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1. Introduction

Inflammatory bowel disease (IBD) is a term that refers to two very different yet in many
ways related phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC). It is well known
that both of the two primary human inflammatory bowel diseases are characterized by
chronic inflammation of the intestinal tract, yet their etiology still remains unclear.

CD and UC are considered to be multifactorial diseases and the underlying pathological
process seems to be a combination of genetic predisposition and immunologic disturbances.
Being the largest surface in the human body and since it is constantly colonized by a highly
diverse community of microbes that are in normal circumstances either commensal or bene‐
ficial to human health, the role of the intestinal microbiota in development of IBD has been
thoroughly investigated over the years. It is now generally accepted that the commensal
flora plays a central role in triggering and perpetuating the disease process. [1] Even though
there are several logical arguments contributing to the theory that the intestinal microbiota
plays a major role in the IBD development, the types of microbes involved have not been
adequately described. Studies of experimental animal models of IBD uncover that the pres‐
ence of gut bacteria is essential in inflammation initiation and there is no disease onset in
germ-free mice [2]. Furthermore, decreasing bacterial numbers in the intestine by using anti‐
biotics, can lead to clinical improvement and decreased inflammation in both humans [3]
and animal models of IBD [4, 5].

Pathogenesis of the IBD is characterized by various genetic abnormalities that lead to overly
aggressive altered immune response, triggered by heterogeneous environmental factors un‐
der the influence of the commensal intestinal microbiota. There is no single abnormality of
the gastro intestinal tract that would lead to development of CD or UC. Only in correlation
of those four mentioned main factors a dysbalance of the gastrointestinal tract develops,
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leading to chronic inflammation with all its consequences and complications. Schematized
and simplified pathogenesis involving correlation between environmental factors, genetic
predisposition, host immune response and intestinal microbiota is shown in Figure 1.

Figure 1. Schematized correlation of main factors involved in the IBD pathogenesis. Each of the mentioned factors fit
together as separate pieces of puzzle, together creating a complex clinical and pathological image of the IBD.

In this review, we discuss recent insights in the ethiopathogenesis of the inflammatory bow‐
el diseases.

2. Etiology and pathophysiology

2.1. Environmental factors

Epidemiological studies show that the prevalence of IBD dramatically increased in northern
Europe, the United Kingdom and North America in the second half of the twentieth century
and is also increasing in the rest of the world, proportionally to the adoption of western life‐
style [6]. This process, known as “westernization” of lifestyle [7], includes environmental
triggers such as smoking (shown to be protective in UC but detrimental in CD), use of anti‐
biotics and nonsteroidal anti-inflammatory drugs (NSAIDs), stress, infection and diet. Stud‐
ies have also reported an association between early life exposure to antibiotics (in the first
year of subject’s life) and CD development due to early childhood dysbiosis [8].
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The mechanisms by which these factors initiate the onset of IBD are still not well under‐
stood. There is some evidence that infection and NSAIDs can transiently initiate nonspecific
inflammation, break the mucosal barrier and activate innate immune response [9]. This
process may lead to enhanced uptake of commensal bacterial antigens and in combination
with genetic susceptibility, in this way stimulate protracted T-cell mediated inflammation.
Up until now, only smoking and appendectomy have been clearly linked with the risk of
developing IBD. A recent cohort study concerning autophagy-related genes and granuloma
formation in surgically treated CD patients has showed that there is a significant association
between smoking and granuloma formation [10]. This observation could be a result of in‐
flammation promoting effects of smoking, resulting in more severe inflammation with gran‐
ulomas in smokers with CD [10]. Appendectomy and smoking reduce risk for UC but on the
other hand, active smoking increases risk for CD [11]. Even though proven to be valid, these
facts cannot be held answerable for all variations in IBD incidence and prevalence.

There is also a hypothesis known as the “hygiene hypothesis”, that could be the fundamen‐
tal reason for the switch from infectious to chronic inflammatory diseases. This hypothesis
proposes that there has been a lifestyle change from one with high microbial exposure to
one with low microbial exposure [12]. There are numerous environmental factors that could
be assigned to the hygiene hypothesis, some of which being better housing, safer food,
cleaner water, vaccines, dietary changes, fewer infections, improved hygiene and sanitation
and widespread use of antibiotics [12].

Even though there are many firm epidemiological studies and evidence linking certain envi‐
ronmental factors to greater probability of developing IBD, it is still widely believed that
there is no one simple environmental factor that could alone cause CD or UC. Based on the
fact that differences in geographic distribution combined with changes in incidence over
time within one observed area could provide insights into possible etiologic factors, a pro‐
spective population based study investigated the incidence of UC and CD in Primorsko-gor‐
anska County, Croatia (January 2000 to December 2004) was performed by the authors [13].
The study included a total of 170 patients residing a county with a stable, ethnic and racially
homogeneous population and the results showed an increase in UC and CD incidence, in
comparison to an earlier prospective study for the county of Zagreb, with a similar popula‐
tion and similar environmental circumstances [13]. It is considered that the rapid “westerni‐
zation” of the country combined with the improved awareness of the disease play a role in
the reported increase. Annual age-standardized incidence rate was 4,3/105 for UC and
7,0/105 for CD. Croatian results concerning UC were similar to those reported in Belgium,
Northern France and Germany and those concerning CD reach the mean incidence value re‐
ported in European multicentric study of CD [13].

2.2. Genetic predisposition

There have recently been great advances in understanding the very complex genetics of the
IBD, from studies based on single nucleotide polymorphism and candidate gene approaches
to studies based on transgenic and deletion techniques [14]. It is thought that UC and CD
may be heterogeneous polygenic disorders, sharing some but not all susceptibility loci and
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there are most likely several factors determining the disease phenotype [15]. Presence of a
mutated gene in a host does not guarantee that IBD will develop and we cannot use it as a
predicting factor for later development of IBD.

In order to prove that genetic factors contribute to the pathogenesis of IBD, studies have
shown that the concordance rate between twins is much lower for UC than for CD, which
may indicate that the genetic penetrance in CD is much greater than in UC. Reported con‐
cordance rate for UC in monozygotic twins is 15,4% vs. 3,9% in dizygotic twins and for CD
30,3% in monozygotic vs. 3,6% in dizygotic twins [16]. These findings may be considered
valuable evidence that there is genetic susceptibility for IBD, particularly CD. Also, studies
have shown that there is linkage between certain genetic disorders and incidence of IBD. In
infants born to consanguineous parents there is a risk of developing extremely rare autoso‐
mal recessive mutations in genes encoding interleukin (IL)-10 receptor and the IL-10 cyto‐
kine [17, 18]. IL-10 is an anti-inflammatory cytokine and its primary purpose is to limit and
ultimately terminate inflammatory responses [19]. Disturbance in either IL-10 or IL-10 recep‐
tor function via autosomal, recessive mutations are sufficient to cause severe forms of CD,
which have been successfully treated by bone marrow transplantation [20].

There have been over a hundred IBD genes and loci defined and one of the most important
genes associated with CD is nucleotide binding oligomerization domain protein 2 (NOD 2), also
known as the caspase recruitment domain family member 15 (CARD15) gene [21, 22]. The NOD2
gene is expressed mainly in monocyte/macrophage cell lines where it plays an important
role in host-signaling pathways. One of its main effects is the activation of the NF-κB pro‐
tein, a transcription factor involved in cellular inflammatory pathways and an important
regulator in cell fate decisions, such as programmed cell death and proliferation control, and
also a critical factor in tumorigenesis.

The NOD2 mutations have been observed in individuals of European and African-American
ancestry and studies have shown that in individuals of European ancestry heterozygous car‐
riage of one of the major risk alleles bargain a 2,4-fold increase in risk for CD while homozy‐
gous or compound heterozygous carriage bargains 17,1-fold increase in risk for CD [22]. In
those of African American origin, mutations are only heterozygous with similar risk for CD
among carriers as mentioned above. When it comes to Asian populations, studies show that
NOD2 mutation has not been associated with CD in studies of IBD patients form Hong
Kong, China, Japan and Korea [23]. Mutations in the NOD2 gene, unexpectedly, reduce
macrophage activation of NF- κB protein, which is why one would expect inflammation to
weaken, instead of the increase of inflammation, which can be seen in IBD. In the absence of
NOD-2 expression by epithelial cells, microbial products that normally induce these cells to
secrete chemokines fail to do so, leading to potential loss of barrier function [7].

It is known that in about 70% of patients suffering from CD, the disease affects the small
intestine. The human intestinal epithelial wall exceeds all other tissues of the human organ‐
ism in its cell-renewal rate [24]. The intestinal adult stem cells self-renew and produce
daughter cells. Daughter cells form an adjacent zone of rapidly cycling progenitors and un‐
dergo 4-6 rounds of division before differentiating into multiple lineages, fabricating up to
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300 cells/crypt per day [25]. In this way, post-mitotic cells covering the biggest area of the
intestinal epithelium are formed.

Besides absorptive cells, there are three classes of secretory cells: goblet cells (secrete mainly
mucus), enteroendocrine cells (secreting different hormones) and Paneth cells [26]. Current‐
ly, the most acceptable role of Paneth cells in the small intestine is the production of a
stream of antibacterial secretions, responsible for the sterile environment of the small intesti‐
nal lumen and in this way, protection of the vital stem cells in the neighborhood. Two most
frequent defensins found in Paneth cells are the α defensins, human defensin 5 and 6 (DE‐
FA5 and DEFA6) and in addition to DEFA5 and DEFA6, Paneth cells store several other an‐
tibiotic peptides (for example regenerating islet-derived 3-γ and phospholipase A2group
IIA) [27]. Investigations on human α defensins have shown that DEFA5 has a very effective
antibacterial activity against S. aureus, while DEFA6 expressed some antibacterial potential
in vitro and there are ongoing investigations on their antiviral potential [28, 29]. There is nu‐
merous evidence for a link between the Paneth cell and ileal Crohn’s disease. It is reported
that NOD 2 is heavily expressed in Paneth cells and ileal CD is associated with a diminished
synthesis of Paneth cell defensins [30, 31]. The role of NOD2 as an intracellular receptor for
bacterial dipeptide in regulating Paneth cell defensin formation was confirmed in NOD-2
knockout mice and in patients after small intestinal transplantation [32, 33].

Being a genetically complex system, pathogenesis of IBD can be closely linked to numerous
other genomic regions. Autophagy 16-like 1 (ATG16L1) is responsible for encoding a protein
component of the autophagy complex and it has been strongly related to CD [34]. ATG16L1
is extensively expressed, including in Paneth cells, where it has a role in exocytosis of secre‐
tory granules containing antimicrobial products [35].

Other genes that regulate autophagy and that have been closely related to CD in genome-
wide association studies are immunity-related guanosine triphosphotase M (IRGM) and leu‐
cine-rich repeat kinase 2 (LRRK2) [36, 37]. A recent study by Brinar et al. [10] investigated a
relationship between variants in autophagy genes and granuloma formation in CD. The au‐
thors hypothesized that genetic variants in autophagy genes in CD patients may lead to im‐
paired processing of intracellular bacterial components, thus contributing to granuloma
formation. [10]. This cohort study detected an association in four autophagy genes, ATG4A,
ATG4D, FNBP1L and ATG2A. The study has also shown that granuloma positive patients
were significantly younger at diagnosis, that they had surgery at significantly younger age
after a shorter duration of the disease. These findings suggest that there is a significant rela‐
tionship between earlier mentioned variants in autophagy genes and granuloma formation,
which could be a marker of a more aggressive disease course. [10]

After variants in NOD2, most significantly associated with CD is the amino acid change
Arg381Gln variant in the IL-23 receptor (IL23). In comparison to Arg381 carriers, Glutamine
381 reduces risk for IBD by nearly 3-fold and studies on the proinflammatory role of IL-23
prioritize its signaling pathway as a therapeutic target in inflammatory bowel disease [38].
Many genes that encode factors in the IL-23 pathway have been associated with both psoria‐
sis and IBD and numerous loci have been associated with both IBD and celiac disease [39,
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40]. Studies show that neither IL23 nor ATG16L1 genes are associated with CD in Japanese
and Korean patients [41].

There are numerous other loci associated with both CD and UC and the number of potential
IBD genes continues to increase and searching for other genotype-phenotype correlations in
the matter of IBD continues to be an important step in future studies. Despite all the facts
specified, indications for genetic tests in everyday clinical practice still do not exist.

2.3. Host immune response

In order to develop IBD, both innate (macrophage, neutrophil) and acquired (T and B cells)
immune responses combined with loss of tolerance to enteric commensal bacteria need to be
activated in a host.

2.3.1. Innate immune responses

Studies have shown that there is an increase in the absolute number of macrophages and
dendritic cells in both forms of IBD, with an enhanced production of proinflammatory cyto‐
kines and chemokines and an increase in the expression of adhesion molecules and co-stim‐
ulatory molecules [41].

Adhesion molecules (such as intracellular cell adhesion molecule 1, ICAM1 ) are crucial
when it comes to binding circulating cells to the activated endothelium [42]. These mole‐
cules also have an important role in later mediation of migration of the extravagated im‐
mune cells through the stroma to the source of optimum chemokine production as well as
through the epithelium to the lumen [43]. Mucosal dendritic cells are activated, express
higher levels of the toll like receptors (TLR) 2 and 4, (which have an important role in recog‐
nition of bacterial products) and CD40, all of which is followed by increased production of
IL-12 and IL-6 [44]. TLRs are profusely expressed on the surface of monocytes, macrophag‐
es, dendritic and epithelial cells and are responsible in identification of the commensal mi‐
croflora as well as maintenance of the intestinal homeostasis [45]. Like NOD2, they
selectively bind to specific microbial adjuvants and initiate signaling through nuclear factor
kappa-light-chain-enhancer of activated B cell, NF-κB. Activation of NF-κB triggers expres‐
sion of various molecules involved in the inflammatory response (such as IL-1β, TNF, IL-6,
IL-8, ICAM1, CD 40, CD 80 and other chemokines, adhesion molecules and co-stimulatory
molecules), all of which have an increased expression in IBD [41]. NF-κB is activated in tis‐
sues of IBD patients and its inhibition can attenuate experimental colitis [46].

In both forms of IBD, alterations of TLR 3 and 4 have been described, suggesting that abnor‐
mal bacterial sensing has a role in the disease pathogenesis [47]. As explained earlier, ileal
Paneth cells also express the NOD-2 protein, and their production of mucosal α-defensins is
decreased in CD patients with NOD-2 mutations.

2.3.2. Adaptive immune responses

Adaptive immune responses should be considered separately for CD and UC, due to their
distinct profiles in those two entities.
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2.3.2.1. Crohn’s disease

Crohn’s disease is predominantly TH1 and TH17 mediated process. Antigen presenting cells
produce IL-12, which is responsible for stimulation of IFN-γ. IFN-γ then mediates tradition‐
al TH1 responses. As the inflammatory response matures, in several models TH1 responses
can change into TH2 responses [48]. On the other hand, IL-17 mediates TH17 responses [49].
The production of IL-17 is impacted by innate immune cells and antigen presenting cells,
which produce Il-6, IL-23 and TGFB [50].

When it comes to estimating the importance between TH1 and TH17 responses in CD devel‐
opment, studies have shown that even though Th17 responses play a role in the inflamma‐
tion, the Th1 response is quantitatively greater [51]. This conclusion agrees with the
intestinal pathologic effects of IFN-γ and the relation of Th1 responses to granulomatous
disease [51]. In contribution, double blinded clinical trial of anti IL-17 in patients with CD
has been carried out recently and the study showed that blockage of IL-17A is ineffective in
tested subjects [51]. The role of IL-17 in patients suffering from CD is still under intense in‐
vestigation.

2.3.2.2. Ulcerative colitis

Ulcerative colitis is considered to have an atypical TH2 response, mediated by natural killer
T cells that secrete IL-13 and IL-5 [52]. The TH2 response is an atypical one due to the fact
that concentrations of IL-4 and IL-5, which are normally elevated in TH2 response, have been
found to be variable in UC tissues [53]. Recent studies have shown an increase in IL-17 lev‐
els in UC (in compare to control groups), but that increase was found to be far less than the
one found in CD patients. T-cell subsets are stimulated by antigen presenting cells, particu‐
larly dendritic cells, which have a unique capacity to activate naïve T cells. Dendritic cells
are found in the lamina propria and Peyer’s patches of normal intestine. Interaction between
antigen presenting cells and T cells occurs by presenting an antigen on the surface of the ma‐
jor histocompatibility complex, which is then recognized by the appropriate T-cell receptor,
followed by secretion of cytokines ( such as IL-6, IL-10, IL-12, IL-23, TGF β).

The results of this pathway are increased levels of dendritic cells in patients with active IBD
and in experimental colitis models [44, 54]. Peyer’s patches, which can be considered as the
immune senses of the intestine, seem to play a key organ in the relationship between innate
and adaptive immunity in the human gut [55].

2.4. Intestinal microbiota

The understanding of the development of gastrointestinal (GI) tract microbiota has greatly
developed, due to decreased costs of DNA sequencing and evolution of bioinformatics.

The human intestinal microbiota can be defined as a community of microbes that is either
commensal or beneficial to human health. The adult human gut contains around 1014 bacte‐
rial cells and up to a 1000 different bacterial species [56]. The most abundant bacterial phyla
in the healthy human large intestine are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
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Fusobacteria and Verrucomicrobia [56]. The gut microbiota composition varies between indi‐
viduals and remains highly stable over time. A recent study performed by Arumugam et al.
combined 22 newly sequenced faecal metagenomes of individuals from Denmark, France,
Italy and Spain, resulting in three distinctive enterotypes. Furthermore, these results were
combined with existing gut data-sets, 13 Japanese and four American, returning the same
three clusters. These isolated bacterial communities were dominated by one of the three
main distinct bacterial genera – Bacteroides, Prevotella and Ruminococcus [56]. In terms of
function, it is indicated that drivers of each of the three enterotypes use different routes to
generate energy from substrates available in the colon. Bacteroides seem to derive energy pri‐
marily from carbohydrates and proteins through fermentation, Prevotella is a known mucin
degrader and Ruminococcus is linked to both mucin and sugar [56].

Numerous studies have shown that colonization of the GI tract in infants depends upon de‐
livery mode and that the vagina has evolved to serve the fundamental inoculum for all
mammals [57]. If a baby is exposed to vaginal microbes during birth, its initial gut bacteria
will consist dominantly of Lactobacillus and Prevotella spp [58]. The bacteria, acquired from
their mother’s vaginal canal, can be found in the skin and mouth and the meconium of the
baby. Many babies are not exposed to their mother’s vaginal flora, due to the cesarean sec‐
tion-birth method (C-section). In contrast to vaginally delivered babies, those delivered by
C-section accommodate bacterial communities that resemble bacteria of the skin: Staphylo‐
coccus, Corynebacterium and Propionibacterium spp [59]. In early childhood, the initial strains
of GI bacteria are outcompeted by other bacterial strains, of a less certain origin, which rap‐
idly increase in diversity and shift in response to dietary changes and/or illness [60, 61].
During early childhood, when peas and other plant-derived foods are introduced, the bacte‐
rial phyla of the GI tract changes and Firmicutes and Bacteroidetes are now dominant [62]. Mi‐
crobial community can change, but the changes are now of a much slower rate than in early
childhood and with unknown effects on health. The mentioned data and the development of
the GI tract colonization in infants and early childhood can be seen in Table 1.

INFANTS EARLY CHILDHOOD

PREDOMINANT BACTERIAL

COMMUNITES

Vaginal birth C-section Firmicutes

BacteroidetesLactobacilus

Prevotella spp.

Staphylococcus

Corynebacterium

Propionibacterium spp

Table 1. Development of the GI tract colonization in infants and early childhood

Children from different parts of the world have different gut microbiota (for example Burki‐
na Faso and Italy) [63], and when it comes to elderly, their GI tract microbiota is substantial‐
ly different than in young adults [64]. According to Zoetendal et al., the gut microbiota
composition of spouses showed the least degree of species similarity, while siblings showed
increased degree of similarity in species make up [65].
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The gut microbiota acts as a metabolic organ via production of short chain fatty acids and
vitamins and it contributes to the barrier effect by preventing colonisation by pathogens. Re‐
cent studies have shown that a modulation of a gut microbiota using prebiotics increases ep‐
ithelial barrier integrity by increasing expression of tight junction proteins [66]. The gut
microbiota also helps to shape and maintain normal mucosal immunity.

The human gut microbiome consists of 150x more genes than the human genome [67]. In 2010,
initiative called Meta-HIT (Metagenomics of the Human Intestinal Tract) published a cata‐
logue of the microbial genomes strained from 124 faecal samples. The results found that the
gene set was approximately 150 times larger than the human gene complement with 3,3 mil‐
lion different microbial genes [68]. Recent studies have shown that the intestine is home to spe‐
cialized dendrytic cells, whose function is to induce a highly tolerogenic response from T and B
cells, through induction of regulatory T cells and secretion of IgA [69]. Activated immune cells,
such as mucosal dendrytic cells, constantly sample luminal microbial antigens and present
them to adaptive immune cells [70]. There are three main ways by which flagellin from com‐
mensal microbes may play a role in IBD. Flagellin from commensal microbes may cross the al‐
tered epithelial barrier that occurs in IBD. Such flagellin can, via Toll-like receptor 5 (TLR5),
induce the epithelium to secrete cytokines that recruit polymorphonuclear neutrophils (PMN)
[71]. Such cytokines may promote adaptive immunity and/or, alternatively, flagellin may acti‐
vate dendritic cells and directly promote adaptive immune immunity. Flagellin is also target‐
ed by the CD-associated adaptive immune response [71].

In healthy hosts the pro-inflammatory pathways associated with TLR and NLR are sup‐
pressed by inhibitory molecules of both human and bacterial origin, such as COX-2 inhibi‐
tors, NF-κβ inhibitor, IL-10, TGF-β, IFN-α/β etc. [72, 73]. A disruption of this homeostasis
threatens the state of immune tolerance and may result in gut inflammation. How the host
tolerates resident bacteria whilst being able to mount an effective inflammatory response to
invading pathogens is still not fully understood.

Gut microbiota and activity in IBD patients are proven to be abnormal. IBD patients are
characterized by a reduced abundance of dominant members of the gut microbiota. Accord‐
ing to Frank et al., mucosal biopsies taken from CD and UC patients showed reduced abun‐
dance of Firmicutes and Bacteroidetes and a concomitant increase of Proteobacteria and
Actinobacteria, compared to non-IBD control [74]. As a consequence of this dysbiosis, the rel‐
ative abundance of Enterobacteriaceae was increased in IBD patients compared to healthy
control [75, 76]. Significantly lower counts of Bifidobacterium populations were found in rec‐
tal biopsies of patients with UC [77]. Study performed by Macfarlane et al. showed that Clos‐
tridium leptum (Firmicutes) is less abundant in fecal samples of CD patients (Table 2) [77].

Clostridium and Bacteroides species are the cardinal producers of short chain fatty acids (SCFA)
in the human colon [66]. There were decreased SCFA concentrations found in fecal samples of
IBD patients, which could be explained by decreased clostridia of groups IV and XIVa (a broad
phylogenetic classification comprised of several genera and species of gram positive bacteria).
Among the SCFA produced upon carbohydrate fermentation, butyrate has an important role
as a major source of energy for colonic epithelial cells, an inhibitor of pro-inflammatory cyto‐
kine expression in the intestinal mucosa and an inductor of production of mucin and antimi‐
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crobial peptides, thus strengthening epithelial barrier [66, 78]. A decrease of butyrate levels
could be involved in the increased inflammatory state characteristic of IBD. Stimulation of bu‐
tyric acid production could be achieved through repopulation of clostridial clusters IV and XI‐
Va,  or  even through probiotic  therapy with lactic  acid bacteria  [79].  Some evidence has
indicated a promising therapeutic effect of pro, pre and synbiotics in IBD.

BACTERIAL COMMUNITIES

MOST ABUNDANT BACTERIAL PHYLA

IN HEALTHY HUMAN LARGE INTESTINE

Firmicutes

Bacteroidetes

Actinobacteria

Proteobacteria

Fusobacteria

Verrucomicrobia

ALTERED INTESTINAL MICROBIOTA IN

IBD

↓Firmicutes, Bacteroidetes

↑Proteobacteria, Actinobacteria

↓Clostridium leptem (Firmicutes) in CD

↓Bifidobacterium in UC

Table 2. Most abundant bacterial communities in healthy human large intestine and its alterations in IBD

Paneth cells of the small intestine also have an important role in the human gut microbiota,
as they are a source of α defensins 5 and 6, which may regulate and maintain microbial bal‐
ance in the intestinal lumen. The α defensins 5 and 6 are efficacious against Enterobacteriaceae
and Bacteroides vulgatus and studies have shown their levels are increased in chronic inflam‐
matory conditions [80, 81]. In association with ileal CD, they are significantly reduced, par‐
ticularly in patients with NOD-2 mutations. Colonic CD (but not UC) is associated with β
defensins 2 and 3, which are secreted by leukocytes and epithelial cells of many kinds [82].

As explained above, it is a widely accepted hypothesis that the bacteria play an important
role in the pathogenesis of IBD. There are several ways in which the microbiota might be
linked to IBD. The microbiota as a whole could act as a surrogate pathogen, or specific mem‐
bers of the microbiota could be overt pathogens.

It remains unclear whether the altered gut microbiota composition is a cause of the disease
or a consequence of the inflammatory state, but it is most likely that microbial dysbiosis and
lack of beneficial bacteria, together with genetically predisposed increased epithelial perme‐
ability, bacterial translocation into the lamina propria, defective innate immunity and loss of
tolerance to the resident microbiota eventually lead to IBD.

3. Conclusion

Chronic intestinal inflammation in inflammatory bowel disease develops under the influ‐
ence of environmental triggers in genetically susceptible individuals with an altered im‐
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mune response. The role of the intestinal microbiota in the pathogenesis of IBD still remains
unclear, but even though some enteric bacteria are detrimental and some are protective,
their involvement in the pathogenesis of IBD is unquestionable. Table 3 lists main factors as‐
sociated with IBD development, including known differences between UC and CD ethiopa‐
thogenesis.

Since we currently lack complete understanding of the mechanisms leading to the disease,
this topic remains to be exceedingly interesting and enigmatic and most certainly a challeng‐
ing clinical entity that yet remains to be further investigated and unraveled.

ULCERATIVE COLITIS CROHN’S DISEASE

ENVIRONMENTAL FACTORS

‘westernization of lifestyle’

Smoking (protective in UC , detrimental in CD)

Use of antibiotics

Use of NSAIDs

Stress

Infection

Diet

Appendectomy

GENETIC PREDISPOSITION

Major histocompatibility complex

region (6p21)

mutations in genes encoding

interleukin (IL)-10 receptor and the

IL-10 cytokine

genes mediating epithelial defense

function
NOD2 mutations

ATG16L1 expression

HOST IMMUNE RESPONSE Higher level of TLR2, 4 and CD 40, followed by increased production of IL-12

and IL-6

↓

Activation of NF-κB

↓

Expression of IL-1β, TNF, IL-6, IL-8, ICAM1, CD 40, CD 80 and other chemokines,

adhesion molecules and co-stimulatory molecules

Innate immune responses

Adaptive immune responses
atypical TH2 response, mediated by NK-

T cells that secrete IL-13 and IL-5

predominantly TH1 and TH17

(mediated by IL 12 and IL17)

INTESTINAL MICROBIOTA

*see table 1 and 2 for further

information

microbiota as a whole acts as a surrogate pathogen, or specific members of

the microbiota could be overt pathogens*

Table 3. Interaction of environmental factors, genetic predisposition, host immune response and intestinal
microbiota, main factors associated with CD and UC ethiopathogenesis
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