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1. Introduction

1.1. The problem

Whilst improvements in patient survival have been realized for a number of haematological
and solid malignancies in the last 30 years, new efficacious systemic anti-cancer treatments
are still needed. The current, widely used drug development paradigm is often associated
with a poor conversion rate from experimental to licensed drug. This process involves a sig‐
nificant investment of resources from sponsors, investigators and patients and to date has
only lead to a limited chance of success. At present there are in excess of 800 anti-cancer
agents in development and less than 10 new FDA approvals each year [1]. In order to ad‐
dress this problem there has been considerable debate concerning the best trial methodology
to rationalize this process, with discussion of the timing, sequence and design of appropriate
trials [2]. At present in many tumour types including breast, lung, renal cell and prostate
cancer, the pipeline of new agents is crowded. In order therefore to use the available finan‐
cial and patient resource wisely, it is crucial to identify the key important pathways in onco‐
genesis that in turn may help and prioritize the drugs with the most promise.

1.2. A promising future

In recent years advances in molecular biology have aided our understanding of the patho‐
genesis of cancer. This has occurred concurrently with technological advances allowing ra‐
tional drug design and development (such as tyrosine kinase inhibitors, monoclonal
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antibodies and anti-sense oligonucleotides). Combining these two advances has been very
beneficial in the drug development process such that we now have a wealth of opportuni‐
ties. The challenge now is how to rationally categorize and prioritize the many strategies
that can be deployed. In the discussion below, we propose a rational process to evaluate the
merits of different strategies and use prostate cancer as an example. The different strategies
include focusing on cytotoxic agents, synthetic lethality strategies, angiogenesis, oncogene
addiction pathways and activated survival pathways such as those driven by systems of in‐
flammation and/or metabolism.

2. Building on past successes – Cytotoxics and agents targeting key
biological pathways

2.1. Cytotoxic agents

Cytotoxic chemotherapy has had an established role for many cancer types for many decades
with the ability to eradicate some cancers, prevent relapse from micrometastatic disease in oth‐
ers and offer life prolonging or palliative benefit in other cancers. With respect to prostate can‐
cer, a role for cytotoxic chemotherapy in the treatment of metastatic castrate refractory prostate
cancer (CRPC) was first established using mitoxantrone in 1996, when it was shown to provide
effective palliation of pain symptoms compared to prednisolone alone without prolongation
of overall survival [3]. This was not associated with a survival benefit and to date the only class
of cytotoxic agents to improve survival in metastatic prostate cancer are the taxanes [4]. Doce‐
taxel was licensed in metastatic CRPC patients in 2004 following a phase III study of docetaxel
plus prednisone versus mitoxantrone plus prednisone. The taxanes block cells in the G2/M
phase of the cell cycle by stabilizing microtubules in the mitotic spindle thereby rendering
them unable to separate during mitosis. Cancer cells sensitivity to taxanes is often short lived
and resistance develops. The mechanism of this is poorly understood, although over expres‐
sion of P-glycoprotein and mutations in the tubulin gene have been described [5]. Whilst the
non-specific targeting of cycling cells by cytotoxic agents is not classed as targeted therapy, on‐
going efforts do exist to introduce new cytotoxic agents to the prostate cancer arena. The aim of
improving efficacy and delivery whilst minimizing toxicity underlies this development. In this
era of personalized medicine, cytotoxic agents may continue to have a role especially where tu‐
mours do not harbour an obvious upregulated or mutated pathway to target. This approach
has already led to the development and approval of the synthetic taxane - cabazitaxel for use in
the second line metastatic CRPC setting. In the international multicentre phase III TROPIC tri‐
al, patients who had progressed on docetaxel were randomized to receive cabazitaxel plus pre‐
dnisone or mitoxantrone plus prednisone. An improvement in overall survival of 2.4 months
was seen (15.1 months versus 12.7 months HR=0.7 p<0.001) [6].

In addition to new members of existing cytotoxic drug classes, new mechanisms of drug de‐
livery continue to be developed. Nanoparticle albumin bound (nab) paclitaxel and docetaxel
use albumin as a vehicle to improve drug delivery to the tumour. This approach has proven
to be successful using nab-paclitaxel (Abraxane®) in metastatic breast cancer where it deliv‐
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ered a 49% higher dose of drug to patients than a conventional solvent based approach. In
addition, higher response rates were seen with an overall response rate of 33% (versus 19%
for standard paclitaxel) and increased time to progression from 16.9 to 22 weeks [7]. Both
agents are also in development in prostate cancer, where phase II trials are currently evalu‐
ating nab-paclitaxel and nab-docetaxel in the CRPC population. Other novel drug delivery
strategies include water soluble biodegradable polyglutamate polymer with linked chemo‐
therapeutic molecules (e.g. paclitaxel poligumex, Opaxio®) [8,9] and a nanoparticle bound
docetaxel agent (BIND014) has also recently entered phase I clinical trials [10] (Table 1)

Drug Class Study Design Results

Current phase of

clinical

development

Reference

Androgen receptor blockers

Abiraterone CYP 17 lyase

inhibitor

Randomised placebo

controlled phase III

trial in post-

docetaxel and

chemo naïve CRPC

pts.

Overall survival adv 3.9

months in post chemo

population

Chemo naïve study

stopped early. Median

OS not yet reached for

Abiraterone

Licensed in post-

docetaxel pts

Awaiting license in

chemo naïve pts

[26, 28, 29]

Enzalutamide

/MDV3100

Androgen

receptor

antagonist

Phase III randomized

placebo controlled

AFFIRM study

Overall survival adv 4.8

months. Favourable

toxicity profile. 0.6%

seizure rate

Phase III trials in

chemo-naïve setting

completed accrual

[33, 34]

Orteronel/

TAK700

17,20 lyase

inhibitor

Phase I-II dose

escalation study in

metastatic CRPC pts

accrued.

RPIID is 400mg BID, no

DLTs

Phase II trial accruing

in asymp CRPC pts,

pts without mets but

rising PSA & in

combination with

docetaxel in met

CRPC pts.

[30, 31]

TOK-001 AR antagonist,

CYP 17 lyase

inhibitor, ↓AR

levels

Phase I-II in CRPC pts

(ARMOR1) currently

accruing

[113]

Histone deacetylase (HDAC) inhibitors

Panobinostat HDAC inhibitor Phase I completed in

combination with

docetaxel/pred and

phase II completed

as single agent in

CRPC pts

Safe as single agent

and in combination. IV

formulation going

forward

Phase I-II with

Bicalutamide in CRPC

pts accruing

[37]
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Vorinostat HDAC 6 inhibitor Phase I with safety

study with docetaxel

q21 days and

vorinostat q1-14

days

Phase II in post

chemo CRPC pts

receiving 400mg

vorinostat orally

12 pts enrolled but 5

DLTs reported. Trials

suspended due to

excess toxicity

27 pts but terminated

due to excess toxicity.

Significant toxicity

seen. 44% G3 AE’s

Phase I in

combination with

temsirolimus

planned

[38, 39]

SB939 HDAC inhibitor

(multiple classes)

Phase I dose

escalation trial in

solid malignancies

MTD 80mg, RPIID

60mg,

DLTs were fatigue,

troponin elevation &

QTc prolongation

Phase II single agent

study in

recurrent/met

prostate cancer

accruing

[114]

Romidepsin Depsipeptide

HDAC inhibitor

Phase II in chemo

naïve met CRPC pts.

13 mg/m2 q1,8,15

every 28 days

35 pts enrolled. 2 pts

had PR "/>6months. 11

pts stopped due to

toxicity. N&V, fatigue &

anorexia

Combination studies

with cytotoxic agents

planned

[115]

HSP90 inhibitors

IPI-504

(Retaspmycin)

17-AAG analogue

HSP90 inhibitor

Phase II study in

CRPC patients

stratified by prior

chemotherapy at

400mg/m2

No PSA or RECIST

responses seen. G5

ketoacidosis and

hepatic failure

observed

Clinical development

ongoing in NSCLC

[43]

STA9090 2nd gen

HSP90 inhibitor

Phase I dose

escalation studies

with IV wkly and

twice wkly admin

Wkly admin - MTD

216mg/m2 DLTs due to

amylase elevation,

diarrhoea & fatigue

Twice weekly – MTD as

yet not reached

Phase II prostate

trials planned

[44]

17AAG

(Tanespimycin)

1st gen HSP90 inh Phase II in metastatic

CRPC pts. 300mg/m2

weekly for ¾ weeks

Trial stopped after 1st

phase due to lack of

PSA response. G3

fatigue

No further prostate

trials

[41, 42]

siRNA against AR Nanoparticle

technology

In pre-clinical

development

[10]

Table 1. The Androgen Receptor pathway

New classes of cytotoxic agents are also in development in prostate cancer. These are members

of the epothilone family and the halichondrin B analogue - eribulin. The epothilones are mac‐

rolide antibiotics that also act by stabilizing microtubules. They are water soluble and as such
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do not have to be administered in a lipophilic solution, therefore reducing the allergic reaction
rate compared to taxanes. To date the epothilone - ixabepilone is licensed for use in metastatic
chemo-refractory breast cancer, although it has also shown activity and acceptable toxicity in a
phase II study in a mixed chemo naïve and post chemotherapy CRPC population [11]. Clinical
development of several members of this family in prostate cancer continues. Patupilone or nat‐
urally occurring Epothilone B and sagopilone (a fully synthetic compound) have also shown
activity in post docetaxel and chemo naïve CRPC patients respectively [12, 13].

Eribulin mesylate (or Halaven, Eisai Co.) is a synthetic analogue of the marine sponge natural
product Halichondrin B that is a potent naturally occurring mitotic inhibitor. Eribulin binds
predominantly with high affinity to the ends of microtubules leading to mitotic arrest and ulti‐
mately apoptosis. Eribulin is also licensed for use in metastatic chemotherapy refractory breast
cancer patients although a phase II study in both chemotherapy naive and pretreated prostate
cancer patients has been performed. Most activity was demonstrated in the chemotherapy na‐
ïve cohort with a 22.4% PSA response rate and 8.8% overall response rate [14].

Another successful cytotoxic strategy for targeting prostate cancer metastases with radiation
has been the studies using the alpha-emitter Radium 223. This radiopharmaceutical that acts as
a calcium mimic can selectively target bone lesions from prostate cancer whilst its low pene‐
trance alpha-emissions are cytotoxic to cancer cells. Its half life of 11.4 days also favours its use
as a cancer treatment. Having proven its safety in phase I and II trials [15], the phase III AL‐
SYMPCA trial was stopped early after a pre-planned efficacy interim analysis following rec‐
ommendations from the independent data monitoring committee on the basis of a significant
improvement in overall survival and favourable toxicity profile. In this large study of 922 pa‐
tients, Radium-223 significantly improved overall survival in patients by 2.8 months (HR 0.695
95% CI 0.552-0.875) in addition to delaying the time to first skeletal-related event by 5.2 months
(HR 0.610 95% CI 0.461-0.807) [16].

2.2. Targeting key biological pathways

A leading premise for the treatment for advanced prostate cancer is to target the androgen re‐
ceptor (AR) axis or to identify cases where a single pathway mutation is thought to drive carci‐
nogenesis.  It  is  proposed that  triaging the current pipeline of  agents can be directed by
building on prior successes. In light of recent advances in our knowledge of AR pathway sig‐
naling, further exploration of this pathway is warranted. Moreover, since molecular interroga‐
tion of distinct clones driving individual prostate cancers is now possible, treatment of these
tumours with agents targeting these mutations would also be desirable. In the past the pros‐
tate cancer treatment paradigm has been to expose the patient to an established sequence of
agents in a ‘one size fits all’ approach – which may have missed identifying a drug with major
activity in a few patients. A strategy that is being increasingly more recognized is the need to
characterize a patient’s cancer and select the most appropriate treatment for that cancer pheno‐
type. It is also important to ensure that critical appraisal of pre-clinical and clinical research
continues to help guide these endeavors to identify oncogene addiction pathways.
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3. Extinguishing the AR axis

The androgen dependence of prostate cancer on testosterone was first observed as early as
1941 when the effect of castration on androgen levels in prostate cancer was studied [17].
This lead to the introduction of androgen deprivation therapy and the generation of the cas‐
trate state where serum levels of testosterone are reduced to <50ng/dl or 1.7nmol/l. This
treatment is initially effective in 80-90% of patients and results in PSA or radiological re‐
sponses and clinical improvement in the patient’s symptoms. Eventually, the patient’s can‐
cer progresses despite serum testosterone levels continuing to be low. The current term used
to describe this state is ‘castrate resistant prostate cancer’ which has replaced the misleading
term ‘hormone-refractory prostate cancer’. CRPC more accurately describes the ongoing de‐
pendence of the cancer on AR signaling despite low measureable testosterone levels.

Ligand independent AR signaling is  thought to occur in the majority of  CRPC tumours
via activation of  oncogenes such as ERBB2 or H-ras  and through MAP kinase signaling
[18,  19].  A small  proportion of  CRPC tumours will  also harbour amplifications or point
mutations in the ligand-binding domain of the androgen receptor gene leading to altered
responsiveness to ligands [20].  A third mechanism of action bypasses androgen receptor
in favour of an alternative signaling pathway [21].

The evidence for ongoing androgen sensitivity is also strengthened by the observation of
up regulation of AR protein levels in hormone resistant versus hormone sensitive paired
xenografts [21] as well as in patient tumour samples [22, 23].  Maintained intra-tumoural
levels of testosterone and dihydrotestosterone are also observed despite castrate serum an‐
drogen levels [24].

In addition to testicular androgen production, extragonadal sites of androgen synthesis also
contribute to testosterone levels. These de novo adrenal and intra-tumoural pathways utilize
the 17α-hydroxylase and C17, 20-lyase activity of the CYP17A1 enzyme involved in the ste‐
roid biosynthesis pathway. The importance of this pathway was initially clinically exploited
with the use of ketoconazole, a weak reversible inhibitor of CYP17. Anti-tumour activity
was demonstrated with a PSA response rate of 20-62% in phase II trials and a median dura‐
tion of response of 3-7 months [25]. However its use was associated with significant toxicity
and up to 20% of patients discontinued treatment. This toxicity profile has not been ob‐
served with the more potent CYP17 inhibitor abiraterone acetate. This agent has successfully
reawakened interest in further manipulation of the AR axis in CRPC patients. After success‐
ful phase I and II clinical trial development [26, 27] randomized double blind placebo con‐
trolled phase III trials of abiraterone plus prednisolone versus placebo plus prednisolone in
chemotherapy naïve and post docetaxel patients were conducted. Results in post docetaxel
patients revealed a statistically significant increase in median overall survival of 3.9 months
in favour of abiraterone as well as improvements in time to PSA progression, radiological
PFS and PSA response rate [28]. More recent results from the interim analysis of chemother‐
apy naïve patients have also shown significant activity in favour of abiraterone with the in‐
terim data monitoring committee recommending unblinding and crossover for patients
receiving prednisone alone [29]. Abiraterone was also well tolerated with the predominant
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toxicities being hypertension, hypokalaemia and fluid retention. These are the expected con‐
sequences of the mineralocorticoid excess resulting from the accumulation of precursors up‐
stream of CYP17. These have subsequently been managed with the concomitant use of
steroids or the mineralocorticoid antagonist eplerenone.

Orteronel (or TAK 700, Takeda Pharmaceuticals) is another 17,20 lyase inhibitor which has
also advanced to phase III CRPC trials after successful phase I and II development [30, 31].
This inhibitor is now in phase III trials as a single agent in asymptomatic CRPC patients and
in patients with a rising PSA but no detectable metastatic disease as well as in phase I/II tri‐
als in a number of prostate cancer settings including in combination with docetaxel in meta‐
static CRPC patients.

In addition to steroid biosynthesis inhibitors, further manipulation of the AR axis in castrate
patients has been demonstrated using MDV3100 or enzalutamide. First generation anti-an‐
drogens such as bicalutamide, flutamide and nilutamide competitively inhibit the AR ligand
binding domain. This response is often transient as castration resistance develops which
may in part be a consequence of the partial agonist activity of this class [21]. These observa‐
tions led to the rational design of enzalutamide, an orally available anti-androgen with su‐
perior AR binding compared to bicalutamide, and no AR agonist activity in bicalutamide-
resistant and AR-over expressing cell lines [32]. A phase I/II study of enzalutamide in 140
post-chemotherapy metastatic CRPC patients demonstrated a PSA response rate of 56%
(78/140 patients), soft tissue responses in 22% (13/59 patients), and a median time to progres‐
sion of 47 weeks. enzalutamide was well tolerated with the most common grade 3 or 4 ad‐
verse events being fatigue that resolved with a dose reduction [33]. This activity was
confirmed in the multicentre double blind placebo controlled phase III AFFIRM trial com‐
paring enzalutamide against placebo. This trial of 1199 docetaxel pre-treated patients was al‐
so stopped early due to a 4.8 months overall survival benefit for enzalutamide compared to
placebo with all subgroups benefiting [34].

Other  agents  in  development  that  manipulate  the  androgen receptor  axis  are  shown in
table  1.  In  addition  to  agents  intrinsic  to  the  androgen  receptor  pathway,  inhibitors  of
chaperone proteins may also be important targets.  Histone deacetylases (HDAC) are en‐
zymes which remove acetyl groups from proteins and in so doing modulate the protein-
protein  interactions  of  co-activators  associated  with  AR  binding.  HDAC  enzymes  are
over expressed in certain solid tumours including prostate cancer, where high expression
levels are associated with poor outcome [35]. HDAC over expression in prostate cancers
is also often co-existent with genetic rearrangements in the ETS (E-twenty six) gene fami‐
ly. These genetic alterations have been found in up to 70% of prostate cancers and may
interact  with HDAC’s already known to be upstream regulators and downstream trans‐
ducers of the ETS transcription factors family [36]. The preclinical rationale for HDAC in‐
hibition in prostate cancer has led to early phase clinical development of several HDAC
inhibitors.  Phase  I/II  studies  of  panobinostat  both as  a  single  agent  and in  combination
with docetaxel confirmed the safety of this approach [37]. In the single arm study, all pa‐
tients developed progressive disease despite evidence of acetylated histones in peripheral
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blood  mononuclear  cells,  however  5  out  of  8  (63%)  patients  in  the  combination  study
had a  ≥  50% reduction in  PSA value.  At  present  a  study in  combination with bicaluta‐
mide in CRPC patients is recruiting. However trials involving single agent vorinostat (an
HDAC6 inhibitor  known to  acetylate  tubulin  and stabilize  microtubules)  have been ter‐
minated early due to excess toxicity with no significant activity [38, 39].

The  other  major  group of  agents  that  are  involved in  post-translational  modification of
the AR axis  are  heat  shock proteins.  These are  proteins  that  ensure the maintenance of
oncogenic protein homeostasis in the presence of stress factors such as hypoxia or acidot‐
ic  conditions.  Heat  shock  protein  90  (HSP  90)  is  an  ATP-dependent  multi-chaperone
complex  implicated  in  the  function  of  the  AR.  The  AR  is  stabilized  by  the  interaction
with  HSP  90  that  allows  it  to  interact  with  androgens  [40].  Pre-clinical  models  have
shown HSP 90 inhibition leads to decreased AR expression and function and a phase I
trial  of 17-AAG both as a single agent and in combination with cytotoxic chemotherapy
demonstrated drug safety [41]. The subsequent phase II study however failed to reach its
primary endpoint and was terminated [42]. Significant toxicity was observed with the 17-
AAG analogue retaspmycin (or IPI-504) [43] although clinical development of the second
generation  HSP90  inhibitor  STA9090  has  confirmed safety  in  phase  I  trials  and  is  pro‐
ceeding [44].  Studies are planned to determine whether the newer HSP90 agents can hit
target  and  decrease  activity  with  a  suitable  toxicity  profile  or  whether  the  therapeutic
window is too narrow for safe use of these agents.

In addition, small interfering RNA’s (siRNA’s) are a class of double stranded RNA mole‐
cules that are now known to exist as important gene regulatory factors in both plant and an‐
imal systems. Selective targeting of the androgen receptor by siRNA molecules may further
silence the AR signaling pathway in prostate cancer. This may be made viable by nanoparti‐
cle technology being able to facilitate use of otherwise undeliverable agents. The develop‐
ment of these agents is currently hampered by the need for safe systemic delivery of these
agents without the off target and immune stimulation problems encountered with other nu‐
cleic acid medicines such as plasmid DNA and anti-sense oligonucleotide [45].

4. An advanced understanding of cancer biology comes of age

4.1. Specific targeting of DNA repair mechanisms

In recent years one successful targeted approach has been to exploit the vulnerability of tu‐
mors with an impaired DNA damage repair mechanism by inhibiting a second DNA repair
pathway and as such commit the cancer cell to die. This concept of synthetic lethality has
been most successfully demonstrated in patients bearing tumors with BRCA-1/-2 mutations
where homologous recombination (HR) mechanisms are already known to be inadequate.
This hypothesis has reactivated the development of poly (ADP-ribose) polymerase (PARP)
inhibitors. PARP is an enzyme that is crucial in the base excision repair pathway. When this
repair mechanism is inhibited in the presence of pre-existing impaired HR then efficient
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DNA repair is prevented and apoptosis occurs. Following pre-clinical and more recently
proof of concept clinical trials in patients with BRCA mutated breast and ovarian carcinoma,
the PARP inhibitor olaparib has demonstrated significant activity [46]. Whilst it is hoped
that the application of these agents may broaden to include sporadic tumours in which mu‐
tations in DNA pathways may also be found, there has also been considerable interest in
other tumours types where these mutations may be found. The inherited BRCA-2 mutation
is associated with a 20% lifetime risk of developing prostate cancer that often occurs before
65 years of age. The subsequent tumors are often of high Gleason score, more advanced
stage at diagnosis and patients have a shorter survival than patients with sporadic prostate
cancers [47]. One of three prostate cancer patients with germ-line BRCA variant had a pro‐
longed response to olaparib in a phase 1 trial [48]. In addition to BRCA mutated cancers,
pre-clinical evidence has also demonstrated a sensitivity of tumours with phosphatase and
tensin homolog (PTEN) deficiency to PARP inhibition [49]. This is one of the most common‐
ly mutated genes in human cancers where it has a role in genome stability. PTEN deficiency
is associated with an HR defect that sensitizes tumours cells to PARP inhibition using the
same mechanism as BRCA mutated cancers.

At present, the clinical development of olaparib has been focused on breast and ovarian can‐
cer. Studies in prostate cancer are underway with the PARP inhibitor veliparib (or ABT888)
in combination with temozolamide in a phase I study recruiting patients with metastatic
prostate cancer. In addition a phase I study using the Merck PARP inhibitor - MK4827 is
currently recruiting to a prostate cancer enriched second stage following encouraging phase
I study data in advanced solid malignancies [50].

4.2. Oncogene addiction pathways

The development of drugs targeting tumours driven by so-called ‘oncogene addictions’ has
lead to some success. Examples include imatinib targeting the bcr-abl translocation in CML
and mutated c-kit in GIST, trastuzumab and laptinib in HER-2 positive breast cancers BRAF
inhibitors in melanomas with BRAF mutations. Molecular studies in prostate cancer have to
date identified mutations of this type in less than 20% of all sporadically occurring prostate
cancers. Analysis of a cohort of 206 prostate cancer cases found the common BRAF mutation
V600E in 10.2% (or 21/206 cases) [51], whilst PI3 kinase mutations were found in only 3% of
a separate cohort [52]. Drugs inhibiting BRAF as well as PI3 kinase mutations may lead to
meaningful responses in patients with tumors been driven by these mutations. It is hoped
that further “oncogene addiction” pathways will be uncovered and be able to be drugged.

4.3. Ligand and transcription factor driven survival pathways

Whilst it is often hoped that mutations in a single molecular pathway will be uncovered as
the crucial oncogenic event in tumour development and its abrogation lead to meaningful
anticancer activity, to date this has been rarely found to be the case for sporadic tumours.
Another approach is to consider the factors that cause and/or are associated with the devel‐
opment as well as the survival of cancer. The role of androgens and androgen receptor is
clear for prostate cancer. Other biological approaches associated with cancer development
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and survival include the metabolism and inflammatory systems. In both cases, there is epi‐
demiological, preclinical and pathological data implicating these systems in the develop‐
ment of prostate cancer. In comparison to the “oncogene addiction” phenomenon, these
cancers are driven by altered expression of ligands and control mechanisms (such as tran‐
scription factors). Knowledge of these pathways has provided valuable clues for the treat‐
ment of cancer.

5. Targeting the metabolism system

Incidence and disease specific mortality in prostate cancer exhibit marked global variation
with the highest levels seen in Western Europe, North America and the lowest in Asia [53].
It is assumed that whilst this is accounted for by a significant genetic component, that diet
and lifestyle factors may also contribute. Epidemiological studies also support an associa‐
tion between dietary fat intake, poor prognosis and risk of relapse [54]. In order to identify
new pathways that are important in prostate cancer pathogenesis, evaluating a role for the
metabolism system and its key components is crucial.

Cancer cells are already known to differ from normal cells in some of the fundamental meta‐
bolic pathways they employ. Most cancer cells generate energy by primarily metabolizing
glucose by glycolysis followed by lactate production. This occurs in contrast to normal cells
in which glucose is catabolised by oxidative phosphorylation, a primarily aerobic process.
Proliferating cancer cells also exhibit increased glucose uptake compared to normal cells.
This results in tumour cells with glycolytic rates over 200 times higher than those of normal
tissues and allows efficient generation of macromolecules needed for new cancer cell pro‐
duction. This so-called Warburg hypothesis was initially thought to be the fundamental
cause of cancer, however it is now thought to explain how tumours may flourish in low oxy‐
gen environments [55]. These observations suggest that differences in metabolism between
normal tissues and cancer cells may be important in oncogenesis.

Insulin and insulin-like growth factors (IGF-1) are extracellular hormones and growth fac‐
tors that regulate important metabolic pathways such as fatty acid and sterol synthesis as
well as growth factor signaling via the PI3 kinase and MAP kinase pathways. Their activa‐
tion may stimulate tumourigenesis by activating one or both of these mitogenic pathways
and disrupting fat metabolism.

IGF-I and IGF-II bind to the IGF-1 receptor, a tyrosine kinase receptor that is known to be
upregulated following castration in animal models [56]. It has been implicated in the devel‐
opment of the castrate resistant state with evidence that inhibition of the IGF-1 receptor may
enhance the effect of castration in xenograft models [57]. Targeting the IGF-1 receptor is
therefore an attractive therapeutic target in CRPC. Several IGF-1 receptor inhibitors are cur‐
rently being evaluated in clinical trials and candidates include both monoclonal antibodies
and small molecule tyrosine kinase inhibitors. Cixutumumab (or IMC-A12) is a fully human
IgG1 subclass monoclonal antibody that has reached phase II of clinical development. A sin‐
gle agent study of chemotherapy naïve asymptomatic patients noted that the drug was well
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tolerated with grade 3 fatigue and hyperglycaemia the worst toxicity seen and 29% of pa‐

tients had stable disease [58]. Future trials with this agent are planned or ongoing including

in the first line metastatic setting with androgen deprivation therapy (SWOG S0925) based

on supporting preclinical data [57].

Drug Class Study Design Results

Current phase of

clinical

development

Reference

Insulin-like growth factor receptor inhibitors

Cixitumumab

/IMC-A12

IGF-1 R inh Phase II study in chemo

naïve CRPC Asx pts

10mg/kg q2 wkly or

20mg/kg q3 wkly

29% disease stab >6

mths. Worst toxicity G3

fatigue & ↑glycaemia

Phase II Neoadj

+ADT in high risk

pts

+ Temsiro in met

CRPC

+ 1st line met+ADT

[58]

Figitumumab

/CP-751871

IGF-1 R inh Phase Ib in adv solid

tumours in comb with

docetaxel 75mg/m2

46 pts - MTD not

reached. 4PR and 12 pts

with disease stab

>6months. G3/4 febrile

neutropenia, fatigue

10/18 CRPC pts had >5

CTC with 60% response

Phase III studies

recruiting in NSCLC

(ADVIGO 1016).

Phase II in breast,

prostate, colorectal

& Ewings sarcoma

[59, 60]

Ganitumab/

AMG 479

IGF-1 R inh Phase I dose escalation

study in adv solid malign

of IV q2 wkly

53 pts - 1DLT – G3 ↓plts

& transminitis. MTD not

reached – maxdose

20mg/kg. ↑ in serum

IGF-1

Phase II studies

recruiting in Ex

Stage small cell

with platinum,

+Everolimus in

colorectal, in

carcinoid & pNETs

[61]

Lisitinib/

OSI-906

Dual kinase

inhibitor of

Insulin &

IGF-1 R

Phase I continuous dose

escalation study in adv

solid tumours using BID

& QD dosing

Phase I intermittent

dosing in adv solid

tumours

57 pts – MTD reached

400mg QD, 150mg BID.

DLTs were ↑ QTc & G3

hyperglycaemia

SD >12 weeks seen in

18/43 pts

MTD 600 mg

Phase III recruiting

in Adrenocortical

Ca

Phase II + Erlotinib

in Breast

[62, 116]

AMP Kinase activators

AICAR

(Aminoimidazole-4

-caboxamide-1-b-

riboside

AMP mimetic Preclinical studies show

inhibition of prostate

cancer cell proliferation

Inhibition of tumour

growth in prostate

cancer xenograft models

[78, 117]
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A-769662 AMP K

subunit act.

Delay tumour

development & decrease

tumour incidence in

PTEN def mice

[79]

Metformin Indirect 44% reduction in

prostate cancer cases

compared to Caucasian

controls

Phase II recruiting

in loc adv or met

CRPC and in loc

disease as

prevention against

MS with ADT

[80]

Resveratrol Indirect Phase I single dose safety

study in colon ca pts with

hepatic metastases

Results are awaited Phase I/II currently

recruiting as neoadj

in colon carcinoma

pts

[82]

mTOR inhibitors

Temsirolimus mTOR

inhibitor

Phase II study in CRPC

patients post first line

docetaxol

chemotherapy. Pts

receive maintenance

temsirolimus 25mg/m2

weekly

Currently recruiting Phase II recruiting

in chemo naïve

CRPC pts, in comb

with cixutumumab

in met CRPC, in

CRPC after no

response to chemo

with bevacizumab

& PI/II with

docetaxel

[118]

Everolimus mTOR

inhibitor via

mTORC1

Phase II study in castrate

resistant prostate cancer

of bicalutamide and

everolimus compared to

bicalutamide alone

In vivo evidence of

synergy between mTOR

and AR pathways.

Study ongoing but 8 pts

enrolled. 6/8 responses

in PSA. Well tolerated

with no unexpected

toxicity

Phase I/II in met

CRPC with

docetaxel &

bevacizumab, in

post chemo pts

with carbo/pred, in

neoadj setting in

int/high risk

localized disease &

in first line met/

locally adv setting

[72, 73, 74]

PI3 kinase inhibitors

XL-147 Class I PI3K

isoform

inhibitor

Phase I dose escalation

study in adv solid malig

of continuous daily

dosing or d1-21 of 28

day cycle

68pts – DLT G3 rash.

Inhibition of PI3K & ERK

demonstrated.

Prolonged stable disease

observed

Recruiting to Phase

I study in solid

tumours and Phase

I/II in breast &

endometrial

carcinoma

[65]
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GDC-0941 Pan PI3K

inhibitor

Phase I dose escalation

study. GDC-0941 given

QD for 21 out of 28 day

cycle. BID cohorts also

recruited

36 pts enrolled, dose

escalation ongoing. QD

dosing safe up to

254mg, BID dosing safe

up to 180mg. 3 DLTs –

headache, pl eff and red

TLCO

Phase I study

recruiting in NSCLC

& Met breast cancer

in comb. With

paclitaxel or carbo

+/- bevacizumab

[66]

BKM120

BEZ235

Pan class I

PI3K inhibitor

Phase I dose escalation

study. BKM120 PO QD

30 pts enrolled from

12.5-150mg. MTD

100mg. PD data suggests

active drug at 100mg.

8/10 PR on FDG-PET

Phase I/II currently

accruing in HER2+

Met breast ca. Also

recruiting in

combination with

GSK 1120212

[67]

Akt inhibitors

GSK 2141795

GSK 2110183

Akt inhibitor First-in-human

phase I study of

GSK 2141795 in

advanced solid

malig, also

recruiting in

combination with

GSK 1120212

Perifosine Oral Akt

inhibitor

CRPC pts with rising PSA

but no detectable mets.

900mg loading dose

then 100mg daily

20% pts had a PSA

reduction but did not

meet PSA response

criteria. DLTs included

hypoNa, arthritis,

photophobia,

hyperuricaemia

Recruiting phase III

in multiple

myeloma with

bortezomib +/-

dex , phase I in

recurrent paediatric

solid tumours

[70]

MK2206 Highly

selective non

ADP comp

Akt inhibitor

Phase I dose escalation

study 30-90mg QOD in

28 day cycles in tx-

refractory solid tumours

MTD established at

60mg QOD. PD efficacy

confirmed with dec

pAKT levels. SD seen in

6/19 pts

Phase II

bicalutamide +/-

MK2206 in pts after

local therapy +

rising PSA, Phase I

in com with

docetaxel is

recruiting

[71]

Table 2. The Metabolic Syndrome

A second IGF-1 receptor antibody is the human IgG2 subclass antibody figitumumab. This was

evaluated in a phase I dose escalation trial during which the maximum feasible dose was estab‐

lished as 20mg/kg intravenously every 21 days [59]. A phase Ib dose escalation study in combi‐
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nation  with  docetaxel  then  enrolled  46  predominantly  metastatic  CRPC  patients.  This
combination was well tolerated with no MTD reached and the toxicity profile included nausea,
febrile neutropenia, anorexia, fatigue and hyperglycaemia. A 22% response rate was observed
with a disease stabilization rate of 44% for ≥ 6 months [60]. A phase II study of this combination
has completed accrual and results are awaited. A third monoclonal antibody ganitumumab (or
AMG478, Amgen) is also in clinical development and whilst safe in phase I dose escalation
studies, its focus for ongoing development is in lung and colorectal carcinoma [61]. OSI-906 or
linsitinib is a first in class inhibitor of both the insulin and IGF-1 receptors. It has been evaluat‐
ed in phase I dose escalation safety studies where MTDs of 400mg QD and 150 mg BID were
reached. The dose limiting toxicities were the known class effects hyperglycaemia and prolon‐
gation of the QTc interval. Whilst further development of this compound continues in adreno‐
cortical and breast carcinomas [62], a phase II study of linsitinib in asymptomatic or mildly
symptomatic CRPC patients has completed accrual and results are awaited.

An important downstream intracellular signaling pathway that has been implicated in pros‐
tate cancer pathogenesis, progression and the development of castration resistance is the
PI3K/Akt/mTOR pathway. Phosphatidylinositol-3 kinase (PI3K) activation results in the phos‐
phorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to generate the second messenger
phosphatidylinositol 3-5triphosphate (PIP3) that activates the Akt signal transduction cascade.
Reports suggest that PI3K signaling may play a critical role in castration resistance allowing
prostate cancers to maintain continued proliferation in low androgen environments [63]. In ad‐
dition, the PI3K isoforms p85 and p110b appear to have a role in regulating AR-DNA interac‐
tions and the assembly of the AR based transcriptional complex [64]. There are numerous PI3K
inhibitors in clinical development, XL147 (Exelixis) is a class I isoform inhibitor whilst SF1126
(Semafore), GDC0941 (Genentech) and BEZ234 (Novartis) are pan PI3K inhibitors. All agents
have successfully completed phase I dose escalation studies and preliminary results suggest
that these agents are well tolerated and have favourable pharmacokinetic-pharmacodynamic
profiles [65 - 67]. Further tumour specific phase I/II studies are ongoing, although at present no
prostate specific studies are in progress.

The Akt’s are a family of three serine/threonine kinases – AKT-1, AKT-2, & AKT-3. Phos‐
phorylation of AKT modulates multiple downstream cellular functions including apoptosis,
metabolism and proliferation. Enhanced pAKT correlates with more aggressive histological
and pathological prostate cancer stage, and a worse prognosis underlining its importance as
a druggable target and possible role as a prognostic biomarker [68, 69]. There are several
classes of Akt inhibitors currently in clinical development including those inhibiting the cat‐
alytic and the pleckstrin homology (PH) domains. Perifosine, an alkylphospholipid inhibit‐
ing the PH domain has reached phase II in CRPC patients. Unfortunately although well
tolerated this agent did not exhibit significant activity [70]. The pan-AKT inhibitors
GSK2141795 and MK2206 with simultaneous targeting of both AKT-1 and AKT-2 are con‐
sidered potentially superior to single isoform inhibitors. MK2206 was well tolerated in a
phase II dose escalation study with an observed MTD of 60mg. Pharmacodynamic end‐
points were met with a measurable reduction in pAKT levels. In addition, 6 of 19 patients
achieved stable disease [71]. Further development continues in a number of tumour types
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both as single agent and in combination with chemotherapy. Of note a phase I study in com‐
bination with docetaxel is currently recruiting, as is a randomized phase II study of bicaluta‐
mide +/- MK2206 in prostate cancer patients with a rising PSA after definitive local therapy.
GSK2141795 and GSK 2110183 also entered phase I development with results of first in hu‐
man safety studies pending.

Mammalian target of rapamycin (mTOR) is also a serine/threonine kinase downstream of
PI3K which interacts with the mTOR complexes mTORC1 and mTORC2 to regulate cell pro‐
liferation and inhibit apoptosis. Proof of principle that the PI3K pathway can be successfully
targeted for clinical use in cancer has been demonstrated by the development of the rapamy‐
cin analogs - temsirolimus and everolimus that inhibit the mTORC1 kinase. Temsirolimus is
an intravenous formulation which was the first compound in this class to be approved by
the FDA for first line treatment in poor risk patients with advanced renal cell cancer. Evero‐
limus an oral formulation is also approved for use in advanced renal cell cancer but in the
second line setting. Single agent studies of these agents in the prostate cancer setting have
been performed but were considered disappointing with a short time to progression (2.5
months) and no radiographic or PSA responses [72]. Everolimus has also been evaluated in
combination with docetaxel in CRPC patients. The recommended phase II dose was 10mg
everolimus and 70mg/m2 docetaxel, 3 patients had a PSA response and the combination was
well tolerated with fatigue and haematological toxicities the most common [73]. Further
studies with both agents in prostate cancer continue with a similar study involving temsiro‐
limus in combination with docetaxel, as well as studies with cixitumumab and bevacizu‐
mab. A randomized study in hormone responsive patients of bicalutamide +/- everolimus is
currently recruiting with early results suggesting the combination was well tolerated with
PSA responses observed in six of eight patients [74]. Studies in the neoadjuvant and local‐
ized disease setting are also ongoing.

Finally, AMP kinase is a serine/threonine kinase that is activated by metabolic stressors that
deplete ATP and increase AMP levels. Its activity is also under the control of hormones such
as adiponectin and leptin as well as cytokines [75]. The activation of AMP kinase reduces
insulin levels, as well as increasing ATP producing activities (glucose uptake, fatty acid oxi‐
dation) and suppressing ATP-consumption (synthesis of fatty acids, sterols, glycogen and
proteins). AMP kinase therefore acts as a metabolic switch controlling glucose and lipid me‐
tabolism. Decreased AMP kinase activity is thought to contribute to the metabolic abnormal‐
ities involved in the metabolic syndrome [76]. In addition polymorphisms in a gene locus
encoding one of the AMPK subunits correlates with prostate cancer risk [77].

Activators of AMP kinase activity may be direct or indirect. Several direct AMP kinase acti‐
vators act either by allosteric binding to AMP kinase subunits or as an AMP mimetic. These
agents aminoimidazole-4-caboxamide-1-b-riboside (AICAR), A-769662 and PT1 are at an
early stage of clinical development. AICAR has been shown to inhibit prostate cancer cell
proliferation and tumour growth in xenograft models [78]. However its further develop‐
ment may be limited by its poor specificity for AMPK and low oral bioavailability. To date
no interventional oncology studies have been undertaken. The recent publication of the
crystal structure of AMP kinase subunits has allowed rational drug design of A-769662 and
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PT1. A769662 has been shown to delay tumour development and decrease tumour incidence
in PTEN deficient mice [79].

The indirect activator metformin is a well established treatment for type II diabetes mellitus.
Its use is associated with a 44% risk reduction in prostate cancer cases compared with con‐
trols in Caucasian men [80]. The mechanism of metformin’s antitumour effect is not com‐
pletely understood, although it is hypothesized that metformin may decrease circulating
glucose, insulin and IGF-1 levels by inhibiting hepatic gluconeogenesis resulting in in‐
creased signaling through the insulin/IGF-1 pathway [81]. Its action in prostate cancer is cur‐
rently under evaluation in a number of clinical trials, these include as a preventative
treatment for metabolic syndrome in men on androgen deprivation therapy and as first line
therapy in locally advanced or metastatic prostate cancer patients. Finally, resveratrol is a
phytoalexin produced by plants when under attack by pathogens. It is found in the skin of
grapes, grape products, red wine and mulberries and is thought to have anticancer proper‐
ties. These were first identified when it was shown to inhibit tumourigenesis in a mouse
skin cancer model [82]. Its indirect action on AMP kinase remains to be elucidated although
its anticancer action has been explored in a number of tumour types. Clinical trials using re‐
sveratrol have explored potential roles in preventing and treating diabetes, Alzheimers dis‐
ease and weight loss. In addition safety studies of its use in colorectal carcinoma patients
with liver metastases have been conducted and the results are awaited. As yet no studies in
prostate cancer are planned.

6. Inflammation

Numerous studies have implicated inflammation in the development of prostate cancer and
its metastases. Pathologists have recognized focal areas of epithelial atrophy in the periph‐
ery of the prostate (proliferative inflammatory atrophy - PIA), where prostate cancers typi‐
cally arise and these areas are associated with acute or chronic inflammation and can show
morphological transitions in continuity with high grade PIN [83]. This could indicate a role
of PIA as a cancer precursor [84]. Putative causes of these lesions are infection or dietary oxi‐
dants. To date, the identification of an infectious agent directly involved in prostate carcino‐
genesis has been elusive. However, it is possible that one or more infectious agents may be
indirectly involved in prostate carcinogenesis by being initiators of the inflammatory lesion
(PIA). Interesting data includes serologic evidence of T. vaginalis infection being associated
with a higher prostate cancer risk overall, and an almost two-fold risk for poorly differenti‐
ated disease [85] as well as greater prostate cancer specific mortality (HR: 1.5; 95% CI: 1.0,
2.2) [86]. It is also of note that hereditary susceptibility genes which encode proteins with
infectious response function: RNASEL and MSR1 (macrophage scavenger receptor 1) have
been associated with prostate cancer [83]. Single nucleotide polymorphism’s of anti-oxidant
genes have also been associated with prostate cancer and include OGG1 (repair from oxi‐
dized DNA), MnSOD [88]. Also the incidence of prostate cancer has been decreased with an‐
ti-oxidants such as lycopene and NSAIDs [87].
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One possible mediator of the inflammation that leads to cancer and is instigated by oxida‐
tive stress from a diverse arrays of causes is NFκB activation. Specifically, it has been shown
that a vicious cycle of oxidative stress causing DNA damage and consequent influx of in‐
flammatory cytokines into the microenvironment results in further production of proteases,
angiogenic factors, growth factors and immunosuppressive cytokines. Examples of NFκB
controlled proteins found in prostate cancer include COX-2, XIAP, CXCR4, macrophage in‐
hibitory cytokine-1 (MIC-1), IL-6, IL-8, IL-1, CXCL12, and the CXCR4 [89].

NFκB is a protein complex that controls DNA transcription and is activated by numerous
factors including cytokines, free radicals, receptor activator of nuclear factor kappa-B
(RANK), and microbial pathogens [90]. Upon activation, the NFκB dimers translocate to the
nucleus with activation of numerous genes controlling cell growth, differentiation, inflam‐
matory responses and apoptosis. Aberrant regulation of NFkB has previously been linked to
inflammatory states and cancer. Moreover, NFκB controls many of the hallmarks of cancer
including: invasion (IL-6); angiogenesis (IL-8, VEGF); propagation through the cell cycle (cy‐
clin D1); and evasion of apoptosis (cIAP-1, TRAF-2, Bcl-XL) [91 - 95]. As such, NFκB activa‐
tion has clear-cut biological plausibility as a driver of cancer progression and CRPC. In
tumor cells, NFκB is constitutively active either due to mutations in genes encoding the
NFκB transcription factors themselves or in genes that control NFκB activity (such as IκB
genes) or due to tumor cells secreting activation factors (e.g. IL-1). Constitutive NFκB activa‐
tion in prostate cancer is found in both tumor and its associated stroma and occurs early in
the disease process [96 - 100]. It is of note that preclinical work has mechanistically connect‐
ed NFκB activation to development of prostate cancer with a metastatic phenotype [97]. Spe‐
cifically, loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP lead to increased
EZH2 and in turn induced NFκB activation which in turn resulted in metastatic prostate
cancer in an orthotopic mouse tumor model.

Drugs targeting the inflammatory system are in preclinical and clinical development. The
agents can be classified as upstream or direct inhibitors of nuclear factor kappa B or inhibi‐
tors of products of NFκB activation Table 3. This is a very new area but one which may lead
to significant improvements.

Drug Class Study Design Results

Current phase of

clinical

development

Reference

Upstream agents

EZH2inhibitor

(Enhancer of Zeste

protein)

Polycomb grp

protein

Pre-clinical studies only

Ectopic expression of

miRNAs impt in EZH2

action inhibit cell

growth &

tumourigenesis

[119]
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Custirsen

OGX-011

Clusterin

Inhibitor

(antisense

oligo)

Randomised phase II in

mCRPC with PD on or

within 6m docetaxel

(D)

D/Pred/C or Mito/

Pred/C

42 pts – 3/23pts with

PR in

D/P/C OS 15.8 mths

M/P/C OS 11.5 mths

Toxicity similar in both

arms

Phase III Docetaxel

+/- Custirsen in

mCRPC as 1st & 2nd

line recruiting

[120]

Bortezomib Proteosome

inhibitor

Phase II study of

bortezomib with

addition of MAB on

progression.

Bortezomib given

d1,4,8,11 for 3 cycles

No activity in addition

to docetaxel or

paclitaxel (phase I) and

high rates of PN

observed. When given

as single agent or MAB

– 11/15 CR with TTP 5.5

months

Results awaited for

phase I study with

mitoxanthrone

[121, 122, 123]

Carfilzomib Selective

proteosome

inhibitor

Phase I trial in relapsed

or refractory haem

malig, d1-5 IV

1.2-20mg/m2

MTD 15mg/m2 – DLT

of feb neutropenia &

G4 thrombocytopenia.

2/29 responses

No prostate specific

trials recruiting

[124]

Denosumab

(bone)

Anti-RANKL

antibody

Randomised phase III

trial denosumab vs

zoledronic acid in

mCRPC with bone mets

Median time to first SRE

20.7m denosumab vs

17.1m zoledronic acid

HR 0.82 p=0.00002

Phase III study

investigating lens

opacification in men

on demosumab and

ADT

[125]

Direct agents

Silibinin

(derived from Milk

Thistle)

Via down

regulation of

epithelial-

mesenchymal

transition

regulators

Phase II single arm

study in PC pts with

localized disease prior

to prostatectomy. Pts

given 13g/day

Transient high blood

concentration observed

but low tissue

concentration.

Response results

awaited

[126]

Flavopiridol

(Alvocidib)

Cyclin

dependent

kinase inhibitor

Phase II single agent

study in met CRPC pts.

72 hour IV infusion at

40-60 mg/m2/day

36 pts enrolled. No

objective responses.

14% pts met 6 month

PFS endpoint.

Further development

in germ cell tumours

& gastric/GOJ ca

[127]

Thalidomide IκB kinase

inhibitor

Phase II studies

docetaxel (75mg/m2)

and docetaxel/

bevacizumab

(15mg/m2) +/-

thalidomide

(200mg/m2)

60 pts enrolled. 90%

PSA decline of >50%.

Median TTP 18.3

months, median OS

28.2 months.

Manageable toxicity

but all pts had G3/4

neutropenia

Phase III placebo

controlled trial in

recurrent hormone

sensitive non

metastatic PC

[128, 129]

Advances in Prostate Cancer236



Lenolidamide Phase II trial after

biochemical relapse

with LHRH agonists &

phase I/II trial as single

agent 5mg or 25 mg

159 pts enrolled. Med

TTP PSA 15 vs 9.6 mths.

Thalidomide well

tolerated, 47% DR. 60

pts enrolled, 25mg ass

with greater change in

PSA slope but higher

toxicity

Phase III in met CRPC

pts, docetaxel/

prednisone +/-

lenolidamide

[130, 131]

Parthenolide

analogue

(derived from

Tanacetum

parthenium)

NFκB inhibitor Dimethylamino-

partehnolide (DAMPT)

with superior solubility

& bioavailability

DAMPT inhibited NFkB

DNA binding &

expression of NFkB

regulated anti-

apoptotic proteins

Phase I dose

escalation trial

currently recruiting

in pts with haem

malig

[132]

Downstream agents

Siltuximab αIL-6 Ab Phase II study in met

CRPC pts post

docetaxel. 6mg/kg IV

q14d for 12 cycles

53 pts enrolled. PSA

response rate 3.8%,

RECIST SD rate 23%.

High baseline IL-6 levels

ass with poor prognosis

Phase I study in

combination with

docetaxel in met

CRPC pts

[133]

Celecoxib NSAID

CNTO888 α-chemokine

ligand 2 Ab

Preclinical studies of

CNTO888 2mg/kg

twice weekly ip in vivo

prostate cancer model

Reduced tumour

burden by 96% at 5

weeks also synergistic

with docetaxel

Phase II in met CRPC

pts post docetaxel

results awaited

[134]

Plerixafor

BKT140

αCXCR4 Focus of clinical dvpt

in AML, phase I/II

studies recruiting

Table 3. The Inflammatory System

7. Other key pathways

With  time,  it  is  anticipated  that  more  pathways  and  targets  key  to  prostate  cancer
growth  will  be  identified.  Angiogenesis  inhibition  has  been  successful  in  other  cancers
but minimal activity was seen in trials with Sunitinib [101] and Bevacizumab [102]. Simi‐
larly, targeting the HGF-MET axis is supported by preclinical work [103] and some activ‐
ity  has  been  seen  with  MET  inhibition.  However,  Cabozantinib  –  a  tyrosine  kinase
inhibitor  that  inhibits  multiple  receptor  tyrosine  kinases  (RTKs)  with  growth-promoting
and angiogenic  properties  (MET (IC50  in  enzymatic  assays=  1.8nM),  VEGFR2 (0.035nM),
RET (3.8nM), and KIT (4.6nM) has significant and intriguing clinical activity in bony dis‐
ease and some activity in soft tissue disease. This suggests the effect may be due to con‐
current inhibition of two relevant pathways.
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Cabozantinib has been studied in multiple solid tumors and has shown a broad spectrum of
activity with tumour regression in patients with a variety of diseases. It’s activity in medul‐
lary thyroid cancer is based on RET inhibition [104]. Of particular relevance to prostate can‐
cer, a phase II discontinuation study of 168 men with progressive metastatic CRPC received
Cabozantinib initially for 12 weeks [105]. Patients with PR continued open-label cabozanti‐
nib, patients with stable disease were randomized to cabozantinib or placebo, whilst pa‐
tients with progression were discontinued. Trial accrual was halted after enrollment of 168
patients due to the significant activity observed. 78% patients had bone metastasis and sig‐
nificantly 86% of these had a complete or partial response on bone scan as early as week 6.
64% patients had improved pain and 46% patients reported lower narcotic analgesia use. To
date the median PFS has not been reached. Most common related Grade 3/4 AEs were fati‐
gue (11%), HTN (7%), and hand-foot syndrome (5%). Osteoclast and osteoblast effects were
observed: 55% had declines of ≥50% in plasma C-Telopeptide; 56% of patients with elevated
tALP had declines of ≥50%.

Interestingly numerous lines of preclinical and clinical evidence implicate MET and VEGFR
activation in bone metastases as well as prostate cancer, especially castration resistant dis‐
ease. Specifically, androgen deprivation increases MET expression in prostate cancer cells
[106, 107] and c-met has been shown to be upregulated in CRPC and may be a factor that
supports CRPC cells in the castrate state [106, 108]. Androgen deprivation also increases ex‐
pression of c-met’s ligand, Hepatocyte Growth Factor (HGF) in the stroma. Increased ex‐
pression of MET and HGF may contribute to disease progression following androgen
deprivation therapy. This may be a compensatory mechanism as HGF/cMET activity enhan‐
ces Leydig cell steroidogenetic activity [109]. It is also of note that increased expression of
MET and/or HGF correlate with prostate cancer metastasis and disease recurrence [110, 111].
In addition, VEGF has been shown to activate MET signaling via neuropilin-1. Osteoblasts
and osteoclasts also express MET and VEGFRs and osteoclasts secrete HGF. This supports
the notion that MET signaling not only supports the tumor, but also bone turnover which
provides a fertile microenvironment for prostate cancer growth [112]. These observations
provide a strong rationale for dual inhibition of VEGFR2 and MET as a therapeutic strategy
in men with CRPC and bone metastases. As such, cabozantinib may not only have single
agent activity but also enhance abiraterone activity by simultaneously blocking a putative
resistance/survival mechanism to hormonal therapy and abrogating bone turnover and
making the microenvironment less hospitable for cancer growth. Given these many reasons,
it is logical to hypothesize that combining these two active agents against CRPC will result
in even more substantial clinical benefit.

8. Conclusion & future directions

It is clear from the foregoing discussion that increased biological knowledge and drug de‐
velopment technologies has resulted in a vast number of agents for clinical trial testing.
However, it is paramount that judicious trial designs are employed and match the drug to
the tumor by ensuring that the target is present. It is also quite certain that no single drug
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will work given the inherent multiple redundant survival pathways. This is probably more
apparent for castration resistant disease. Therefore, one can argue that waiting for metastatic
disease or castrate resistant disease to assess a new drug is a defeatist approach, and that an
assessment earlier in the disease spectrum to prevent the emergence of resistance is a more
proactive and promising approach to improve outcomes in prostate cancer. The conduct of a
study in patients with a biochemical relapse after definitive localized therapy provides a
major opportunity for drug development. This approach allows the analysis of a drug in iso‐
lation and as well as an assessment and effective triage of the numerous new agents that are
now available for testing. Also the primary pathology can be interrogated to look for activa‐
tion of the pathway and provides an opportunity to biologically direct the evaluation of
drugs relevant to a given a pathway in an individual’s cancer. Ultimately, key combinations
simultaneously targeting the essential and multiply redundant pathways driving cancer sur‐
vival and resistance mechanisms can be developed. This has been a successful strategy for
treatment of HIV and AIDS where the early use of Highly Active Anti-retroviral Therapy
(HAART) has made major advances. With time and judicious clinical development, it is pos‐
sible to develop a similar strategy such as Highly Effective Early Prostate Cancer Therapy
(HEEPT) for patients with rapidly progressive PSA rises after definitive local therapy and
have a long life expectancy. Early use of a highly effective combination therapy will hope‐
fully eradicate the disease and prevent patients from dying from recurrent disease that may
otherwise have been lethal and more difficult to treat if waited until later in the disease
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