequate understanding of the development and
function of FAE, as well as of the genes and proteins responsible for their specialized func‐
tions. One potential approach to study such complex and specialized tissues is to use cell

Inflammatory Bowel Disease4



culture systems more precisely reproducing the features of the in vivo tissue. Kernéis et al.
[76] demonstrated that co-culturing of Caco-2 cells with murine PP lymphocytes appears to
convert Caco-2 cells into M-like cells, including enhanced transport of particles across the
epithelium monolayer. The induction of this phenotype did not require direct cell contact, as
it was also achieved via physically separated co-culturing of Caco-2 and human Burkitt's
lymphoma (Raji B) cells in bicameral culture inserts [77]. Although it is not clear whether
this model faithfully reproduces all of the features of in vivo M cell function, nevertheless
studies have confirmed that Caco-2 cells co-cultivated with Raji B cells in vitro express sever‐
al genes specifically expressed in FAE in vivo [78].

In an improved in vitro co-culture model in bicameral system Caco-2 cells were exposed to
lymphocytes from the BL chamber. In a so-called ‘inverted’ model (Figure 1) the lympho‐
cytes were shown to migrate into the monolayer and induce the conversion of the enterocyte
phenotype into the M-cells one [76,79]. Recently, des Rieux et al. [65] characterized the in‐
verted model and compared it with previously developed one [77]. According to these re‐
sults, in the inverted model, the M cell conversion rate was estimated to range between 15 -
30% (for comparison it was <10% in the human FAE [80]). The comparison of the in vitro
models revealed that the inverted model appears to be physiologically and functionally
more reproducible and efficient than the normally oriented one [65]. Thus this improved
model could be used to better characterize and understand the biological effects, absorption
and transportation mechanisms of NPs in intestinal cells.

Figure 1. Co-culture model of Caco-2 and Raji B cells [63].

4. Epithelial barrier integrity and inflammatory response under the
influence of NPs

During their differentiation epithelial cells develop junctional structures between the neigh‐
boring cells and form a tight protective barrier that restricts the absorption to some nutrients
and substances while, in the meantime, provides a physical barrier impairing the permea‐
tion of pro-inflammatory molecules, e.g. pathogens, toxins, antigens and xenobiotics from
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the luminal environment into the mucosal tissues and circulatory system. This barrier com‐
prises several structures [81], where the TJs are the most apical components of the junctional
complex and are the main gatekeepers of the epithelial paracellular passage. TJ barrier dis‐
ruption and increased paracellular permeability, followed by permeation of luminal pro-in‐
flammatory molecules can activate the mucosal immune system, resulting in chronic
inflammation and tissue damage [75]. Intestinal TJ barrier is evidenced to have a critical role
in the pathogenesis of intestinal and systemic diseases [82-84]. Under physio-pathological
conditions, pro-inflammatory cytokines, antigens and pathogens contribute to barrier im‐
pairment [85,86]. Considering the TJs integrity impairments under inflamed conditions, it
could be assumed that NPs that lead to stress and/or inflammatory responses could also in‐
fluence the TJs integrity.

Several methodological approaches allow measuring the barrier function in cell cultures,
e.g. the evaluation of the transepithelial electrical resistance (TEER) and the passage of
marker molecules, such as Lucifer Yellow (LY) [87]. Our results revealed that under the in‐
fluence of Ag-NPs < 20 nm, а disruption of the barrier integrity occurs. In figure 2A the
TEER values of both mono- and co-cultures of Caco-2 cells after 3h of incubation with differ‐
ent concentrations of Ag-NPs are shown. TEER values decreased as Ag-NPs concentration
increased, even though the reduction was less obvious in co-culture conditions – a model
that is closer to the physiological conditions of FAE.

A B 

Figure 2. TEER values (A) and LY passage (B) of mono- and co-cultures of Caco-2 cells upon incubation with Ag-NPs
(NM-300K, JRC repository, Ispra, IT) at 15 – 90 µg/ml. Experiments were conducted on mono- and co-cultures (i.e.
Caco-2 cells with Raji B lymphocytes) cultivated for 21 days in polycarbonate bicameral inserts with 3 µm pore size
(TranswellTM, Corning Costar, NY) to reach a full differentiation and, for co-cultures, partial conversion into M like cells.
TEER values were measured via Millicell-ERS volt-ohm meter (World Precision Instruments, Sarasota, FL) at the begin‐
ning and after 3h incubation period with Ag-NPs. The transport of LY was observed during 3h period with a 30 min
sampling time from the BL compartment. Both the changes in TEER values (P<0.0001) and the LY passage (P<0.003)
were calculated as a percentage from the initial value. Data represent the means ± SEM of 4 independent experi‐
ments. *Samples significantly different from the control (results were considered significant at P<0,05).

The passage of LY was evaluated by the amount of LY that passed from AP to BL compart‐
ment (Figure 2B). The presence of Ag-NPs increased the level of LY in the BL compartment
that was dependent on the NP concentration. These results are in correlation with the NP-
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induced reduction of TEER values. Interestingly, in contrast to TEER results, the co-cultures
had more elevated rate of LY passage than the corresponding mono-cultures.

To have an idea about the molecular mechanisms of the Ag-NPs-induced barrier integrity
disruption, an immunostaining with confocal microscopy analysis of two TJs proteins occlu‐
din and ZO-1 was realized. As illustrated on Figure 3, in Ag-NP-treated cells the continuity
of both occludin and ZO-1 was disrupted with the control comparison and the aggregation
of both proteins was observed. It should further be noted that mono-cultures were more
susceptible to the influence of Ag-NPs than co-cultures and the alterations in proteins distri‐
butions were more visible in mono-cultures. The immunostaining results in turn confirmed
the TEER data, where a more obvious reduction was estimated in the case of mono-cultures
(Figure 2).

Figure 3. Subcellular localization of the occludin and ZO-1 TJs scaffolding proteins. Mono- and co-cultures of Caco-2
cells grown on bicameral inserts were treated with Ag-NPs (45 µg/ml) for 3h and then processed for immunostaining
(B and D). Untreated cells were used as controls (A and C). In order to visualize the occludin and ZO-1 mouse anti-
Occludin and mouse anti-ZO-1 (both from Invitrogen) were used as primary antibodies, as well as Alexa Fluor 488
goat anti-mouse (Invitrogen) as the secondary antibody. Images were collected by confocal laser scanning micro‐
scope; scale bars are 15 and 25 µm for occludin and ZO-1 staining, respectively.

The observed changes were reversible at low Ag-NPs concentrations (up to 30 µg/ml): the
TEER values and TJs proteins distributions were recovered until the control level. Other
NPs were also reported to possess the ability to open the TJs. For instance, the chitosan NPs
were capable to open transiently and reversibly the epithelial TJs [88].

In contrast to Ag-NPs, we observed no change neither in TEER value and LY passage rate,
nor TJs proteins distributions upon incubation of cell mono- and co-cultures with amor‐
phous SiO2 < 25 nm (NM-200, JRC repository, Ispra, IT) (results not shown). These findings
provide additional evidence that the major input in the NPs-mediated barrier integrity dis‐
ruption seems to belong to the charge of the NPs. Particularly, it has been previously report‐
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ed that neutral and low concentrations of anionic NPs have no effect on blood-brain barrier
integrity, in contrast to anionic NPs at high concentrations and cationic NPs [89]. A number
of recent in vitro and in vivo studies highlight the importance of NPs surface charge for cellu‐
lar uptake and biodistribution [90-92], indicating that for the majority of NPs the positive
surface charge enhances cellular internalization [92-94]. The latter is likely linked to the ad‐
sorption of different bio-molecules at the surface of NPs, dependent on surface charge, as
well as on chemical characteristics of NPs [95].

Another underlying condition in the TJs disruption is likely to be the cellular oxidative
stress possibly induced by NPs [96]. Our results have shown that the fluorescence intensity
of an oxidative stress indicator dichlorofluorescein was increased upon exposure of cells to
Ag-NPs within a 3h time period (Figure 4). The ROS generation induction was dependent
on NPs concentration reaching from about 1,5 to 3-fold increase, as compared with the un‐
treated cells. Thus one mechanism of toxicity of Ag-NPs could likely be mediated by oxida‐
tive stress, already reported to be involved in the modulation of TJs integrity [97].

Figure 4. Effect of Ag-NPs (5 – 90 µg/ml) on intracellular ROS generation in Caco-2 cells. The ROS generation was
investigated using the dichlorofluorescein (DCFH) assay. After being oxidized by intracellular oxidants, DCFH becomes
DCF and emits fluorescence, quantification of which is a reliable estimation of overall oxygen species generation. The
intracellular ROS level is presented as a percentage of the corresponding initial value after incubation together with
NPs during 3h at 370C. Data represent means ± SEM of 3 experiments with 3 different samples per condition,
P<0.0001.

Altogether, the results reveal that some NPs, e.g. chitosan or Ag-NPs may enhance the epi‐
thelial barrier permeability and could therefore serve as an effective carrier for oral drug de‐
livery [44]. However, it should be noted that the epithelial permeability increase in turn
might favor the systemic absorption of ENMs, toxins and other xenobiotics, and would like‐
ly cause immune activation.

Inflammatory Bowel Disease8



5. Potential toxicity of ENMs in the case of altered intestinal physiology

It has been reported that the exposure to some NPs is associated with the occurrence of au‐
toimmune diseases, such as systemic lupus erythematosus, scleroderma, and rheumatoid ar‐
thritis [35]. Diseases, such as diabetes, may also lead to an increased absorption of particles
in the GIT [41]. Furthermore, inflammation may lead to the uptake and translocation of par‐
ticles of up to 20 nm [98]. Thus, an issue to be considered in relation to ENMs ingestion is a
possible increase in their intestinal absorption in the case of systemic exposures, such as in
Inflammatory Bowel Disease (IBD) and/or Crohn's disease (CD), which represent chronic
disorders characterized by recurrent and serious inflammation of the GIT [99]. Crohn’s dis‐
ease affects primarily people in developed countries, where the highest incidence rates and
prevalence for CD and ulcerative colitis (UC) have been reported from northern Europe, the
United Kingdom and North America [100] with a frequency of 1 in 1,000 people in the West‐
ern world [5]. However, reports of increasing incidence and prevalence from other areas of
the world, e.g. southern or central Europe, Asia, Africa, and Latin America state the progres‐
sive nature and worldwide rise of these diseases [100].

An abnormal intestinal barrier function plays a pivotal role in IBD [101]. Increased intestinal
permeability has been reproducibly described in patients with CD, which is likely a predis‐
posing factor to the pathogenesis and impaired epithelial resistance [102,103]. A barrier dys‐
function has been reported in the colonic mucosa of patients with Irritable Bowel Syndrome
(IBS), which results from increased paracellular permeability, presumably by an altered ex‐
pression of ZO-1 [104]. Moreover, stress is believed to contribute to induction of IBS and re‐
currence of intestinal inflammation and can increase the paracellular permeability [105]. It
should be noted that mediators of inflammation, such as ROS, endotoxins (lipopolysacchar‐
ides) and cytokines are able to provoke the disruption of TJs and thereby increase the para‐
cellular permeability [97]. Significant changes in epithelial TJs structure and function were
also observed in UC [106,107]. Thus the altered intestinal permeability could certainly be a
result of disease progression, but there is evidence that it might also be the primary causa‐
tive event.

Recently it was suggested that there could be an association between high levels of dietary
NPs uptake and CD. Experimental results indicate that the accumulation of insoluble NPs in
humans may be responsible for the compromised gastrointestinal functioning, as described
in the case of CD and UC [5]. Microscopy studies have also shown that macrophages located
in lymphoid tissue can uptake NPs, e.g. spherical anatase (TiO2) with size of 100-200 nm
from food additives, aluminosilicates of 100-400 nm typical of natural clay, and environmen‐
tal silicates of 100-700 nm [108]. According to another study, some insoluble NPs, such as
TiO2, ZnO and SiO2, upon their absorption and passage across the GIT, come into contact
with and adsorb calcium ions and lipopolysaccharides. The resulting NPs–calcium–lipopo‐
lysaccharide conjugates activate both peripheral blood mononuclear cells and intestinal
phagocytes, which are usually resistant to stimulation [109].

Despite the insufficiency of data linking the NPs consumption to the initiation of CD and
UC, it seems that particles of 0.1 – 1.0 µm may be adjuvant triggers for the exacerbation of

Food Nanoparticles and Intestinal Inflammation: A Real Risk?
http://dx.doi.org/10.5772/52887

9



these diseases [110]. Micro and NPs have been constantly found in organs, e.g. in colon tis‐
sue and blood of patients affected by cancer, CD, and UC, while in healthy subjects NPs
were absent [111]. Some evidence suggests that dietary NPs may exacerbate inflammation in
CD [6]. More precisely, some members of the population may have a genetic predisposition
where they are more affected by the intake of NPs, and therefore develop CD [9]. It has been
also reported that micro- and NPs in colon tissues may lead to cancer and CD progression
[111]. By contrast, a diet low in calcium and exogenous micro- and NPs has been shown to
alleviate the symptoms of CD [5]. This analysis is still controversial, with some proposing
that an abnormal response to dietary NPs may be the cause of this disease, and not an excess
intake [6].

Although there is a clear association between particle exposure/uptake and CD, little is
known of the exact role of the phagocytosing cells in the intestinal epithelium and particu‐
larly of the pathophysiological role of M cells. It has been shown that M cells are lost from
the epithelium in the case of CD. Other studies found that endocytotic capacity of M cells is
induced under various immunological conditions, e.g. a greater uptake of particles of 0.1 –
10 µm has been demonstrated in the inflamed colonic mucosa of rats compared to non-ul‐
cerated tissue [109,112].

Thus more vulnerable members of the population, i.e. those with pre-existing digestive dis‐
orders, may potentially be more affected by the presence of ENMs, although, in contrast,
ENMs may offer many potential routes to therapies for the same diseases. The diseases asso‐
ciated with gastrointestinal uptake of NPs, such as CD and UC have no cure and often re‐
quire surgical intervention. Treatments are aimed at maintaining the disease in remission
and mainly consist of anti-inflammatory drugs and specially formulated liquid meals [5]. If
dietary NPs are conclusively shown to cause these chronic diseases, their use in food should
be avoided or strictly regulated.

6. Potential health risks/benefits of nanotechnology-based food materials

The absorption, distribution, metabolism and excretion (ADME) parameters are likely to be
influenced by the aggregation, agglomeration, dispersability, size, solubility, and surface
area, charge and physico-chemistry of NPs [113]. Amongst these parameters the size, chemi‐
cal composition and surface treatment appear to be the most critical ones for nanotoxicity
issues [114]. Chemical composition, beside the chemical nature of the NP itself, also includes
the surface coating of the NPs [115]. Coatings can be used to stabilize the NPs in solution, to
prevent clustering or to add functionality to the NPs, depending on its intended use. Surface
coatings can influence the reactivity of the NPs in various media, including water, biological
fluids and laboratory test media [116,117]. From this point of view the interaction of NPs
with food components is another aspect that may need consideration and about which little
information is currently available. The possible interaction of food components may alter
the physicochemical properties of ENMs that in turn may influence their passage through
the GIT and their ADME properties.
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ENMs,  with  their  very  large  surface  areas,  may  adsorb  bio-molecules  on  their  surface
upon  contact  with  food  and/or  biological  fluids  to  form  a  bio-molecular  “corona”
[96,118]. Depending on the nature of the corona, the behavior of the NPs may differ, and
there  could  be  the  potential  for  novel  toxicities  non-characteristic  neither  for  the  non-
coated  NPs,  nor  for  the  adsorbed  biological  material.  These  bio-molecules  include  pro‐
teins, lipids, sugars, different secondary metabolites and it is those interactions that may
actually determine how ENMs will  interact  with living systems.  Thus,  the foregoing in‐
formation on the  food should be  considered carefully,  taking into  account  its  major  in‐
gredients  or  components,  which  have  physiological  properties  likely  to  influence  the
absorption/translocation of ENMs in the GIT.

Several studies have demonstrated that various food components provide beneficial anti-in‐
flammatory and anti-mutagenic effects in the GIT. Although the information regarding
these effects on intestinal TJ barrier integrity is limited, some results are available e.g. for
glutamine [119,120] and fatty acids [121-123]. A growing number of data suggest the poten‐
tial protective effect of phenolic compounds on the epithelial barrier function and their anti-
inflammatory properties [124,125]. In particular, certain flavonoids that represent a part of
human daily nutrition, e.g. epigallocatechin gallate, genistein, myricetin, quercetin and
kaempferol are reported to exhibit promotive and protective effects on intestinal TJ barrier
[124,126].

We have observed (unshown results) that quercetin attenuates the cytotoxic effect of Ag-
NPs on Caco-2 cells, as well as allows recovering of the epithelial barrier function, which
was evidenced by the recovery up to the initial value of the TEER and the LY passage rate in
both mono- and co-cultures. The immunostaining analysis of occludin and ZO-1 also re‐
vealed the recovery of the protein distributions in the presence of quercetin, which addition‐
ally suggests the protective effect of the latter upon the harmful effects of Ag-NPs. In a
similar study it was reported that positively charged Ni-NPs can efficiently enhance the per‐
meation and uptake of quercetin into cancer cells, which can have important biomedical and
chemotherapeutic applications [127].

A number of published reports indicate the potential application of antioxidants
[10,128-130] and anti-inflammatory drugs [6,131] that are able to treat the adverse health ef‐
fects caused by NPs. For instance, berberine, an alkaloid with a potential biomedical appli‐
cation, has been shown to attenuate TJ barrier defects induced by TNF-α, known to disrupt
TJ integrity in IBD [132]. It has been reported that rats that underwent instillation of NPs
into the lungs together with an antioxidant, i.e. nacystelin, showed an inflammation de‐
crease up to 60% in comparison to those exposed to NPs alone [10].

To have an idea about the state of Ag-NPs in the presence of quercetin, NPs were character‐
ized by transmission electron microscopy (TEM) (Figure 5). It could be seen that in the pres‐
ence of quercetin a “capping” of Ag-NPs occurs, which confirms already existing data on
Ag-NPs stabilization with reducing agents. Surface-active molecules, such as terpenoids
and/or reducing sugars are believed to stabilize the NPs in the solutions, i.e. they are be‐
lieved to react with the silver ions (Ag+) and stabilize the Ag-NPs [133,134]. Flavonoids have
been suggested to be responsible for the reduction of Ag+ to Ag-NPs [135]. Fatty acids such
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as stearic, palmitic and lauric acids are used as agents for the formation and stabilization of
Ag-NPs [136].

 

A B 

Figure 5. TEM analysis of Ag-NPs < 20 nm (NM-300K) alone (A) and in the presence of quercetin (B). The average size
of Ag-NPs was about 20 nm, scale bar: 100 nm. NPs were characterized by transmission electron miscroscopy (TEM)
(Technai Spirit TEM, FEI Company, Eindhoven, NL) by Dr. J. Mast at the Electron Microscopy Unit of the Veterinary and
Agrochemical Research Centre VAR-CODA-CERVA, Uccle, BE.

Another major phenolic compound present in human diet is resveratrol, which possesses
many beneficial health effects [137-141]. Considering abundance and health-promoting ef‐
fects of resveratrol, we have also investigated its potential protective activity against the Ag-
NP-induced cytotoxicity. The results indicated no protective effect of resveratrol and
moreover, at a concentration of 100 µM, non-toxic by itself, it increased the toxic effect of
Ag-NPs, illustrating a synergistic effect.

To conclude, it could be assumed that phenolic compounds, depending on the nature and
concentration, may exhibit different effects on cells in the presence on NPs. This is not sur‐
prising, as it is known that these substances, depending on concentration, may exhibit both
beneficial and toxic effects [141].

7. Future perspectives

Nanotechnology offers a wide range of opportunities for the development of innovative
products  and applications  in  agriculture,  food  production,  processing,  preservation  and
packaging. However, the present state of knowledge still contains many gaps preventing
risk assessors from establishing the safety for many of the possible food related applica‐
tions  of  nanotechnology [142].  Currently  the  routine  assessment  of  ENMs in  situ  in  the
food or feed matrix is  not possible,  as well  as equally impossible to determine physico‐
chemical  state  of  ENMs,  which  increases  the  uncertainty  in  the  exposure  assessment.
Complex  matrices  present  in  the  food  complicate  the  detection  and  characterization  of
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ENMs in final food/feed products, which itself contain a wide range of natural structures
in the nano-size scale.  The information on the potential  of  ENMs to cross the epithelial
barriers,  such as  the GIT,  blood-brain,  placenta  and blood-milk barriers  are  also impor‐
tant for hazard identification. It is also clear that the evaluation of the pro-inflammatory
potential of ENMs is another issue of current importance, as the inflammation itself is as‐
sociated with a number of high frequency diseases, e.g. cancer, diabetes, bowel diseases,
etc.

From the above discussion and the research presented in this review, the need for more toxi‐
cology research on manufactured ENMs is clear. In addition to standard tests, there is a
need to develop appropriate and rapid screening methods to be able to control the exposure
level, as well as improved models that will permit to assess the toxicity and allow better un‐
derstanding of the mechanisms that are involved. Employment of developed and well char‐
acterized in vitro cell culture systems may be relevant for evaluation of gut and immune
responses to ENMs and to adapt conditions to specific health conditions or to consumer
groups with special needs, such as in the case of bowel diseases. Further studies are necessa‐
ry to assess whether the characteristic daily intake of ENMs may exacerbate or trigger dis‐
ease symptoms in subjects with increased susceptibility, such as inflamed state of the GIT in
the case of IBD, CD, UC, or even be its cause.

Another aspect deserving thorough investigation is the possible interaction of ENMs with
food/feed components, which in turn could influence the overall behavior and effect of not
only ENMs, but also the bioavailability of food components.
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