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1. Introduction

In recent years, the performance of personal computers has evolved with the production

of ever faster processors, a fact that enables the adoption of speech processing in

computer-assisted education. There are several speech technologies that are effective in

education, among which text-to-speech (TTS) and automatic speech recognition (ASR) are

the most prominent. TTS systems [45] are software modules that convert natural language

text into synthesized speech. ASR [18] can be seen as the TTS inverse process, in which the

digitized speech signal, captured for example via a microphone, is converted into text.

There is a large body of work on using ASR and TTS in educational tasks [14, 37]. All these

speech-enabled applications rely on engines, which are the software modules that execute

ASR or TTS. This work proposes a collaborative framework and associated techniques for

constructing speech engines and adopts accessibility as the major application. The network

has an important social impact in decreasing the recent digital divide among speakers of

commercially attractive and underrepresented languages.

The incorporation of computer technology in learning generated multimedia systems that

provide powerful “training tools”, explored in computer-assisted learning [34]. Also,

Web-based learning has become an important teaching and learning media [52]. However, the

financial cost of both computer and software is one of the main obstacle for computer-based

learning, especially in developing countries like Brazil [16].

The situation is further complicated when it comes to people with special needs, including

visual, auditory, physical, speech, cognitive, and neurological disabilities. They encounter

serious difficulties in having access to this technology and hence to knowledge. For example,

according to the Brazilian Institute of Geography and Statistics (IBGE), 14.5% of the Brazilian

©2012 Neto et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2 Speech Recognition

population has some type of disability as detailed in Table 1. It is important then to

understand how speech technologies can help educating people with disabilities [37].

Disability Description Number of people

Visual including blindness, low vision, and reduced color
perception

16,644,842

Auditory including total or parcial hearing impairments 5,735,099
Physical motor disabilities can include weakness, limitations of

muscular control (such as involuntary movements, lack of
coordination, or paralysis), limitations of sensation, joint
problems, or missing limbs

9,355,844

Mental including cognitive and neurological disabilities 2,844,936

Table 1. Profile of Brazilian people with disabilities based on data provided by IBG [20] (the total
population is 190,732,694).

For the effective use of speech-enabled applications in education and assistive systems,

reasonably good engines must be available [30, 43]. Besides, the cost of softwares and

equipments cannot be prohibitive.

This work presents some results of an ambitious project, which aims at using the Internet as

a collaborative network and help the academy and software industry in the development of

speech science and technology for any language, including Brazilian Portuguese (BP). The

goal is to collect, develop, and deploy resources and softwares for speech processing using

a collaborative framework called VOICECONET. The public data and scripts (or software

recipes) allow to establish baseline systems and reproduce results across different sites [48].

The final products of this research are a large-vocabulary continuous speech recognition

(LVCSR) system and a TTS system for BP.

The remainder of the chapter is organized as follows. Section 2 presents a description of ASR

and TTS systems. Section 3 describes the proposed collaborative framework, which aims at

easing the task of developing ASR and TTS engines to any language. Section 4 presents the

developed resources for BP such as speech databases and phonetic dictionary. The baseline

results are presented in Section 5. Finally, Section 6 summarizes our conclusions and addresses

future works.

2. Background on speech recognition and synthesis

First, this section provides a brief introduction to ASR and TTS systems. The last two topics

present evaluation methods and development tools.

2.1. Automatic speech recognition (ASR)

The typical ASR system adopts a statistical approach based on hidden Markov models

(HMMs) [22], and is composed by five main blocks: front end, phonetic dictionary, acoustic

model, language model and decoder, as indicated in Figure 1. The two main ASR applications

are command and control and dictation [18]. The former is relatively simpler, because the
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language model is composed by a grammar that restricts the acceptable sequences of words.

The latter typically supports a vocabulary of more than 60 thousand words and demands

more computation.

Figure 1. The main constituent blocks of a typical ASR system.

The conventional front end extracts segments (or frames) from the speech signal and converts,

at a constant frame rate (typically, 100 Hz), each segment to a vector x of dimension L (typically,

L = 39). It is assumed here that T frames are organized into a L× T matrix X, which represents

a complete sentence. There are several alternatives to parameterize the speech waveforms. In

spite of the mel-frequency cepstral coefficients (MFCCs) analysis being relatively old [10], it

has been proven to be effective and is used pervasively as the input to the ASR back end [18].

The language model of a dictation system provides the probability p(T ) of observing a

sentence T = [w1, . . . , wP] of P words. Conceptually, the decoder aims at finding the sentence

T ∗ that maximizes a posterior probability as given by

T ∗ = arg max
T

p(T |X) = arg max
T

p(X|T )p(T )

p(X)
, (1)

where p(X|T ) is given by the acoustic model. Because p(X) does not depend on T , the

previous equation is equivalent to

T ∗ = arg max
T

p(X|T )p(T ). (2)

In practice, an empirical constant is used to weight the language model probability p(T )
before combining it with the acoustic model probability p(X|T ).

Due to the large number of possible sentences, Equation (2) cannot be calculated

independently for each candidate sentence. Therefore, ASR systems use data structures such

as lexical trees that are hierarchical, breaking sentences into words, and words into basic units

as phones or triphones [18].

A phonetic dictionary (also known as lexical model) provides the mapping from words to

basic units and vice-versa. For improved performance, continuous HMMs are adopted, where

the output distribution of each state is modeled by a mixture of Gaussians, as depicted in

Figure 2. The typical HMM topology is “left-right”, in which the only valid transitions are

staying at the same state and moving to the next.
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4 Speech Recognition

Figure 2. Pictorial representation of a left-right continuous HMM with three states si, i = 1, 2, 3 and a
mixture of three Gaussians per state.

To reduce the computational cost of searching for T ∗ (decoding), hypotheses are pruned, i.e.,

some sentences are discarded and Equation (2) is not calculated for them [11]. In summary,

after having all models trained, an ASR at the test stage uses the front end to convert the input

signal to parameters and the decoder to search for the best sentence T .

The acoustic and language models can be fixed during the test stage but adapting one or both

can lead to improved performance. For example, the topic can be estimated and a specific

language model used. This is crucial for applications with a technical vocabulary such as

X-ray reporting by physicians [2]. The adaptation of the acoustic model is also important [25].

The ASR systems that use speaker independent models are convenient but must be able to

recognize with a good accuracy any speaker. At the expense of requesting the user to read

aloud some sentences, speaker adaptation techniques can tune the HMM models to the target

speaker. The adaptation techniques can also be used to perform environmental compensation

by reducing the mismatch due to channel or additive noise effects.

In this work, an ASR engine is considered to be composed by the decoder and all the required

resources for its execution (language model, etc.). Similarly, a TTS engine consists of all

software modules and associated resources, which will be briefly discussed in the sequel.

2.2. Text-to-speech (TTS)

A typical TTS system is composed by two parts: the front end and the back end [9]. Figure 3

depicts a simple functional diagram of a TTS system.

Figure 3. Functional diagram of a TTS system showing the front and back ends, responsible by the text
analysis and speech synthesis, respectively.

The front end is language dependent and performs text analysis to output information

coded in a way that is convenient to the back end. For example, the front end performs
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text normalization, converting text containing symbols like numbers and abbreviations

into the equivalent written-out words. It also implements grapheme-to-phone conversion,

syllabification and syllable stress determination, which assign phonetic transcriptions to each

word and marks the text with prosodic information. Phonetic transcriptions and prosody

information together compose the (intermediate) symbolic linguistic representation that is

output by the front end.

The back end is typically language independent and includes the synthesizer, which is

the block that effectively generates sound. With respect to the technique adopted for the

back end, the main categories are the formant-based, concatenative and, more recently,

HMM-based [45]. Historically, TTS systems evolved from a knowledge-based paradigm to

a pragmatic data-driven approach.

2.3. Evaluation metrics

In most ASR applications the figure of merit of an ASR system is the word error rate (WER).

In this work, the WER is defined as

WER =
D + R

W
× 100%, (3)

where W is the number of words in the input sequence, R and D are the number of

replacement and deletion errors on the recognized word sequence, respectively, when

compared with the correct transcription.

Another metric for evaluating an ASR system is the real-time factor (xRT). The xRT is obtained

by dividing the time that the system spends to recognize a sentence by its time duration. A

lower xRT indicates a faster recognition.

The most common metric for evaluating a language model is the probability p(T) that the

model assigns to some test data T = {T1, T2, . . . , TS} composed of S sentences. Independence

among the sentences is assumed, which leads to p(T) = p(T1)p(T2) . . . p(TS). Two measures

are derived from this probability: perplexity and cross-entropy [18]. The cross-entropy Hp(T)
is defined as

Hp(T) = −
1

WT
log2 p(T), (4)

where WT is the number of words in T.

The perplexity (PP) is the inverse of the average conditional probability of a next word, and is

related to the cross-entropy Hp(T) by

PP = 2Hp(T). (5)

Lower cross-entropies and perplexities indicate less uncertainty in predicting the next word

and, for a given task (vocabulary size, etc.), typically indicate a better language model.

With respect to TTS, the quality of speech outputs can be measured via two factors:

intelligibility and pleasantness. Intelligibility can be divided into segmental intelligibility,

which indicates how accurately spoken sentences have been received by the user, and
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comprehension, which measures how well the spoken sentences are understood. Segmental

intelligibility can be measured in a similar way to WER by comparing transcriptions and

reference messages. Comprehension can be measured by using questions or tasks which

require listeners to understand the meaning of the messages.

Pleasantness of speech can be measured by collecting a large number of user opinions and

using, for example, the mean opinion score (MOS) protocol [27]. The MOS is generated by

averaging the results of a set of subjective tests where a number of listeners rate the heard

audio quality of sentences read aloud by TTS softwares. It should be noted that intelligibility

and pleasantness are related but not directly correlated. They also have a significant effect on

user’s acceptance: unpleasant speech output can lead to poor satisfaction with an otherwise

sophisticated system.

2.4. Engines and tools for writing speech-enabled applications

The starting point to deploy a speech-enabled application is to count with an engine

(ASR, TTS or both). There are commercial solutions from Microsoft [28], Nuance [29],

and other companies. Currently, not all languages are supported, especially the so-called

underrepresented ones. Therefore, a key aspect is to have available engines for the target

language.

With respect to free engines, the MBROLA project [13] offers a set of TTS engines for 34

languages, including BP. Julius [24] and Sphinx-4 [51] are examples of open source decoders

that can be used in association with the required resources to build ASR engines. For

embedded (e.g., smartphones) applications, Julius and PocketSphinx [19] are the most popular

engines. Research groups have made available engines for English, Japanese and other

languages based on open source decoders Silva et al. [40].

Having an engine available, an application programming interface (API) eases the task of

developing softwares for the final users, i.e., speech-enabled applications. The APIs specify a

cross-platform interface to support command and control recognizers, dictation systems and

speech synthesizers. As such, they contain not only the required TTS and ASR functionality

but also numerous methods and events that allow programmers to query the characteristics

of the underlying engine. An engine typically has its own API but there are at least two APIs

that were designed for general use: the speech API from Microsoft [33] and the Java Speech

API [21].

It should be noted the APIs for user interface accessibility, such as the Microsoft Active

Accessibility platform and the AT-SPI toolkit on Linux. These softwares are designed to

help developing assistive technology products, like screen readers and keyboards, interact

with standard and custom user interface elements of an application (or the operating system),

in order to provide better access for individuals who have physical or cognitive difficulties,

impairments, or disabilities.

2.5. Tools for developing engines

Besides the research interest, two reasons for investing on the development of an engine is the

lack of support to a given language and the need to minimize cost.
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There are some free and mature software tools for building speech recognition and synthesis
engines. HTK [55] is the most widespread toolkit used to build and adapt acoustic models, as
well as HTS [54] (modified version of HTK) for building speech synthesis system. Statistical
language models can be created with SRILM [44] or HTK.

Festival [4] offers a general multi-lingual (currently English and Spanish) framework for
building speech synthesis systems. Another open source framework for TTS is the MARY
platform [36]. Currently, MARY supports the German, English and Tibetan languages.

3. A collaborative framework for improved ASR and TTS

Having briefly discussed how the industry and academy are positioned to promote the
development and adoption of speech-enabled applications, this section focuses on a key
aspect for adopting this technology in education: using a collaborative network to increase
the availability of engines.

3.1. The challenge of developing speech-enabled educational softwares

As mentioned, minimizing the cost of the application deployment can be the main reason to
use a free engine or develop one. But, initially, this work has been motivated by circumventing
the lack of an ASR engine for BP. For instance, when this work originated, the only desktop
software for ASR dictation in BP was the IBM ViaVoice, which had been discontinued.
Therefore, the intention of creating software for educating physically-impaired people was
unfeasible unless engines were developed.

However, the task of designing a speech engine is not trivial and the existence of a
collaborative environment, as proposed in this work, can be a decisive aspect. The availability
of corpora (“databases”) is a conditioning factor for the development of engines, and while
there are many public resources for some languages (e.g., English and Japanese), the resources
for underrepresented languages are still limited. A typical corpus for training and testing
speech recognition and synthesis systems has speech files with their associated transcriptions,
large amount of written texts and a phonetic dictionary.

The phonetic dictionary is an essential building block that does the correspondence between
the orthography and the pronunciation(s). In practice, building a pronunciation dictionary
for ASR is very similar to developing a grapheme-to-phone (G2P) module for TTS systems.
In fact, a dictionary can be constructed by invoking a pre-existent G2P module. The task of
designing a G2P module is difficult to perform and several techniques have been adopted
over the last decade [6, 46].

As discussed, speech recognition and synthesis are data-driven technologies that require
a relatively large amount of labeled data in order to achieve acceptable accuracy rates.
The state-of-art HMM-based ASR and TTS methods also require a database, with multiple
speakers in the case of ASR. In response to these needs, the next section suggests using the
Internet as a collaborative network.

3.2. The proposed VOICECONET platform

The proposed collaborative framework aims at collecting desktop speech and text data at
negligible costs for any language, in order to provide larger training data for ASR and TTS
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systems. Softwares for training and test statistical models are also made available. In the end,
the whole community benefits with better ASR and TTS engines.

It is well-known that collaborative networks will be critically important to business

and organizations by helping to establish a culture of innovation and by delivering

operational excellence. Collaborative networks have been achieved on the base of academic

partnership, including several universities and some companies specialized in developing

and implementing software in the university domain [31]. The collaborative networks offer

the possibility to reduce the duration and the costs of development and implementation of

hard to automate, vast and expensive systems [1], such as developing a ASR or TTS engine.

There are already successful multi-language audio collaborative networks like the Microsoft’s

YourSpeech project and the Voxforge free speech corpus and acoustic model repository. The

YourSpeech platform [5] is based on crowd sourcing approaches that aims at collecting

speech data and provides means that allow users to donate their speech: a quiz game and a

personalized TTS system. The VoxForge project [50] was set up to collect transcribed speech to

create a free speech corpus for use with open source speech recognition engines. The speech

audio files are compiled into acoustic models for use with open source speech recognition

engines. This work complements these previous initiatives by focusing on documenting and

releasing softwares and procedures for developing engines.

The proposed VOICECONET platform is comprehensive and based on the open source

concept. It aims at easing the task of developing ASR and TTS engines to any language,

including the underrepresented. In summary, the framework has the following features:

• Rely on a Web-based platform that was organized for collecting resources and improving

the engines accuracy. Through this platform anyone can contribute with waveform files

and the system rewards them with a speaker dependent acoustic model. The users can

also create a custom language model depends on the tasks where the model is going to be

used.

• The adopted softwares for building and evaluating engines (HTK, Julius, MARY, etc.) are

freely available. A considerable amount of time is spent to learn how to use them, and the

network shares scripts to facilitate.

• The shared reports and academic papers use the concept of reproducible research [48], and

the results can be replicated in different sites.

In order to collect desktop labeled data, the system architecture is based on the client/server

paradigm (see Figure 4). The client accesses the platform through a website [49] and is

identified by an user ID. Once there, the user is invited to record random sentences, taken

from a phonetically rich set [8], in order to guarantee complete phoneme coverage. The Java

Applet used for recording control was based on the VoxForge related application. This control

enables the system to access the user’s computer and record audio using any of the installed

devices. If the user selects the submit option, the recordings automatically stop and the wave

files are streamed to the server. The user can submit the recorded sentences anytime.

When enough sentences are recorded, at least 3 minutes of audio, the user may choose to

generate his/her speaker dependent acoustic model. At that moment, in the server, a script
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is used to process the audio and build an adapted acoustic model using the HTK tools. Then,

the user may choose to download a file containing his/her speaker dependent acoustic model.

Note that the quality of the model is increased by the number of recorded sentences.

Another feature allows context-dependent language model to be created. To create the

language model it is necessary to input a small caps without punctuation text corpus in a

simplified standard generalized markup language format. In this format, there can be only

one sentence per line and each sentence is delimited by the tags < s > and < /s >. In the

sequel, a script is used to process the text and build a trigram ARPA format language model

using the SRILM tools. To improve the model it is recommended that the user previously

converts the input texts so that every number, date, money amount, time, ordinal number,

websites and some abbreviations should be written in full.

Figure 4. High level system architecture diagram.

At the time of writing of this chapter, VOICECONET is online for 1 month for the BP language.

We have been receiving extremely positive feedback from the users. It was collected more than

60 minutes of audio from 15 speakers, and 5 language models were made available, adding

up 10 thousand sentences. Figure 5 shows the VOICECONET platform website.

It is pedagogical to use an underrepresented language to illustrate how the global community

can build and keep improving resources to all languages. Using the VOICECONET platform,

the following speech-related resources for BP are currently shared: two multiple speakers

audio corpora corresponding together to approximately 17 hours of audio, a phonetic

dictionary with over 65 thousand words, a speaker independent HTK format acoustic model,

and a trigram ARPA format language model. All these BP resources are publicly available [15]

and the next section describes how they were developed.

4. Development of ASR and TTS engines: A case study

Taking again BP as an example, the most widely used corpus seems to be the Spoltech,

distributed by the Linguistic Data Consortium (LDC). The LDC catalog also released the West

Point Brazilian Portuguese Speech, a read speech database of microphone digital recordings

from native and non-native speakers. These two corpora are not enough for fully developing
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Figure 5. The VOICECONET platform website.

a state of art LVCSR systems, since they have together approximately dozen hours. For

example, only the Switchboard telephone conservations corpus for English has 240 hours of

recorded speech [17]. There were initiatives [35, 53] in the academy for developing corpora,

but they have not established a sustainable collaboration among researchers.

Regarding end-users applications, there are important freely available systems. For instance,

in Brazil, Dosvox and Motrix [47] are very popular among blind and physically-impaired

people, respectively. Dosvox includes its own speech synthesizer, besides offering the

possibility of using other engines. Dosvox does not provide ASR support. The current version

of Motrix supports ASR only in English, which makes use of a ASR engine distributed for free

by Microsoft.

There are advantages on adopting a proprietary software development model, but this work

advocates the open source model. The next sections describe the resources developed in order

to design speech engines for BP.

4.1. UFPAdic: A phonetic dictionary for BP

The phonetic dictionary used in this work was automatically generated using a phonetic

transcription with stress determination algorithm for BP language described in Silva et al.

[39]. The improvements proposed in Siravenha et al. [42] were also considered.
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The proposed software (G2P converter) is based on phonological pre-established criteria

and its architecture does not rely on intermediate stages, i.e., other algorithms such as

syllabic division or plural identification. There is a set of rules not focus in any BP

dialect for each grapheme and a specific order of application is assumed. First, the more

specific rules are considered until a general case rule is reached, which ends the process.

Therefore the developed G2P converter deals only with single words and does not implement

co-articulation analysis between words.

The rules are specified in a set of regular expressions using the C# programming language.

Regular expressions are also allowed in the definition of non-terminals symbols (e.g.

#abacaxi#). The rules of the G2P converter are organized in three phases. Each phase has

the following function:

• a simple procedure that inserts the non-terminal symbol # before and after each word.

• the stress phase that mark the stressed vowel of the word.

• the bulk of the system that convert the graphemes (including the stressed vowel brand) to

38 phones represented using the SAMPA phonetic alphabet [32].

Using the described G2P converter, a phonetic dictionary was created. It has 65,532 words

and is called UFPAdic. These words were selected by choosing the most frequent ones in the

CETENFolha corpus [7], which is a corpus based on the texts of the newspaper Folha de S.

Paulo and compiled by NILC/São Carlos, Brazil. The G2P converter (executable file) and the

UFPAdic are publicly available [15].

4.2. Syllabification

The developed G2P converter does not perform syllabification nor stress syllable

identification. So these two tasks were implemented in a Java software publicly available

at Fal [15]. The algorithm used for syllabification is described in Silva et al. [38]. The main

idea of this algorithm is that all syllables have a vowel as a nucleus, and it can be surrounded

by consonants or other (semi-vowels). Hence, one should locate the vowels that composes the

syllable nuclei and isolate consonants and semivowels.

The original syllabification rules [38], as previously mentioned, consider the kind and the

arrangement of graphemes to separate the syllables of a given word. However, there are some

words whose syllabification is very difficult to perform correctly with only these two criteria,

especially when such words have diphthongs, because they will require a number of very

specific and well elaborated rules, in which each one will deal with just a few examples.

To overcome this difficulty, new linguistic rules, shown in Table 2, were proposed, each one

not just considering the graphemes themselves, but also their stress. The first group deals

with the falling diphthongs (the “vowel + glide” combination), while the second one deals

with diphthongs that varies with hiatus (the “glide + vowel” combination). Due to the fact

that diphthongs need this special treatment in their syllabification, it was defined that these

rules must be evaluated before the 20 original ones.
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The main motivation for analyzing the previously mentioned diphthongs comes from the

perception of existing divergences between the scholars on such subject (like the position of

a glide, inside a syllable, in the falling diphthongs, that was explained in Bisol [3]). Another

point that ratifies the focus adopted in this analysis is the fact that vocalic segments, especially

the ones with rising sonority, have presented many errors in the separations performed by the

syllabification algorithm (in a previous analysis).

Sequence for the algorithm Action Example

...(a,e,o)(i(V_ton),u(V_ton))... must be separated sa-í-da, gra-ú-do

...(a,e,o)(i,u)... stay in the same syllable cãi-bra, mai-se-na

...(i,u)(a(V_ton),e(V_ton),o(V_ton))<Pont>... must be separated ta-man-du-á

...(i(V_ton),u(V_ton))(a,e,o)<Pont>... must be separated de-mo-cra-ci-a

...(i,u)(a,e,o)<Pont>... stay in the same syllable só-cio, cí-lio

...(i,u)(a,e,o)... must be separated bi-o-ma

Table 2. New syllabification rules.

In addition to that, the original rule 19 was updated to fix some errors that occurred when it

was previously proposed. If the analyzed vowel is not the first grapheme in the next syllable

to be formed and is followed by another vowel that precedes a consonant, then the analyzed

vowel must be separated from the following graphemes. This new version of the rule 19 fixes

some errors that were occurring in the syllabification of words like “teólogo”, for example (the

correct is “te-ó-logo”, instead of “teó-lo-go”, as shown in Silva et al. [38]).

Identifying the stress syllable proved to be an easier task that benefited from the fact that the

developed G2P converter, in spite of not separating in syllable, was already able to identify

the stressed vowel. After getting the result of the syllabification, it was then trivial to identify

the syllable corresponding to the stress vowel.

4.3. LapsStory

The LapsStory corpus is based on spoken books or audiobooks. Having the audio files and

their respective transcriptions (the books themselves), a considerable reduction in human

resources can be achieved.

The original audio files were manually segmented to create smaller files, that were re-sampled

from 44,100 Hz to 22,050 Hz with 16 bits. Currently, the LapsStory corpus consists of

8 speakers, which corresponds to 16 hours and 17 minutes of audio. Unfortunately, the

LapsStory corpus cannot be completely released in order to protect the copyright of some

audiobooks. Therefore, only part of the LapsStory corpus is publicly available, which

corresponds to 9 hours of audio [15].

It should be noted that the acoustic environment of audiobooks is very controlled, so the

audio files have no audible noise and high signal to noise ratio. Thus, when such files are

used to train a system that will operate in a noisy environment, there is a problem with the

acoustic mismatch. This difficulty was circumvented by the technique proposed in Silva et al.
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[41], which showed that speaker adaptation techniques can be used to combat such acoustic

mismatch.

4.4. LapsBenchmark

Another developed corpus is the LapsBenchmark, which aims to be a benchmark reference

for testing BP systems. The LapsBenchmark’s recordings were performed on computers using

common (cheap) desktop microphones and the acoustic environment was not controlled.

Currently, the LapsBenchmark corpus has data from 35 speakers with 20 sentences each,

which corresponds to 54 minutes of audio. It was used the phrases described in Cirigliano

et al. [8]. The used sampling rate was 22,050 Hz and each sample was represented with 16

bits. The LapsBenchmark speech database is publicly available [15].

4.5. Resources required for TTS

In order to create a complete TTS system for BP, some specific resources had to be developed

and procedures were executed, following the tutorials in Schröder & Trouvain [36]. The

motivation for using the open-source MARY platform in this work was that it is completely

written in Java and supports both concatenative and HMM-based synthesis.

Using the nomenclature adopted in the MARY framework, the task of supporting a new

language can be split into the creation of a text processing module and the voice. The former

enables the software to process BP text and, for example, perform the G2P conversion. The

creation of a voice in this case corresponds to training HMMs using the HTS toolkit.

MARY requires a set of files for each language that it supports. This work adopted the

recipe suggested by MARY for training finite state transducers (FST) [23]. The FST training

procedure requires the definition of a phonetic alphabet and a list with the most frequent

words in the target language. These two built files, specific for BP, are briefly described below:

• allophones.pt_BR.xml: is the phonetic alphabet, which must describe the distinctive

features of each phone such as voiced/unvoiced, vowel/consonant, and others. A

preliminary version of this file was developed by the authors using the SAMPA phonetic

alphabet [32].

• pt_BR.dic: is a list that contains all the planned words with their corresponding phonetic

transcriptions based on the phonetic alphabet previously described. These transcriptions

are required to be separated into syllables and the stress syllable indicated.

After having a valid BP front end, the HTS toolkit was used to create an HMM-based back end.

In order to facilitate the procedure, MARY provides the VoiceImport tool, illustrated in Figure 6,

which is an automatic HMM training routine. For HMM training, one needs a labeled corpus

with transcribed speech. It was used the speech data available with the BP demo for HTS [26],

which has a total of 221 files, corresponding to approximately 20 minutes of audio. The word

level transcriptions were not found at the HTS site and, for convenience to other users, were

made available in electronic format at Fal [15].
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Figure 6. The GUI of the VoiceImport tool.

After this stage, the TTS system for BP is already supported by the MARY platform. All the

developed resources and adopted procedures are publicly available [15].

5. Experimental results

This section presents the baseline results obtained with all the developed ASR and TTS

resources for BP. The scripts and developed models were made publicly available [15]. All

the experiments were executed on a computer with Core 2 Duo Intel processor (E6420 2.13

GHz) and 1 GB of RAM.

The target for the first tests presented was to understand, in practice, how the main

components of a LVCSR system behave: the phonetic dictionary, acoustic model, language

model and the decoder. The existing correlation between these components and the

performance presented by the system are analyzed in respect of the xRT factor, as well as

the WER. Finally, the quality of speech produced by the developed TTS system was compared

with other synthesizers, including a commercial software.

5.1. Evaluation of the proposed syllabification rules

This experiment used 170 words in total that, aiming to delimitate the encountered problems,

were divided in four contexts: falling diphthongs, rising diphthongs, diphthongs that varies

with hiatus and false diphthongs. For each word, three syllabifications were analyzed and

extracted from the following sources: a Portuguese web dictionary [12], the old version of the

syllabification algorithm (without the new rules) and the new version of the same algorithm,

with the new rules implemented.

Table 3 shows the results of the syllabification tests for each source. The divergences between

the syllabifications performed by the sources and the standards for syllable separation in BP,
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described in Bisol [3], were considered as errors encountered during the syllabification process

of these sources.

Sources Words Errors Error rates

Portuguese web dictionary 170 1 0.58%
Syllabification algorithm (old) 170 29 11.17%
Syllabification algorithm (new) 170 2 1.17%

Table 3. Error percentage analysis of the syllabification sources.

The new version of the syllabification algorithm achieved a very low amount of errors,

compared to its previous version. The mentioned errors were detected in two words in the

context of the falling diphthongs: “eufonia” and “ousadia”. The syllable divisions “eu-fo-nia”

and “ou-sa-dia” are incorrect because each one presents two vowels that should be separated

to compose nuclei for two different syllables. The accepted syllabifications are: “eu-fo-ni-a”

and “ou-sa-di-a”.

5.2. Evaluation of the language model

This experiment evaluates the language model perplexity against the number of sentences

used to train it (Figure 7). The SRILM tookit was used to build the trigram ARPA format

language models. The number of sentences used to train the language models ranged between

255,830 and 1,534,980 extracted from CETENFolha and LapsStory corpora. The vocabulary

was kept constant with the 65,532 distinct words present in UFPAdic.

The phrases used to measure the perplexity were separated into three test sets of ten thousand

sentences each one, unseen during the training phase. The first test set was designed

solely with sentences extracted from the CETENFolha corpus, the second set with sentences

collected by crawling newspapers available on the Internet and the last one encompasses the

phrases present in the previous sets. Note that, in terms of sentences, the CETENFolha and

crawling corpus can be considered disjoint.

As expected, the perplexity tends to diminish as the number of sentences used in the training

increases. This is related to the fact that the statistics of the trained models get improved

as more occurrences of triples of words are registered in the database of written texts. It is

important to observe, in Figure 7, the difference of perplexities measured for the data test

sets. The perplexity was higher when the sentences used to evaluate the language model

were collected from a different text corpus that was used to train it. It can be verified with

the presented CETENFolha and crawling curves, since the crawling corpus was not used for

training the models. With one thousand sentences this difference is 37%.

5.3. Evaluation of the acoustic model

The HTK software was used to build the acoustic models, according to the steps described

in Young et al. [55]. Estimating a good acoustic model is considered the most challenging part

of the design of an ASR system. For training an acoustic model, it is required a corpus with
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Figure 7. Perplexity against the number of sentences used to train the language model.

digitized voice, transcribed at the level of words (orthography) and/or at the level of phones.

Below is a list with details about the configuration used:

• Window length: 25ms.

• Time to capture speech segments: at each 10ms (also knows as shift).

• Computed coefficients for each segment: Mel Cepstral.

• Total of coefficients: energy + 12 Mel Cepstral coefficients + first and second derivatives.

On total, the computed vector for each segment has 39 coefficients.

• Acoustic modeling: continuous HMMs with 3 states left-right.

• Acoustic units (HMMs): cross-word triphone models that were built from 38 monophones

and a silence model and tied with a decision tree.

• Decoder: Viterbi beam search.

The speaker independent acoustic model was initially trained using the LapsStory and West

Point corpora, which corresponds to 21.65 hours of audio, and the UFPAdic. After that, the

HTK software was used to adapt the acoustic model, using the maximum likelihood linear

regression (MLLR) and maximum a posteriori (MAP) techniques with the Spoltech corpus,

which corresponds to 4.3 hours of audio. This adaptation process was used to combat acoustic

mismatches and is described in Silva et al. [41]. Both MAP and MLLR were used in the

supervised training (offline) mode.

For decoding, the experiments performed in this work adopts the Julius rev.4.1.5 [? ] and

HDecode (part of HTK) [55] softwares. It was used the trigram language model trained before

with 1,534,980 sentences and 14 Gaussians modeled the output distributions of the HMMs.

The LapsBenchmark corpus was used to evaluate the models.

Several tests were conducted in order to evaluate the best decoding parameters for both

HDecode and Julius. It was observed that the increasing on the xRT factor and recognition
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accuracy can be linked to a more effective pruning of the decoder at the acoustic level. The

pruning process is implemented at each time step by keeping a record of the best hypotheses

overall and de-activating all hypotheses whose log probabilities fall more than a beam width

below the best. Setting the beam width is thus a compromise between speed and avoiding

search errors, as showed in Figure 8.
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Figure 8. WER against xRT factor using the Julius and HDecode recognizers.

The tests were performed varying the beam width value from 100 to 400 and 15,000 for

HDecode and Julius, respectively. It was because the WER stopped to evolve, while the xRT

factor increased significantly. It was perceived that Julius can implement more aggressive

pruning methods than HDecode, without significantly increasing the xRT factor. On the other

hand, Julius could not achieve the same WER obtained with HDecode.

Thus the best decoding parameters for both HDecode and Julius are described in Table 4 and

Table 5, respectively. For convenience, the xRT factor value was kept around one.

Parameter Value

Pruning beam width 220
Language model scale factor 20
Word insertion penalty 22
Word end beam width 100
Number of tokens per state 8
Acoustic scale factor 1.5

Table 4. Parameters used for testing with HDecode.

5.4. Using different number of Gaussians within the acoustic model

In this test, it was considered the same acoustic and language configurations as before.

However, the number of Gaussians used in the state output distributions is varied, from a

single Gaussian up to 20 Gaussians, as showed in Figure 9. The LapsBenchmark corpus was

used to evaluate the models.
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Parameter Value

Pruning beam width for the first pass 2,000

Pruning beam width for the second pass 200

Language model weight for the first and second passes 15

Word insertion penalties for the first and second passes 10

Score envelope width 300

Table 5. Parameters used for testing with Julius.
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Figure 9. WER against the number of Gaussians used for training the acoustic model.

It was perceived that the computational costs added for increasing the number of Gaussians is

compensated by an improvement in the decoder performance. The WER with 14-component

Gaussian mixtures is 18.24% and 27.33% for HDecode and Julius, respectively. As the WER

increased above 14 Gaussians, the next experiment will consider this number as a default.

5.5. Speaker dependent speech recognition

Preliminary decoding tests with the independent acoustic model adopted before were made

using part of the LapsBenchmark corpus, which corresponds to 1.55 minutes of audio

recorded with a selected male speaker voice. The results are showed in Figure 10.

In the sequel, a speaker dependent evaluation was performed. The same speaker acessed

the VOICECONET platform and contributed with 10.8 minutes of his voice. Thus, the

collected audio was used to adapt the independent acoustic model, using the MLLR and MAP

adaptation techniques, according to the steps described in Young et al. [55]. The results are

presented in Figure 11.

As expected, the speaker adaptation process increased the performance of all decoders. The

goal of this experiment was to show that is possible to use the Internet as a collaborative

network for improving the engines accuracy.
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Figure 10. WER and xRT factor observed on tests of speaker independent recognition.
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Figure 11. WER and xRT factor observed on tests of speaker dependent recognition.

5.6. Evaluation of the TTS system

This experiment evaluates the TTS system developed in this work. Experiments were also

made with two other BP TTS systems: Liane and Raquel. Liane is a MBROLA synthesizer [13]

and Raquel is a state-of-art commercial software of Nuance [29]. Both are concatenative

diphone synthesizers and were used only for comparison purposes.

The evaluation process was carried out in two stages: segmental intelligibility and

pleasantness. The pleasantness of speech was analyzed in respect of the MOS protocol and

the WER was used to mensure the intelligibility. Twenty sentences (about 5 seconds each one)

collected from the Internet were used to perform the tests. Thus, the sixty audio files were
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randomly played and the listener had to give a note for pleasantness and repeat what he/she

heard. On total, ten people were interviewed, and none of which has formal education in

speech area. The results are showed in Figure 12 and 13.

Figure 12. WER observed for each TTS software.

Figure 13. The average pleasantness for each TTS software.

In pleasantness evaluation, the developed TTS system and Liane were considered slightly

annoying, while Raquel was evaluated as a good synthesizer. It was observed that even the

most developed systems still are less natural than the human voice. In objective test, the TTS

system (with WER around 10%) outperforms Liane. Raquel achieved again the best result.

6. Conclusions

This chapter advocates the potential of using speech-enabled applications as a tool for

increasing social inclusion and education. This is specially true for users with special needs. In

order to have such applications for underrepresented languages, there is still a lot of work to

be done. As discussed, one of the main problems is the lack of data for training and testing the

systems, which are typically data-driven. So, in order to minimize cost, this work presents the

VOICECONET, a collaborative framework for building applications using speech recognition

and synthesis technologies. Free tools and resources are made publicly available [15], which

include a complete TTS and ASR systems for BP.
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Future work includes expanding both the audio and text databases, aiming at reaching the

performance obtained by ASR for English and Japanese, for example. The phonetic dictionary

refinement is another important issue to be addressed, considering the existing dialectal

variation in Brazil. In parallel, improving the free TTS for BP and develop prototypes for

groups of people that are not usually the main target of the assisting technology industry and

that require special attention. And finally, one important goal is to help groups that use the

network for developing resources for languages other than BP.
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