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1. Introduction

Technological bounds in digital circuits integration in the last decades have been fostering
the development of massively parallel architectures for tasks that had not been touched be-
fore by traditional parallel paradigms. Even in personal computers, as well as in consumer
and mobile devices, it is common to find powerful processing units composed of processing
elements in the range of the hundreds to the thousands.

The request for mobile devices, that are self-powered, almost permanently switched on and
connected through wireless networks, as well as environmental friendliness constraints, ob-
viously urges to reduce energy consumption of processing units.

On the other hand, applications continuously keep pushing forward computing power
needs. A number of such applications are actually performed on application specific or on
almost general-purpose parallel multi-core unit, as in the case of 3D graphics, sound proc-
essing, and the like, in the multimedia arena.

The current industrial trend aims to increase computing power and energetic efficiency by
adding cores to both main processors and specialized units. A number of experimental ar-
chitectures have been proposed that try to achieve the same goal by exploiting different de-
signs. Coarse and fine grained architectures, and more in general, reconfigurable
architectures have been proposed to make the hardware adapt to the required tasks instead
of using specialized software running on general purpose processing elements. This has es-
pecially been the case in computer vision, and intelligent systems in general.

More interestingly, in these fields, the quest for massively parallel and energy efficient hard-
ware implementations, coupled with biological models of reference, may pour interest in re-
viewing well and lesser studied approaches that are centered on self-organizing processing
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structures. Indeed, current research on pattern recognition shows significant interest in
highly structured models built on large numbers of processing nodes trained by demanding
algorithms that can, at least partially, be implemented in a parallel fashion.

In this chapter we provide a review of self-organization as it may appears at the various
abstract levels of computational architectures, and including applications to real-world
problems.

We start outlining the properties related to complexity and self-organization in natural
and artificial systems. Then we de-scribe the computational models that are better suited
to study self-organizing systems. We then discuss self-organization at the hardware level.
Finally, we look at networked systems paying particular attention to distributed sensing
networks.

2. Self-organization and self-organizing systems

Human speculation on the visible order of things, either living or not, is so ancient to be con-
sidered one of the fundamental questions of mankind. Science has always been exploring
the complex structure of Nature, adding pieces to pieces to its infinite puzzle.

Meanwhile, technologies evolve benefiting from new findings, sometimes trying either suc-
cessfully or ingenuously to duplicate Nature’s work. Improvements in technologies then re-
flect on further science advancements, closing the loop.

Order, self-organization, adaptation, evolution, emergence and several other terms reminds
us that as artificial systems advance, gaining complexity, it is expected for them to be com-
pared to natural ones in both structure and function.

At the time of the vacuum tube digital computer introduction in the 1940s, McCulloch and
Pitts had already proposed their neuron model, while cyberneticists were starting to recog-
nize their interdisciplinary studies on natural and artificial systems as a brand new field.

With their simple and primitive circuits, made of few thousands discrete components, digi-
tal computers were certainly “complex” with respect to the available technology, but orders
of magnitude simpler and unstructured than their biological computational counterparts
made of billions of neurons arranged by some “Self-Organization” process.

Anyway, it did not took much to Von Neumann to start exploring the theory of Cellular Au-
tomata and self-reproducing machines, attempting to bridge natural and artificial computa-
tional models.

Rosenblatt’s perceptron was another attempt to propose a biologically inspired computa-
tional framework. As a confirmation of the difficulties in reverse-engineering Nature, it took
a few decades for Artificial Neural Networks built with perceptrons to become viable means
to tackle useful computational tasks.
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Of all the connotations given to perceptron networks, “adaptive” has been certainly one of
the most adopted, however many of the terms cited before have found some kind of use
with ANNs [1].

With respect to the “self-organization” term, its use has been used so widespread in com-
puter and information processing literature that the effort to determine its introduction is
quite pointless.

One of the most well known uses of the term can be traced back to Kohonen’s “Self-Organ-
izing Maps” (SOMs) [2]. Differently from perceptron based Artificial Neural Networks,
trained with supervised algorithms, Kohonen proposed an unsupervised method whose
geometrical representation is that of a continuous rearrangement of points of the feature
space around auto-determined cluster centers represented as cells in a two-dimensional ar-
ray. In the topological representation of the evolving map during learning, centers can be
visualized as they move forcing the two-dimensional map to stretch in the effort to cover the
feature space. Even if SOMs are not a derivation of any biological model, some parallelism
with the visual neocortex both in terms of function and structure has been drawn [3].

Given the impact of SOMs in machine learning and the excitement produced by a simple
and effective unsupervised learning algorithm, it is not surprising that a large number of pa-
pers followed in Kohonen'’s, and that research on SOMs is still carried on actively. Fritzke
proposed structures that grow from a small number of cells [4] modulating the network
structure accordingly to the unknown probability distribution of the input.

Other research on SOMs, similarly to the evolution of multi-layered supervised neural net-
works, introduced some hierarchical organization, as Choi and Park did with their “Self-
Creating and Organizing Neural Network” [5], or Rauber et al. with their “Growing
Hierarchical SOM” [6], or followed the path of hardware implementation of SOMs either in
analog [7], or digital form [8]. A surveillance application was proposed by Chacon-Murguia
and Gonzalez-Duarte that mixes SOMs with neuro-fuzzy networks to detect objects in dy-
namic background for surveillance purposes [9].

At some point, Dingle and Jones proposed the Chaotic Self Organizing Feature Map [10]
based on recurrent functions leading to chaotic behavior. Continuing this research, more re-
cently Silva et al. proposed a self-organizing recursive architecture for continuous learning
[11]. The importance of chaotic dynamics in self-organization will re-emerge in the discus-
sion about computational frameworks.

The relevance of the previously cited work notwithstanding, “self-organization” —in the
biological sense— capabilities, should rather be attributed to systems capable of self-assem-
bling from simple elementary units, finding their coordination by direct interactions gov-
erned by simple mathematical rules — intrinsic of Nature, it could be stated. Such systems
should rather find their biological model in the “prebiotic soup”, in which chemical inter-
actions between atoms and then compounds, lead to the organization of cells, tissues and
complex organisms.

Random Boolean Networks (RBNs) were originally introduced by Kauffmann to model
gene regulation mechanisms [12]. In Kauffman’s Biology-centered view, evolution is result-
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ing from the Darwinian selection mechanisms coupled with self-organization, adding the
concept of “anti-chaos” to the already large and unsettled realm of complex systems.

Cells in biological systems share the same genetic information, nevertheless they differenti-
ate on the basis of specific activation patterns of that very same information. From a com-
puter engineering point of view, this is an upside-down perspective, as changing the
software has been the way to make machines adapt to problems.

Indeed, the dichotomy of hardware and software has been the key of early digital comput-
ers evolution, permitting to get rid of the hand-wired logic of primordial calculators. Inci-
dentally, if we put apart for a moment most of the involved technological considerations,
Von Neumann’s pioneering work on self-reproducing automata was a fifty years forward
leap to meet the biological research at some common point.

More or less in the same years as Kauffman, Wolfram meticulously described the complex
behavior of one-dimensional cellular automata (Figure 1) pointing out the emergence of self-
organization [13, 14].

E m State number
Cell state values
I | I Current state DE
Future state
E m E E Code bits
Rule 184

Figure 1. Simple one-dimensional binary cellular automata with two-cell neighborhood are named after the code in-
troduced by Wolfram. The eight possible states for each cell and its neighborhood are arranged from right to left ac-
cordingly to the decimal interpretation of the three bit current values. The eight bits describing the future states are
then interpreted as a decimal number. The code may be generalized to elementary cellular automata with any num-
ber of states, dimensionality, and neighborhood size.

Coincidentally, at that time the influence of Mandelbrot’s work on fractals was at its peak, as
well as the interest for simple formulae able to produce results so similar to those of natural
processes [15]. That was certainly a rather inspiring time for those who are subject to the fas-
cination of complexity arising from simplicity but, indeed, this feeling has been pervading
the research in information systems for decades.

It was also the time of the advent of networking and — a few more years would have tak-
en the Web to be brought to life — Internet. The latter has the mark of a “self-organizing”
system well in its roots, and even in its name, in some way. Then, in a short time lapse,
wireless networks broadened the communication horizon once again providing us with
mobile systems.

The realm of computers thus has reached a point where interconnected systems at macro
scale coexist with the micro scale of the circuits they are built upon, while the nano-dimen-
sionality is being intensively explored. Compared to the many scales adopted to observe bi-
ological systems at their molecular, cellular, tissutal and macroscopic levels, this is still a
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very coarse and rigid stratification, nevertheless provides an interesting parallelism and
some points to look at in the distance.

Either in the biological or in the computer realm, more levels bring more complexity. Sys-
tems are of different kinds and it needs some “handshaking”, as in the networking jargon, to
allow communication. Systems need to share resources, and then some sort of arbitration is
needed. A large part of the engineering of information systems has thus become the design
of communication and arbitration protocols to make system “self-organize”.

Heylighen and Gershenson invoked self-organization in computers as a necessity to cope
with an increasing complexity in information systems that creates a “bottleneck” limiting
further progress [16]. They discussed inter-networking, and the rapid changes in hardware,
software and protocols to deal with it, as only exacerbating the difficulties for human devel-
opers to keep everything under their own control. They then described a few qualitative
principles to introduce self-organization in highly engineered and inter-networked informa-
tion systems, with some references to current applications such as the hyperlinks-based
Web, and, with some projections to the future, even software development paradigms.

Kohonen’s networks, the medium access control and routing protocols of the many comput-
er network types, and Kauffman’s RBNs, all of them express self-organization of some de-
gree. The heterogeneity of the three examples is evident, though. Some effort has been taken
to formalize this hardly sought property of systems. Gershenson and Heylighen, moving
from classical considerations based on thermodynamics, and then considering statistical en-
tropy, provided an insight on what conditions should describe the emergence of self-organi-
zation in observed systems.

They concluded that the term “self-organization” may rather describe a way to look at sys-
tems than a class of systems [17].

3. Computational models

As anticipated, Random Boolean Networks (RBNs) trace in their biological model of inspira-
tion their self-organizing abilities. RBNs consist in a network of N nodes with Boolean state,
each having K of Boolean input connections. Both parameters N and K are fixed. Because of
these characterizing parameters RBNs have also been called NK networks. Each node state
is updated at discrete time steps accordingly to a Boolean function of the inputs. A variable
number of Boolean outputs, propagating the node state, may departs from each node to-
wards other nodes” inputs, arbitrarily. Indeed, both connections and the Boolean state up-
date function are chosen randomly during initialization and never changed (Figure 2).

Kauffman discussed RBNs as finite discrete dynamical systems in terms of the sequences of
states the networks run through. Given that 2V states can be assumed by RBN, and that for
each state there is only one possible successor, the network will run through finite-length
cyclic sequences called state cycles, that are the dynamical attractors of the system.
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Figure 2. A Random Boolean Network with two input nodes. After each discrete time step, each node state is updat-
ed accordingly to the Boolean function of the inputs i0 and i1. Node state is fed to the output at the following step.

The behavior of a RBN can be represented by the state transition diagram, a directed graph
having a connected component for each state cycle. Not all the states in each of these sub-
graphs are part of the respective cycle, as states having no antecedents — the so-called gar-
den-of-Eden states — may be present; they instead compose the state cycle’s basin of attraction
(Figure 3).

Properties of the state cycles, such as cycle length, asymptotic patterns, and basins of attraction
were used to classify the interesting complex behaviors of these simple models for different
values of K [12]. Some basic findings, still providing some insights into the self-organization
abilities of RBNs are reported in Table 1. When the network is completely interconnected
(K=N), and the sensitivity to initial conditions is at its maximum, state cycle lengths become
large as N increase, yet their number keeps being comparatively small.

When K is equal or greater than 5, RBNs keeps showing chaotic behavior. A few concepts
need to be introduced to analyze these results. The internal homogeneity P of a Boolean func-

tion of K inputs is defined as the ratio M /2K, with M beeing the maximum between the
number of 1’s and 0’s in the output column of the function’s truth table. The bias B is then

defined as 1/ JP.

In contrast with the first two chaotic cases, when K =2, RBNs show the emergence of “spon-
tanous order” as both the cycle length and number of attractors scales with the square root
of N. Moreover, these networks show other important properties that result in higher stabil-
ity over perturbations of the activity of the nodes. Indeed, more recently, a linear depend-
ance was found sampling larger networks [18]. For K =1 the RBNs show a similar growth of
the cycle length and an exponential rise of the number of attractors.
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Figure 3. The state transition diagram of the RBN showed in Figure 2. States are numbered from 0 to 31 according to
the binary representation of the five network nodes’ values. The graph is partitioned into four unconnected compo-
nents, one for each state cycle. The network will finally be attracted into one of the four state cycles: (31), (30, 29), (28),
(4,5), (0). On the left side, the 17 states that are unreachable from any other state are showed.
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Table 1. Properties of RBNs for different values of K. The state cycle length is the median length of the state cycles. B is
the network bias while P(K) is the mean internal homogeneity of all the Boolean functions of K inputs.

The boundaries among the ordered, critical and chaotic dynamical phases, yet not quite ana-
lytically assessed, still inspire new studies. An updated introduction to RBNs, including ref-
erences to Asynchronous RBNs (ARBNs), Deterministic Asynchronous RBNs (DARBNs)
and other variants of RBNs, can be found in form of a tutorial in [18]. Gershenson described
several methods to guide the self-organization of RBNs [19]. The need of a “guiding” proc-
ess seems somewhat contradictory with the premise in the title. Indeed, he investigated the
mechanisms through which natural selection may intervene in the self-organization of bio-
logical structures, suggesting engineers may use the same parameters characterized in com-
putational frameworks, such as RBNs and Cellular Automata.

Getting back to the gene regulation mechanisms the RBNs were designed to model, “self-
organization” succeeded in “reducing the complexity” provided by the tens of thousands
genes in the human genome to the mere hundreds types of human cells. RBNs are finite
state space, deterministic, dynamical, discrete time systems whose self-organizing property
derives from having attractors, i.e. states that can be revisited by the network. RBN can be in
either a ordered or a chaotic dynamical phase, transitions are possible and the transition
from one to the other is “characterized by its criticality”.

A static, stable phase preserves information but is prevented from computing or adapt-
ing. A chaotic phase provides the requested variability for computing and adapting, but
is incapable of preserving information. As the critical “interface” between the two phases
provides the advantages of both phases, guiding the RBN towards self-organizations
means finding the necessary conditions to make RBNs evolve towards the critical re-
gime. Gershenson then considered several factors that can induce such evolution and
gives a few hints on how criticality could help improve adaptability, ability to evolve,
and robustness of RBNs.
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4, Cellular automata

From definition it is evident that cellular automata are a special case of RBNs in which each
node receives inputs only from neighbors. Their simpler topology and consequent imple-
mentation has given an appeal to these minimal models manifesting self-organization that
goes beyond “recreational” applications such as Conway’s “Game of Life”.

Some theoretical extensions include Probabilistic Cellular Automata (PCA), and Fault-toler-
ant Cellular Automata (FCA), studied by Gacs [20] in the context of the problem of reliable
computation with unreliable components. In particular, the error probability of each compo-
nent is not required to decrease as the number of components increases, and the faults affect
the local state but not the transition function.

Even if they are purely theoretical, such models may be useful in designing massively paral-
lel “self-organizing” architectures, as due to the distributed nature of information in cellular
automata, “self-stabilization” is required beside traditional error-correction techniques.

Cellular automata have had many applications to real-world problems. No surprisingly,
several biological models have been simulated with cellular automata. Shumate et al. descri-
bed a simulation of Ductal Carcinoma in Situ [21]. Chaudary et al. proposed a simulation
model for Tumorigenesis [22]. Shimokawa and Muraki investigated a simple model of nerve
excitement propagation [23]. Sakamoto et al. proposed a method for surgery simulation
based on voxel automata [24].

Cellular automata have also been used to model complex dynamics such as those of urban
traffic [25-27]. Recent applications of cellular automata to image processing include super
pixel segmentation [28], image compression [29], and computer graphics [30].

Cellular automata also continue to be used in more theoretical studies on algorithms [31, 32].

Figure 4. Rule 184 (see Figure 1) is one of most used cellular automaton in traffic simulation. The distribution of vehi-
cles and spaces in a road lane is modeled as black and white cells, respectively, in each image row. The topmost cell
row depicts the initial distribution (with a black/white ratio of 3/8) let evolve over 300 iterations. After few iterations
still presenting random behavior, visible in form of triangular structures, the regularization ability of the rule is mani-
fest as vehicles move to the right at constant speed.
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5. Hardware

The balance between the hardware and software components in signal processing applica-
tions has always been a trade-off between the flexibility of the microprocessor-based solu-
tions and the performance of ASIC implementations.

Taking the aforementioned SOMs and ANNSs into account, literature abounds in hardware
implementations that are motivated by scarce performance of the analogous sequential
methods. In the 1980s, aiming at parallel real-time signal processing with the then available
analog very-large-scale integration (VLSI) technology, Chua introduced his Cellular Neural
Networks (CNN) [33], describing some application to image processing tasks [34]. Subse-
quently, Yang et al. showed a VLSI implementation of CNNs [35].

A couple of decades later, Ruckert et al. discussed massively parallel implementations of ar-
tificial neural networks at ultra-large-scale integration (ULSI) [36], later showing a massively
parallel architecture for SOMs [37].

Hopfield had started its seminal work on recurrent neural networks posing himself the
question whether “the ability of large collection of neurons to perform computational
tasks may in part be a spontaneous collective consequence of having a large number of in-
teracting simple neurons”. He concluded that this is actually the case, and that implemen-
tation of such models could lead to integrated circuits that are more fault-tolerant than
normal circuits [38].

Weightless Neural Networks (WNNSs), being based on random access memories, provide
another ANN paradigm inherently tied to circuit-level implementation whose origins trace
back to Alexander’s “Self-adaptive universal logic circuits” [39].

Though all of these are examples of systems having self-adapting qualities, self-organization
at the hardware level — the “microscopic” layer in the our biological analogy— had simply
not been possible until the advent of reconfigurable circuits, such as field programmable
gate arrays (FPGAs), and coarse-grain reconfigurable arrays, added a new degree of config-
urability, and related complexity, to computer systems. A survey on reconfigurable hard-
ware with emphasis on real-time configuration is provided by Shoa and Shirani [40].

5.1. Coarse-grained and fine-grained architectures

Hartenstein, reviewing most of the “coarse-grained reconfigurable architectures” of a dec-
ade (circa 2000) [41], suggested that with the explosion of design costs and reduction of pro-
duction life cycles, performance becomes relatively less important in the design of
computing devices. Instead, extension of product longevity, “reduction of support turn-
around, in-system debugging, profiling, verification, tuning, field-maintenance, and field-
upgrade” time by employing reconfigurable arrays is much more important. Hartenstein,
dismissing “von Neumann” architectures as obsolete, in the light of the dominance of host/
accelerators designs, proposed a new coarse-grained soft machine paradigm, in which a so
called “co-compilation” provides instructions for the host and data-path configuration infor-
mation at the same time.
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Other approaches to the mapping of high-level coarse-grained mapping from high-level
synthesis are present in literature [42]. Recently, implementations as System On a Chip de-
sign of highly reconfigurable arrays have been described with applications to face detection
[43], Internet protocols processing [44], FIR filters and ICA [45]. Several SOMs, CNNs and
derivative neural network models have been designed for reconfigurable hardware [46, 47].

Fine-grained systems bring configurability close to the gate or transistor level, permitting
analog, digital, and hybrid implementations. In contrast to coarse-grained systems, data
path width is reduced to the bare minimum, with the advantages of increased flexibility and
lower costs, but the general purpose routing is generally less energy efficient.

Nanotechnologies aim at even finer degrees of integration, and it is reasonable to assume
that at the hardware level new computational paradigms may emerge because of that. How-
ever, as in the pioneering stage of any technology, the span from theory and implementation
may not be short. Lin et al. proposed a hybrid FPGA architecture based on nano-RAM [48]
with run-time configuration abilities and high logic density, to revert later to a CMOS
SRAM implementation for immaturity of the nano-RAM fabrication processes [49].

Bvolutionary
control

. Logic block D Configuration storage
[ 1O block —  Routing

Figure 5. A schematic depiction of Evolvable Hardware. A reconfigurable device (i.e. FPGA), in gray, is coupled with a
configuration storage (light blue). Configuration is updated by the control block (green) in real time according to
some fitness function, as in genetic programming.
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5.2. Evolvable hardware

Reconfigurable hardware is turned into a specific implementation by loading bitstreams
compiled from “soft cores” coded in some hardware description language. Being a totally
software matter, a host processor can perform real-time reconfiguration when needed. New
paradigms blending traditional machine language and reconfigurable hardware bitstreams
become thus possible.

The idea that hardware could change autonomously its own configuration seeking the best
one according to some fitness function was called evolvable hardware, recurring —once
again- to a biological metaphor [50, 51]. Continuing with the metaphor, the bitstream takes
the role of the digital DNA (Figure 5).

Approaches from genetic and evolutionary programming are attempted on the hardware
configuration bitstream. Interesting applications of EHWs to pattern recognition are those
presented by Glette et al. [52, 53].

Even though most work on EHW concerns digital implementations, some evolution-orient-
ed analog implementation are reported in literature, such as the evolvable hardware archi-
tecture based on field programmable transistor arrays [54], and quantum-inspired paradigm
to be implemented in evolutionary analog hardware [55].

The enthusiasm of the early 2000s notwithstanding, EHW has not yet delivered what prom-
ised. Cancare et al. [56] investigating the reasons of this apparently missed success, and cit-
ing scalability issues as the most prominent, propose to abandon generic genetic algorithms
and look at hierarchical evolution and linkage learning, encouraging support from the Evo-
lutionary Computation community.

6. Networks

Computer networks provide many examples of global behaviors emerging from interactions
of elements without centralized control. At different levels of abstraction and implementa-
tion, from medium access control and routing, to the application level protocols, algorithms
drive each independent network node so that some global goal, be it communication, co- or-
dination, or distributed processing, is achieved. Thus, non-surprisingly, “self-” prefixed and
akin terms abound in related literature.

While computer networks in general are a rather natural field to study self-organization,
and many analogies with biological systems may be detected, without broadening too much
our discussion, we restrict our discussion considering only one example of network of very
simple nodes in which distributed processing of locally collected data is the main goal:
Wireless Sensor Networks (WSNS).

These systems are composed by a number of nodes, consisting in miniaturized, battery-op-
erated, computational elements fitted with sensors to monitor the surrounding environ-
ment, that are connected through short distance radio links. Depending on the applications,
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the number of nodes may vary sensibly from a few to thousands and more units. In many
scenarios sensor nodes are dispersed in the environment thus their expendability becomes
another important requisite.

As a consequence of these constraints on physical size, energy supply and cost per unit,
processing resources are limited, and in most designs they only consist in simple microcon-
trollers. Comprehensive surveys on WSNs including sensor technologies, network proto-
cols, and hardware and software architectures, are provided by Akyldiz et al. [57], and Yick
et al. [58].

Even though WSNs were conceived as distributed sensing architectures, several exam-
ples are provided in literature about nodes also performing in-network pre-processing of
raw sensed data [59]. The need for a trade-off between the limited available energy
source, and the manifold application scenarios [60], typically calls for the application of
self-organization techniques, breaking the boundaries between the traditional architectur-
al layers in order to optimize the behavior of such nodes. Sohrabi et al. presented a
number of algorithms and protocols for self-organization of wireless sensor networks
[61]. Self-organization techniques to reduce energy consumption in ad-hoc networks of
wireless devices were described by Olascuaga-Cabrera et al. [62]. With even more tech-
nological constraints than WSNs, Wireless Sensor Body Networks (WSBNs) consist of
wearable and implantable devices. Health-monitoring usage of WSBNs is discussed by
Hao and Foster [63].

Indeed, due to their ultra-low energy consumption requirements, WSBNs represent a very
challenging scenario for sensor devices based on current, and even near future, general pur-
pose processing elements, and implementing signal processing algorithms on nodes may
prove unfeasible.

Alternative approaches based on application specific integrated circuits have been investi-
gated [64]. Departing from the network oriented vision, and calling for the establishment of
self-managing systems engineering, Beal et al. proposed the “amorphous medium” abstrac-
tion in which the deployed sensor network represents the physical space of the application
to be engineered [65].

From an engineering perspective, the application goal is reached by programming the medi-
um instead of the network. The former abstracts the computational model, turning sensor
nodes into points of the physical space. A global behavior is described in a specifically craft-
ed language, as it were to be executed by the abstract medium. Actually, the abstract de-
scription is compiled into code to be executed identically on each node. Besides executing
the same code, nodes interact only with neighboring devices.

Beal et al. called this programming paradigm amorphous computing, revealing their in-
spiration to come from some properties of biological systems, such as morphogenesis
and regeneration. More interestingly, even though with substantial topological differen-
ces, many similarities can be detected between the “amorphous-medium” and cellular
automata.
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7. Conclusions

The paradoxical fascination of simplicity producing complexity has traversed decades of re-
search in information systems. Even more now that extremely high integration is pushing
millions of highly modular circuits in few square millimeters, and inter-networking is the
next —or rather, current — large scale integration.

Some research directions seem to suggest that breaking some of the fixed ties in engineered
system, letting systems auto-organize in response to the environmental changes, as biologi-
cal systems have been doing for millions of years, is the way to go to “put some order in the
chaos”. In support of these indications, self-organizing systems have provided interesting
results in modeling complex processes, blurring a little the line between artificial and natu-
ral systems.

Other researches seek to extend self-organization to the extreme of self-healing systems able
to recognize their own faults and self-repair, while biological applications confirm that tak-
ing into account self- organization when studying natural processes, while not an easy task,
can provide more comprehensive and effective models.

If all these efforts move on the path towards truly intelligent systems, or even Artificial Life
—as some have been suggesting for years— is yet to be discovered, nevertheless it is a very
interesting path.
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