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1. Introduction

Assume (Ω,F , (F (t), t ≥ 0), P) is a given filtered probability space and W = (W(t), t ≥ 0),
V = (V(t), t ≥ 0) are real-valued standard Wiener processes on (Ω,F , (F (t), t ≥ 0), P),
adapted to (F (t)) and mutually independent. Further assume that X0 = (X0(t), t ∈
[−1, 0]) and Y0 are a real-valued cadlag process and a real-valued random variable on
(Ω,F , (F (t), t ≥ 0), P) respectively with

E
∫ 0

−1
X2

0(s)ds < ∞ and EY2
0 < ∞.

Assume Y0 and X0(s) are F0−measurable, s ∈ [−1, 0] and the quantities W, V, X0 and Y0 are
mutually independent.

Consider a two–dimensional random process (X, Y) = (X(t), Y(t), t ≥ 0) described by the
system of stochastic differential equations

dX(t) = aX(t)dt + bX(t − 1)dt + dW(t), (1)

dY(t) = X(t)dt + dV(t), t ≥ 0 (2)

with the initial conditions X(t) = X0(t), t ∈ [−1, 0], and Y(0) = Y0. The process X is supposed
to be hidden, i.e., unobservable, and the process Y is observed. Such models are used in
applied problems connected with control, filtering and prediction of stochastic processes (see,
for example, [1, 4, 17–20] among others).

The parameter ϑ = (a, b)′ ∈ Θ is assumed to be unknown and shall be estimated based
on continuous observation of Y, Θ is a subset of R2 ((a, b)′ denotes the transposed (a, b)).
Equations (1) and (2) together with the initial values X0(·) and Y0 respectively have uniquely
solutions X(·) and Y(·), for details see [19].

©2012 Küchler and Vasiliev, licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.
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Equation (1) is a very special case of stochastic differential equations with time delay, see [5, 6]
and [20] for example.

To estimate the true parameter ϑ with a prescribed least square accuracy ε we shall construct a
sequential plan (T∗(ε), ϑ∗(ε)) working for all ϑ ∈ Θ. Here T∗(ε) is the duration of observations
which is a special chosen stopping time and ϑ∗(ε) is an estimator of ϑ. The set Θ is defined
to be the intersection of the set Θ with an arbitrary but fixed ball B0,R ⊂ R2. Sequential
estimation problem has been solved for sets Θ of a different structure in [7]-[9], [11, 13, 14, 16]
by observations of the process (1) and in [10, 12, 15] – by noisy observations (2).

In this chapter the set Θ of parameters consists of all (a, b)′ from R2 which do not belong to
lines L1 or L2 defined in Section 2 below and having Lebesgue measure zero.

This sequential plan is a composition of several different plans which follow the regions to
which the unknown true parameter ϑ = (a, b)′ may belong to. Each individual plan is based
on a weighted correlation estimator, where the weight matrices are chosen in such a way that
this estimator has an appropriate asymptotic behaviour being typical for the corresponding
region to which ϑ belongs to. Due to the fact that this behaviour is very connected with
the asymptotic properties of the so-called fundamental solution x0(·) of the deterministic
delay differential equation corresponding to (1) (see Section 2 for details), we have to treat
different regions of Θ = R2 \ L, L = L1 ∪ L2, separately. If the true parameter ϑ belongs
to L, the weighted correlation estimator under consideration converges weakly only, and
thus the assertions of Theorem 3.1 below cannot be derived by means of such estimators. In
general, the exception of the set L does not disturb applications of the results below in adaptive
filtration, control theory and other applications because of its Lebesgue zero measure.

In the papers [10, 12] the problem described above was solved for the two special sets of
parameters ΘI (a straight line) and ΘI I (where X(·) satisfies (1) is stable or periodic (unstable))
respectively. The general sequential estimation problem for all ϑ = (a, b)′ from R2 except of
two lines was solved in [13, 14, 16] for the equation (1) based on the observations of X(·).

In this chapter the sequential estimation method developed in [10, 12] for the system (1), (2) is
extended to the case, considered by [13, 14, 16] for the equation (1) (as already mentioned, for
all ϑ from R2 except of two lines for the observations without noises).

A related result in such problem statement was published first for estimators of an another
structure and without proofs in [15].

A similar problem for partially observed stochastic dynamic systems without time-delay was
solved in [22, 23].

The organization of this chapter is as follows. Section 2 presents some preliminary facts
needed for the further studies about we have spoken. In Section 3 we shall present the main
result, mentioned above. In Section 4 all proofs are given. Section 5 includes conclusions.

2. Preliminaries

To construct sequential plans for estimation of the parameter ϑ we need some preparation. At
first we shall summarize some known facts about the equation (1). For details the reader is
referred to [3]. Together with the mentioned initial condition the equation (1) has a uniquely
determined solution X which can be represented for t ≥ 0 as follows:

24 Stochastic Modeling and Control
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X(t) = x0(t)X0(t) + b
∫ 0

−1
x0(t − s − 1)X0(s)ds +

∫ t

0
x0(t − s)dW(s). (3)

Here x0 = (x0(t), t ≥ −1) denotes the fundamental solution of the deterministic equation

x0(t) = 1 +

t
∫

0

(ax0(s) + bx0(s − 1))ds, t ≥ 0, (4)

corresponding to (1) with x0(t) = 0, t ∈ [−1, 0), x0(0) = 1.

The solution X has the property E
∫ T

0 X2(s)ds < ∞ for every T > 0.

From (3) it is clear, that the limit behaviour for t → ∞ of X very depends on the limit behaviour
of x0(·). The asymptotic properties of x0(·) can be studied by the Laplace-transform of x0,
which equals (λ − a − be−λ)−1, λ any complex number.

Let s = u(r) (r < 1) and s = w(r) (r ∈ R1) be the functions given by the following parametric
representation (r(ξ), s(ξ)) in R2 :

r(ξ) = ξ cot ξ, s(ξ) = −ξ/ sin ξ

with ξ ∈ (0, π) and ξ ∈ (π, 2π) respectively.

Now we define the parameter set Θ to be the plane R2 without the lines L1 = (a, u(a))a≤1

and L2 = (a, w(a))a∈R1 such that R2 = Θ ∪ L1 ∪ L2.

It seems not to be possible to construct a general simple sequential procedure which has the
desired properties under Pϑ for all ϑ ∈ Θ. Therefore we are going to divide the set Θ into some
appropriate smaller regions where it is possible to do. This decomposition is very connected
with the structure of the set Λ of all (real or complex) roots of the so-called characteristic
equation of (4):

λ − a − be−λ = 0.

Put v0 = v0(ϑ) = max{Reλ|λ ∈ Λ}, v1 = v1(ϑ) = max{Reλ|λ ∈ Λ, Reλ < v0}. Beside of
the case b = 0 it holds −∞ < v1 < v0 < ∞. By m(λ) we denote the multiplicity of the solution
λ ∈ Λ. Note that m(λ) = 1 for all λ ∈ Λ beside of (a, b) ∈ R2 with b = −ea. In this cases we
have λ = a − 1 ∈ Λ and m(a − 1) = 2. The values v0(ϑ) and v1(ϑ) determine the asymptotic
behaviour of x0(t) as t → ∞ (see [3] for details).

Now we are able to divide Θ into some appropriate for our purposes regions. Note, that
this decomposition is very related to the classification used in [3]. There the plane R2 was
decomposed into eleven subsets. Here we use another notation.

Definition (Θ). The set Θ of parameters is decomposed as

Θ = Θ1 ∪ Θ2 ∪ Θ3 ∪ Θ4,

where Θ1 = Θ11 ∪ Θ12 ∪ Θ13, Θ2 = Θ21 ∪ Θ22, Θ3 = Θ31, Θ4 = Θ41 ∪ Θ42 with

Θ11 = {ϑ ∈ R2| v0(ϑ) < 0},

Θ12 = {ϑ ∈ R2| v0(ϑ) > 0 and v0(ϑ) 
∈ Λ},

25On Guaranteed Parameter Estimation of Stochastic Delay Diff erential Equations by Noisy Observations



4 Will-be-set-by-IN-TECH

Θ13 = {ϑ ∈ R2| v0(ϑ) > 0; v0(ϑ) ∈ Λ, m(v0) = 2},

Θ21 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1, v1(ϑ) > 0 and v1(ϑ) ∈ Λ},

Θ22 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1, v1(ϑ) > 0 and v1(ϑ) 
∈ Λ},

Θ31 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1 and v1(ϑ) < 0},

Θ41 = {ϑ ∈ R2| v0(ϑ) = 0, v0(ϑ) ∈ Λ, m(v0) = 1},

Θ42 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1, v1(ϑ) = 0 and v1(ϑ) ∈ Λ}.

It should be noted, that the cases (Q2 ∪ Q3) and (Q5) considered in [3] correspond to our
exceptional lines L1 and L2 respectively.

Here are some comments concerning the Θ subsets.

The unions Θ1, . . . , Θ4 are marked out, because the Fisher information matrix and related
design matrices which will be considered below, have similar asymptotic properties for all ϑ
throughout every Θi (i = 1, . . . , 4).

Obviously, all sets Θ11, . . . , Θ42 are pairwise disjoint, the closure of Θ equals to R2 and the
exceptional set L1 ∪ L2 has Lebesgue measure zero.

The set Θ11 is the set of parameters ϑ for which there exists a stationary solution of (1).

Note that the one-parametric set Θ4 is a part of the boundaries of the following regions: Θ11,
Θ12, Θ21, Θ3. In this case b = −a holds and (1) can be written as a differential equation with
only one parameter and being linear in the parameter.

We shall use a truncation of all the introduced sets. First chose an arbitrary but fixed positive
R. Define the set Θ = {ϑ ∈ Θ| ||ϑ|| ≤ R} and in a similar way the subsets Θ11, . . . , Θ42.

Sequential estimators of ϑ with a prescribed least square accuracy we have already
constructed in [10, 12]. But in these articles the set of possible parameters ϑ were restricted to
Θ11 ∪ Θ12 ∪ {Θ41 \ {(0, 0)}} ∪ Θ42.

To construct a sequential plan for estimating ϑ based on the observation of Y(·) we follow the
line of [10, 12]. We shall use a single equation for Y of the form:

dY(t) = ϑ′A(t)dt + ξ(t)dt + dV(t), (5)

where A(t) = (Y(t), Y(t − 1))′,

ξ(t) = X(0)− aY(0)− bY(0) + b
∫ 0

−1
X0(s)ds − aV(t)− bV(t − 1) + W(t).

The random variables A(t) and ξ(t) are F (t)-measurable for every fixed t ≥ 1 and a short
calculation shows that all conditions of type (7) in [12], consisting of

E
∫ T

1
(|Y(t)|+ |ξ(t)|)dt < ∞ for all T > 1,

E[Δ̃ξ(t)|F (t − 2)] = 0, E[(Δ̃ξ(t))2|F (t − 2)] ≤ 1 + R2

hold in our case. Here Δ̃ denotes the difference operator defined by Δ̃ f (t) = f (t)− f (t − 1).

26 Stochastic Modeling and Control
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Using this operator and (5) we obtain the following equation:

dΔ̃Y(t) = aΔ̃Y(t)dt + bΔ̃Y(t − 1)dt + Δ̃ξ(t)dt + dΔ̃V(t) (6)

with the initial condition Δ̃Y(1) = Y(1)− Y0.

Thus we have reduced the system (1), (2) to a single differential equation for the observed
process (Δ̃Y(t), t ≥ 2) depending on the unknown parameters a and b.

3. Construction of sequential estimation plans

In this section we shall construct the sequential estimation procedure for each of the cases
Θ1 . . . , Θ4 separately. Then we shall define, similar to [11, 13, 14, 16], the final sequential
estimation plan, which works in Θ as a sequential plan with the smallest duration of
observations.

We shall construct the sequential estimation procedure of the parameter ϑ on the basis of the
correlation method in the cases Θ1, Θ4 (similar to [12, 14, 15]) and on the basis of correlation
estimators with weights in the cases Θ2 ∪ Θ3. The last cases and Θ13 are new. It should be
noted, that the sequential plan, constructed e.g. in [2] does not work for Θ3 here, even in the
case if we observe (X(·)) instead of (Y(·)).

3.1. Sequential estimation procedure for ϑ ∈ Θ1

Consider the problem of estimating ϑ ∈ Θ1. We will use some modification of the estimation
procedure from [12], constructed for the Case II thereon. It can be easily shown, that
Proposition 3.1 below can be proved for the cases Θ11 ∪ Θ12 similarly to [12]. Presented below
modified procedure is oriented, similar to [16] on all parameter sets Θ11, Θ12, Θ13. Thus we
will prove Proposition 3.1 in detail for the case Θ13 only. The proofs for cases Θ11 ∪ Θ12 are
very similar.

For the construction of the estimation procedure we assume h10 is a real number in (0, 1/5)
and h1 is a random variable with values in [h10, 1/5] only, F (0)-measurable and having a
known continuous distribution function.

Assume (cn)n≥1 is a given unboundedly increasing sequence of positive numbers satisfying
the following condition:

∑
n≥1

1

cn
< ∞. (7)

This construction follows principally the line of [14, 16] (see [12] as well), for which the reader
is referred for details.

We introduce for every ε > 0 and every s ≥ 0 several quantities:
– the functions

Ψs(t) =

{

(Δ̃Y(t), Δ̃Y(t − s))′ for t ≥ 1 + s,
(0, 0)′ for t < 1 + s;

– the sequence of stopping times

τ1(n, ε) = h1 inf{k ≥ 1 :
∫ kh1

0
||Ψh1

(t − 2 − 5h1)||
2dt ≥ ε−1cn} for n ≥ 1;

27On Guaranteed Parameter Estimation of Stochastic Delay Diff erential Equations by Noisy Observations
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– the matrices

G1(T, s) =
∫ T

0
Ψs(t − 2 − 5s)Ψ′

1(t)dt, Φ1(T, s) =
∫ T

0
Ψs(t − 2 − 5s)dΔ̃Y(t),

G1(n, k, ε) = G1(τ1(n, ε)− kh1, h1), Φ1(n, k, ε) = Φ1(τ1(n, ε)− kh1, h1);

– the times
k1(n) = arg min

k=1,5
||G−1

1 (n, k, ε)||, n ≥ 1;

– the estimators

ϑ1(n, ε) = G−1
1 (n, ε)Φ1(n, ε), n ≥ 1, G1(n, ε) = G1(n, k1(n), ε), Φ1(n, ε) = Φ1(n, k1(n), ε);

– the stopping time

σ1(ε) = inf{N ≥ 1 : S1(N) > (ρ1δ−1
1 )1/2}, (8)

where S1(N) =
N
∑

n=1
β2

1(n, ε),

β1(n, ε) = ||G̃−1
1 (n, ε)||, G̃1(n, ε) = (ε−1cn)

−1G1(n, k1(n), ε)

and δ1 ∈ (0, 1) is some fixed chosen number,

ρ1 = 15(3 + R2) ∑
n≥1

1

cn
.

The deviation of the ’first-step estimators’ ϑ1(n, ε) has the form:

ϑ1(n, ε)− ϑ = (ε−1cn)
−1/2G̃−1

1 (n, ε)ζ̃1(n, ε), n ≥ 1, (9)

ζ̃1(n, ε) = (ε−1cn)
−1/2

τ1(n,ε)−k1(n)h1
∫

0

Ψh1
(t − 2 − 5h1)(Δ̃ξ(t)dt + dV(t)− dV(t − 1)).

By the definition of stopping times τ1(n, ε)− k1(n)h1 we can control the noise ζ̃1(n, ε) :

Eϑ||ζ̃1(n, ε)||2 ≤ 15(3 + R2), n ≥ 1, ε > 0

and by the definition of the stopping time σ1(ε) - the first factor G̃−1
1 (n, ε) in the representation

of the deviation (9).

Define the sequential estimation plan of ϑ by

T1(ε) = τ1(σ1(ε), ε), ϑ1(ε) =
1

S(σ1(ε))

σ1(ε)

∑
n=1

β2
1(n, ε)ϑ1(n, ε). (10)

We can see that the construction of the sequential estimator ϑ1(ε) is based on the family of

estimators ϑ(T, s) = G−1
1 (T, s)Φ(T, s), s ≥ 0. We have taken the discretization step h1 as

above, because for ϑ ∈ Θ12 the functions

f (T, s) = e2v0T G−1
1 (T, s)

28 Stochastic Modeling and Control
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for every s ≥ 0 have some periodic matrix functions as a limit on T almost surely. These
limit matrix functions are finite and may be infinite on the norm only for four values of their
argument T on every interval of periodicity of the length Δ > 1 (see the proof of Theorem 3.2
in [10, 12]).

In the sequel limits of the type lim
n→∞

a(n, ε) or lim
ε→0

a(n, ε) will be used. To avoid repetitions

of similar expressions we shall use, similar to [12, 14, 16], the unifying notation lim
n∨ε

a(n, ε) for

both of those limits if their meaning is obvious.

We state the results concerning the estimation of the parameter ϑ ∈ Θ1 in the following
proposition.

Proposition 3.1. Assume that the condition (7) on the sequence (cn) holds and let the parameter
ϑ = (a, b)′ in (1) be such that ϑ ∈ Θ1.

Then:

I. For any ε > 0 and every ϑ ∈ Θ1 the sequential plan (T1(ε), ϑ1(ε)) defined by (10) is closed
(T1(ε) < ∞ Pϑ − a.s.) and possesses the following properties:

1◦. sup
ϑ∈Θ1

Eϑ||ϑ1(ε)− ϑ||2 ≤ δ1ε;

2◦. the inequalities below are valid:

– for ϑ ∈ Θ11

0 < lim
ε→0

ε · T1(ε) ≤ lim
ε→0

ε · T1(ε) < ∞ Pϑ − a.s.,

– for ϑ ∈ Θ12

0 < lim
ε→0

[T1(ε)−
1

2v0
ln ε−1] ≤ lim

ε→0
[T1(ε)−

1

2v0
ln ε−1] < ∞ Pϑ − a.s.,

– for ϑ ∈ Θ13

0 < lim
ε→0

[T1(ε) +
1

v0
ln T1(ε)− Ψ′

13(ε)], lim
ε→0

[T1(ε) +
1

v0
ln T1(ε)− Ψ′′

13(ε)] < ∞ Pϑ − a.s.,

the functions Ψ′
13(ε) and Ψ′′

13(ε) are defined in (30).

II. For every ϑ ∈ Θ1 the estimator ϑ1(n, ε) is strongly consistent:

lim
n∨ε

ϑ1(n, ε) = ϑ Pϑ − a.s.

3.2. Sequential estimation procedure for ϑ ∈ Θ2

Assume (cn)n≥1 is an unboundedly increasing sequence of positive numbers satisfying the
condition (7).

We introduce for every ε > 0 several quantities:

– the parameter λ = ev0 and its estimator

29On Guaranteed Parameter Estimation of Stochastic Delay Diff erential Equations by Noisy Observations
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λt =

t
∫

2

Δ̃Y(s)Δ̃Y(s − 1)ds

t
∫

2

(Δ̃Y(s − 1))2ds

, t > 2, λt = 0 otherwise; (11)

– the functions

Z(t) =

{

Δ̃Y(t)− λΔ̃Y(t − 1) for t ≥ 2,
0 for t < 2;

Z̃(t) =

{

Δ̃Y(t)− λtΔ̃Y(t − 1) for t ≥ 2,
0 for t < 2,

Ψ(t) =

{

(Δ̃Y(t), Δ̃Y(t − 1))′ for t ≥ 2,
(0, 0)′ for t < 2,

Ψ̃(t) =

{

(Z̃(t), Δ̃Y(t))′ for t ≥ 2,
(0, 0)′ for t < 2;

– the parameter α = v0/v1 and its estimator

α2(n, ε) =

ln
ν2(n,ε)
∫

4

(Δ̃Y(t − 3))2dt

δ ln ε−1cn
, (12)

where

ν2(n, ε) = inf{T > 4 :
∫ T

4
Z̃2(t − 3)dt = (ε−1cn)

δ}, (13)

δ ∈ (0, 1) is a given number;
– the sequence of stopping times

τ2(n, ε) = h2 inf{k > h−1
2 ν2(n, ε) :

kh2
∫

ν2(n,ε)

||Ψ−1/2
2 (n, ε)Ψ̃(t − 3)||2dt ≥ 1},

where suppose h2 = 1/5 and

Ψ2(n, ε) = diag{ε−1cn, (ε−1cn)
α2(n,ε)};

– the matrices

G2(S, T) =
∫ T

S
Ψ̃(t − 3)Ψ′(t)dt, Φ2(S, T) =

∫ T

S
Ψ̃(t − 3)dΔ̃Y(t),

G2(n, k, ε) = G2(ν2(n, ε), τ2(n, ε)− kh2), Φ2(n, k, ε) = Φ2(ν2(n, ε), τ2(n, ε)− kh2);

– the times
k2(n) = arg min

k=1,5
||G−1

2 (n, k, ε)||, n ≥ 1;

– the estimators
ϑ2(n, ε) = G−1

2 (n, ε)Φ2(n, ε), n ≥ 1,

30 Stochastic Modeling and Control
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where
G2(n, ε) = G2(n, k2(n), ε), Φ2(n, ε) = Φ2(n, k2(n), ε);

– the stopping time

σ2(ε) = inf{n ≥ 1 : S2(N) > (ρ2δ−1
2 )1/2}, (14)

where S2(N) =
N
∑

n=1
β2

2(n, ε), ρ2 = ρ1, δ2 ∈ (0, 1) is some fixed chosen number,

β2(n, ε) = ||G̃−1
2 (n, ε)||, G̃2(n, ε) = (ε−1cn)

−1/2Ψ−1/2
2 (n, ε)G2(n, ε).

In this case we write the deviation of ϑ2(n, ε) in the form

ϑ2(n, ε)− ϑ = (ε−1cn)
−1/2G̃−1

2 (n, ε)ζ̃2(n, ε), n ≥ 1,

where

ζ̃2(n, ε) = Ψ−1/2
2 (n, ε)

τ2(n,ε)−k2(n)h2
∫

ν2(n,ε)

Ψ̃(t − 3)(Δ̃ξ(t)dt + dV(t)− dV(t − 1))

and we have
Eϑ||ζ̃2(n, ε)||2 ≤ 15(3 + R2), n ≥ 1, ε > 0.

Define the sequential estimation plan of ϑ by

T2(ε) = τ2(σ2(ε), ε), ϑ2(ε) = ϑ2(σ2(ε), ε). (15)

The construction of the sequential estimator ϑ2(ε) is based on the family of estimators

ϑ2(S, T) = G−1
2 (S, T)Φ2(S, T) = e−v1TG̃2(S, T)Φ̃2(S, T), T > S ≥ 0, where

G̃2(S, T) = e−v1TΨ−1/2
2 (T)G2(S, T), Φ̃2(S, T) = Ψ−1/2

2 (T)Φ2(S, T)

and Ψ2(T) = diag{ev1T , ev0T}. We have taken the discretization step h as above, because for
ϑ ∈ Θ22, similar to the case ϑ ∈ Θ12, the function

f2(S, T) = G̃−1
2 (S, T)

has some periodic (with the period Δ > 1) matrix function as a limit almost surely (see (35)).
This limit matrix function may have an infinite norm only for four values of their argument T
on every interval of periodicity of the length Δ.

We state the results concerning the estimation of the parameter ϑ ∈ Θ2 in the following
proposition.

Proposition 3.2. Assume that the condition (7) on the sequence (cn) holds as well as the parameter
ϑ = (a, b)′ in (1) be such that ϑ ∈ Θ2. Then:

I. For any ε > 0 and every ϑ ∈ Θ2 the sequential plan (T2(ε), ϑ2(ε)) defined by (15) is closed and
possesses the following properties:

1◦. sup
ϑ∈Θ2

Eϑ||ϑ2(ε)− ϑ||2 ≤ δ2ε;

31On Guaranteed Parameter Estimation of Stochastic Delay Diff erential Equations by Noisy Observations
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2◦. the inequalities below are valid:

0 < lim
ε→0

[T2(ε)−
1

2v1
ln ε−1] ≤ lim

ε→0
[T2(ε)−

1

2v1
ln ε−1] < ∞ Pϑ − a.s.;

II. For every ϑ ∈ Θ2 the estimator ϑ2(n, ε) is strongly consistent:

lim
n∨ε

ϑ2(n, ε) = ϑ Pϑ − a.s.

3.3. Sequential estimation procedure for ϑ ∈ Θ3

We shall use the notation, introduced in the previous paragraph for the parameter λ = ev0

and its estimator λt as well as for the functions Z(t), Z̃(t), Ψ(t) and Ψ̃(t).

Chose the non-random functions ν3(n, ε), n ≥ 1, ε > 0, satisfying the following conditions as
ε → 0 or n → ∞ :

ν3(n, ε) = o(ε−1cn),
log1/2 ν3(n, ε)

ev0ν3(n,ε)
ε−1cn = o(1). (16)

Example: ν3(n, ε) = log2 ε−1cn.

We introduce several quantities:
– the parameter α3 = v0 and its estimator

α3(n, ε) = ln |λν3(n,ε)|,

where λt is defined in (11);
– the sequences of stopping times

τ31(n, ε) = inf{T > 0 :

T
∫

ν3(n,ε)

Z̃2(t − 3)dt = ε−1cn}, (17)

τ32(n, ε) = inf{T > 0 :

T
∫

ν3(n,ε)

(Δ̃Y(t − 3))2dt = e2α3(n,ε)ε−1cn}, (18)

τmin(n, ε) = min{τ31(n, ε), τ32(n, ε)}, τmax(n, ε) = max{τ31(n, ε), τ32(n, ε)},

– the matrices

G3(S, T) =
∫ T

S
Ψ̃(t)Ψ(t)dt,

Φ3(S, T) =
∫ T

S
Ψ̃(t)dΔ̃Y(t),

G3(n, ε) = G3(ν3(n, ε), τmin(n, ε)),

Φ3(n, ε) = Φ3(ν3(n, ε), τmin(n, ε));

– the estimators
ϑ3(n, ε) = G−1

3 (n, ε)Φ3(n, ε), n ≥ 1, ε > 0;
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– the stopping time

σ3(ε) = inf{n ≥ 1 : S3(N) > (ρ3δ−1
3 )1/2}, (19)

where S3(N) =
N
∑

n=1
β2

3(n, ε), δ3 ∈ (0, 1) is some fixed chosen number,

β3(n, ε) = ||G̃−1
3 (n, ε)||, ρ3 = 6(3 + R2) ∑

n≥1

1

cn
,

G̃3(n, ε) = (ε−1cn)
−1/2Ψ−1/2

3 (n, ε)G3(n, ε), Ψ3(n, ε) = diag{ε−1cn, e2α3(n,ε)ε−1cn}.

In this case we write the deviation of ϑ3(n, ε) in the form

ϑ3(n, ε)− ϑ = (ε−1cn)
−1/2G̃−1

3 (n, ε)ζ̃3(n, ε), n ≥ 1,

where

ζ̃3(n, ε) = Ψ−1/2
3 (n, ε)

τmin(n,ε)
∫

ν3(n,ε)

Ψ̃(t − 3)(Δ̃ξ(t)dt + dV(t)− dV(t − 1))

and we have
Eϑ||ζ̃3(n, ε)||2 ≤ 6(3 + R2), n ≥ 1, ε > 0.

Define the sequential estimation plan of ϑ by

T3(ε) = τmax(σ3(ε), ε), ϑ3(ε) = ϑ3(σ3(ε), ε). (20)

Proposition 3.3. Assume that the condition (7) on the sequence (cn) holds and let the parameter
ϑ = (a, b)′ in (1) be such that ϑ ∈ Θ3. Then:
I. For every ϑ ∈ Θ3 the sequential plan (T3(ε), ϑ3(ε)) defined in (20) is closed and possesses the
following properties:

1◦. for any ε > 0
sup
ϑ∈Θ3

Eϑ||ϑ3(ε)− ϑ||2 ≤ δ3ε;

2◦. the following inequalities are valid:

0 < lim
ε→0

εT3(ε) ≤ lim
ε→0

εT3(ε) < ∞ Pϑ − a.s.;

II. For every ϑ ∈ Θ3 the estimator ϑ3(n, ε) is strongly consistent:

lim
n∨ε

ϑ3(n, ε) = ϑ Pϑ − a.s.

3.4. Sequential estimation procedure for ϑ ∈ Θ4

In this case b = −a and (6) is the differential equation of the first order:

dΔ̃Y(t) = aZ∗(t)dt + Δ̃ξ(t)dt + dV(t)− dV(t − 1), t ≥ 2,

where

Z∗(t) =

{

Δ̃Y(t)− Δ̃Y(t − 1) for t ≥ 2,
0 for t < 2.
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We shall construct sequential plan (T4(ε), ϑ4(ε)) for estimation of the vector parameter ϑ =
a(1,−1)′ with the (δ4ε)-accuracy in the sense of the L2-norm for every ε > 0 and fixed chosen
δ4 ∈ (0, 1).

First define the sequential estimation plans for the scalar parameter a on the bases of
correlation estimators which are generalized least squares estimators:

a4(T) = G−1
4 (T)Φ4(T),

G4(T) =
∫ T

0
Z∗(t − 2)Z∗(t)dt,

Φ4(T) =
∫ T

0
Z∗(t − 2)dΔ̃Y(t), T > 0.

Let (cn, n ≥ 1) be an unboundedly increasing sequence of positive numbers, satisfying the
condition (7).

We shall define

– the sequence of stopping times (τ4(n, ε), n ≥ 1) as

τ4(n, ε) = inf{T > 2 :
∫ T

0
(Z∗(t − 2))2dt = ε−1cn}, n ≥ 1;

– the sequence of estimators

a4(n, ε) = a4(τ4(n, ε)) = G−1
4 (τ4(n, ε))Φ4(τ4(n, ε));

– the stopping time

σ4(ε) = inf{n ≥ 1 : S4(N) > (ρ4δ−1
4 )1/2}, (21)

where S4(N) =
N
∑

n=1
G̃−2

4 (n, ε), ρ4 = ρ3, G̃4(n, ε) = (ε−1cn)−1G4(τ4(n, ε)). The deviation of

a4(n, ε) has the form

a4(n, ε)− a = (ε−1cn)
−1/2G̃−1

4 (n, ε)ζ̃4(n, ε), n ≥ 1,

where

ζ̃4(n, ε) = (ε−1cn)
−1/2

τ4(n,ε)
∫

0

Z∗(t − 2)(Δ̃ξ(t)dt + dV(t)− dV(t − 1))

and we have
Eϑ||ζ̃4(n, ε)||2 ≤ 3(3 + R2), n ≥ 1, ε > 0.

We define the sequential plan (T4(ε), ϑ4(ε)) for the estimation of ϑ as

T4(ε) = τ4(σ4(ε), ε), ϑ4(ε) = a4(σ4(ε), ε)(1,−1)′. (22)

The following proposition presents the conditions under which T4(ε) and ϑ4(ε) are
well-defined and have the desired property of preassigned mean square accuracy.
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Proposition 3.4. Assume that the sequence (cn) defined above satisfy the condition (7). Then we
obtain the following result:

I. For any ε > 0 and every ϑ ∈ Θ4 the sequential plan (T4(ε), ϑ4(ε)) defined by (22) is closed and has
the following properties:

1◦. sup
ϑ∈Θ4

Eϑ||ϑ4(ε)− ϑ||2 ≤ δ4ε;

2◦. the following relations hold:

– if ϑ ∈ Θ41 then
0 < lim

ε→0
ε · T4(ε) ≤ lim

ε→0
ε · T4(ε) < ∞ Pϑ − a.s.,

– if ϑ ∈ Θ42 then

0 < lim
ε→0

[T4(ε)−
1

2v0
ln ε−1] ≤ lim

ε→0
[T4(ε)−

1

2v0
ln ε−1] < ∞ Pϑ − a.s.;

II. For every ϑ ∈ Θ4 the estimator ϑ4(n, ε) is strongly consistent:

lim
n∨ε

ϑ4(n, ε) = ϑ Pϑ − a.s.

3.5. General sequential estimation procedure of the time-delayed process

In this paragraph we construct the sequential estimation procedure for the parameters a and
b of the process (1) on the bases of the estimators, presented in subsections 3.1-3.4.

Denote j� = arg min
j=1,4

Tj(ε). We define the sequential plan (T�(ε), ϑ�(ε)) of estimation ϑ ∈ Θ

on the bases of all constructed above estimators by the formulae

SEP�(ε) = (T�(ε), ϑ∗(ε)), T�(ε) = Tj� (ε), ϑ∗(ε) = ϑj� (ε).

The following theorem is valid.

Theorem 3.1. Assume that the underlying processes (X(t)) and (Y(t)) satisfy the equations (1), (2),
the parameter ϑ to be estimated belongs to the region Θ and for the numbers δ1, . . . , δ4 in the definitions

(10), (15), (20) and (22) of sequential plans the condition
4

∑
j=1

δj = 1 is fulfilled.

Then the sequential estimation plan (T�(ε), ϑ�(ε)) possess the following properties:

1◦. for any ε > 0 and for every ϑ ∈ Θ

T�(ε) < ∞ Pϑ − a.s.;

2◦. for any ε > 0
sup
ϑ∈Θ

Eϑ‖ϑ�(ε)− ϑ‖2 ≤ ε;

3◦. the following relations hold with Pϑ – probability one:

– for ϑ ∈ Θ11 ∪ Θ3 ∪ Θ41

lim
ε→0

ε · T∗(ε) < ∞;
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– for ϑ ∈ Θ12 ∪ Θ42

lim
ε→0

[T∗(ε)−
1

2v0
ln ε−1] < ∞;

– for ϑ ∈ Θ13

lim
ε→0

[T∗(ε) +
1

v0
ln T1(ε)− Ψ′′

13(ε)] < ∞,

the function Ψ′′
13(ε) is defined in (30);

– for ϑ ∈ Θ2

lim
ε→0

[T∗(ε)−
1

2v1
ln ε−1] < ∞.

4. Proofs

Proof of Proposition 3.1. The closeness of the sequential estimation plan, as well as assertions
I.2 and II of Proposition 3.1 for the cases Θ11 ∪ Θ12 can be easily verified similar to [10, 12, 14,
16]. Now we verify the finiteness of the stopping time T1(ε) in the new case Θ13.

By the definition of Δ̃Y(t) we have:

Δ̃Y(t) = X̃(t) + Δ̃V(t), t ≥ 1,

where

X̃(t) =

t
∫

t−1

X(t)dt.

It is easy to show that the process (X̃(·)) has the following representation:

X̃(t) = x̃0(t)X0(0) + b

0
∫

−1

x̃0(t − s − 1)X0(s)ds +
∫ t

0
x̃0(t − s)dW(s)

for t ≥ 1, X̃(t) =
∫ 0

t−1 X0(s)ds +
∫ t

0 X(s)ds for t ∈ [0, 1) and X̃(t) = 0 for t ∈ [−1, 0). Based on
the representation above for the function x0(·), the subsequent properties of x0(t) the function

x̃0(t) =
∫ t

t−1 x0(s)ds can be easily shown to fulfill x̃0(t) = 0, t ∈ [−1, 0] and as t → ∞

x̃0(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

o(eγt), γ < 0, ϑ ∈ Θ11,
φ̃0(t)e

v0t + o(eγ0t), γ0 < v0, ϑ ∈ Θ12,
2
v0
[(1 − e−v0 )t + e−v0 − 1−e−v0

v0
]ev0t + o(eγ0t), γ0 < v0, ϑ ∈ Θ13,

1−e−v0

v0(v0−a+1)
ev0t + 1−e−v1

v1(a−v1−1)
ev1t + o(eγ1t), γ1 < v1, ϑ ∈ Θ21,

1−e−v0

v0(v0−a+1)
ev0t + φ̃1(t)e

v1t + o(eγ1t), γ1 < v1, ϑ ∈ Θ22,
1−e−v0

v0(v0−a+1)
ev0t + o(eγt), γ < 0, ϑ ∈ Θ3,

1
1−a + o(eγt), γ < 0, ϑ ∈ Θ41,

1−e−v0

v0(v0−a+1)
ev0t − 1

a−1 + o(eγt), γ < 0, ϑ ∈ Θ42,
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where
φ̃i(t) = Ãi cos ξit + B̃i sin ξit

and Ãi, B̃i, ξi are some constants (see [10, 12]).

The processes X̃(t) and Δ̃V(t) are mutually independent and the process X̃(t) has the
representation similar to (3). Then, after some algebra similar to those in [10, 12] we get for
the processes X̃(t), Ỹ(t) = X̃(t)− λX̃(t − 1), λ = ev0 , Δ̃Y(t) and

Z(t) =

{

Δ̃Y(t)− λΔ̃Y(t − 1) for t ≥ 2,
0 for t < 2

in the case Θ13 the following limits:

lim
t→∞

t−1e−v0tΔ̃Y(t) = lim
t→∞

t−1e−v0tX̃(t) = C̃X Pϑ − a.s., (23)

lim
t→∞

e−v0tỸ(t) = CY , lim
t→∞

e−v0tZ(t) = C̃Z Pϑ − a.s.,

and, as follows, for u ≥ 0

lim
T→∞

| T−2e−2v0T

T
∫

1

Δ̃Y(t − u)Δ̃Y(t)dt−
C̃2

X

2v0

[

1 −
u

T

]

e−uv0 | = 0 Pϑ − a.s., (24)

lim
T→∞

| T−1e−2v0T

T
∫

1

Δ̃Y(t − u)Z(t)dt−
C̃XC̃Z

2v0

[

1 −
u

T

]

e−uv0 | = 0 Pϑ − a.s.,

where C̃x, CY and C̃Z are some nonzero constants, which can be found from [10, 12]. From
(24) we obtain the limits:

lim
T→∞

1

T2e2v0T
G1(T, s) = G13(s), lim

T→∞
T−1e−4v0T |G1(T, s)| = G13e−(3+11s)v0 Pϑ − a.s.,

G13(s) =
C̃2

X

2v0

(

e−(2+5s)v0 e−(1+5s)v0

e−2(1+3s)v0 e−(1+6s)v0

)

, G13 =
sC̃3

XC̃Z

4v2
0

and, as follows, we can find

lim
T→∞

T−1e2v0TG−1
1 (T, s) = G̃13(s) Pϑ − a.s.,

G̃13(s) =
2v0e(3+11s)v0

sC̃XC̃Z

(

e−(1+6s)v0 −e−(1+5s)v0

−e−2(1+3s)v0 e−(2+5s)v0

)

is a non-random matrix function.

From (23) and by the definition of the stopping times τ1(n, ε) we have

lim
n∨ε

τ2
1 (n, ε)e2τ1(n,ε)v0

ε−1cn
= g∗13 Pϑ − a.s., (25)
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where g∗13 = 2v0C̃−2
X

(

e−2v0(2+5h1) + e−4v0(1+3h1)
)−1

and, as follows,

lim
n∨ε

[τ1(n, ε) +
1

v0
ln τ1(n, ε)−

1

2v0
ln ε−1cn]=

1

2v0
ln g∗13 Pϑ − a.s., (26)

lim
n∨ε

τ1(n, ε)

ln ε−1cn
=

1

2v0
Pϑ − a.s., (27)

lim
n∨ε

[
1

ln3 ε−1cn

G̃−1
1 (n, ε)− [(2v0)

3g∗13]
−1e−2v0k1(n)h1 G̃13(h1)] = 0 Pϑ − a.s. (28)

From (8) and (28) it follows the Pϑ − a.s. finiteness of the stopping time σ1(ε) for every ε > 0.

The proof of the assertion I.1 of Proposition 3.1 for the case Θ13 is similar e.g. to the proof of
corresponding assertion in [14, 16]:

Eϑ||ϑ1(ε)− ϑ||2 = Eϑ
1

S2(σ1(ε))
||

σ1(ε)

∑
n=1

β2
1(n, ε)(ϑ1(n, ε)− ϑ)||2 ≤

≤ ε
δ1

ρ1
Eϑ

σ1(ε)

∑
n=1

1

cn
· β2

1(n, ε) · ||G̃−1
1 (n, ε)||2 · ||ζ̃1(n, ε)||2 ≤

≤
εδ1

ρ1
∑

n≥1

1

cn
Eϑ||ζ̃1(n, ε)||2 ≤ εδ1

15(3 + R2)

ρ1
∑

n≥1

1

cn
= εδ1.

Now we prove the assertion I.2 for ϑ ∈ Θ13. Denote the number

g̃13 = [(2v0)
3g∗13]

2ρ−1
1 δ1||G̃13(h1)||

−2

and the times

σ
′

13(ε) = inf{n ≥ 1 :
N

∑
n=1

ln6 ε−1cn > g̃13e4v0h1},

σ
′′

13(ε) = inf{n ≥ 1 :
N

∑
n=1

ln6 ε−1cn > g̃13e20v0h1}.

From (8) and (28) it follows, that for ε small enough

σ′
13(ε) ≤ σ1(ε) ≤ σ′′

13(ε) Pϑ − a.s. (29)

Denote

Ψ′
13(ε) =

1

2v0
ln(ε−1cσ′

13(ε)
), Ψ′′

13(ε) =
1

2v0
ln(ε−1cσ′′

13(ε)
). (30)

Then, from (8), (26) and (29) we obtain finally the assertion I.2 of Proposition 3.1:

lim
ε→0

[T1(ε) +
1

v0
ln T1(ε)− Ψ′

13(ε)] ≥
1

2v0
ln g∗13 Pϑ − a.s.,
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lim
ε→0

[T1(ε) +
1

v0
ln T1(ε)− Ψ′′

13(ε)] ≤
1

2v0
ln g∗13 Pϑ − a.s.

For the proof of the assertion II of Proposition 3.1 we will use the representation (9) for the
deviation

ϑ1(n, ε)− ϑ =
1

ln3 ε−1cn

G̃−1
1 (n, ε)·

τ2
1 (n, ε)e2τ1(n,ε)v0

ε−1cn

(

·
ln ε−1cn

τ1(n, ε)

)3

·
1

τ−1
1 (n, ε)e2τ1(n,ε)v0

ζ1(n, ε),

where
ζ1(n, ε) = ζ1(τ1(n, ε)− k1(n)h1, h1),

ζ1(T, s) =

T
∫

0

Ψs(t − 2 − 5s)(Δ̃ξ(t)dt + dV(t)− dV(t − 1)).

According to (25), (27) and (28) first three factors in the right-hand side of this equality have
Pϑ − a.s. positive finite limits. The last factor vanishes in Pϑ − a.s. sense by the properties of
the square integrable martingales ζ1(T, s) :

lim
n∨ε

ζ1(n, ε)

τ−1
1 (n, ε)e2τ1(n,ε)v0

= lim
T→∞

ζ1(T, h1)

T−1e2v0T
= 0 Pϑ − a.s.

Then the estimators ϑ1(n, ε) are strongly consistent as ε → 0 or n → ∞ and we obtain the
assertion II of Proposition 3.1.

Hence Proposition 3.1 is valid.

Proof of Proposition 3.2.
Similar to the proof of Proposition 3.1 and [7]–[16] we can get the following asymptotic as
t → ∞ relations for the processes Δ̃Y(t), Z(t) and Z̃(t) :

– for ϑ ∈ Θ21

Δ̃Y(t) = CYev0t + CY1ev1t + o(eγt) Pϑ − a.s.,

Z(t) = CZev1t + o(eγt) Pϑ − a.s.,

λt − λ =
2v0ev0

v0 + v1
CZC−1

Y e−(v0−v1)t + o(e−(v0−v1+γ)t) Pϑ − a.s.,

Z̃(t) = C̃Zev1t + o(eγt) Pϑ − a.s.;

– for ϑ ∈ Θ22

|Δ̃Y(t)− CYev0t − CY1(t)e
v1t| = o(eγt) Pϑ − a.s.

|Z(t)− CZ(t)e
v1t| = o(eγt) Pϑ − a.s.,

λt − λ = 2v0ev0 C−1
Y UZ(t)e

−(v0−v1)t + o(e−(v0−v1+γ)t) Pϑ − a.s.,

|Z̃(t)− C̃Z(t)e
v1t| = o(eγt) Pϑ − a.s.,

where CY and CY1 are some non-zero constants, 0 < γ < v1, CZ = CY1(1 − ev0−v1 ), C̃Z =

CZ
v1 − v0

v1 + v0
; CZ(t), UZ(t) =

∞
∫

0

CZ(t − u)e−(v0+v1)udu and C̃Z(t) = CZ(t)− 2v0UZ(t) are the

periodic (with the period Δ > 1) functions.

39On Guaranteed Parameter Estimation of Stochastic Delay Diff erential Equations by Noisy Observations



18 Will-be-set-by-IN-TECH

Denote

UZ̃(T) =

∞
∫

0

C̃Z(T − u)e−(v0+v1)udu,

UZ̃Z(S, T) =

∞
∫

0

C̃Z(T − u)CZ(S − u)e−2v1udu, ŨZ(T) = UZ̃Z̃(T, T).

It should be noted that the functions CZ(t), UZ(t), C̃Z(t) and UZ̃(T) have at most two roots
on each interval from [0, ∞) of the length Δ. At the same time the function UZ̃Z(S, T) - at most
four roots.

With Pϑ-probability one we have:

– for ϑ ∈ Θ2

lim
T−S→∞

e−2v0T

T
∫

S

(Δ̃Y(t − 3))2dt =
C2

Y

2v0
e−6v0 , (31)

– for ϑ ∈ Θ21

lim
T−S→∞

e−2v1T

T
∫

S

Z̃2(t − 3)dt =
C̃2

Z

2v1
e−6v1 , (32)

lim
T−S→∞

G̃−1
2 (S, T) = G̃21, (33)

where

G̃21 =

⎛

⎝

2v1(v1+v0)2

CZC̃Z(v1−v0)2 e3v1 − 4v0v1(v1+v0)
CZCY(v1−v0)2 e3v0

− 2v1(v1+v0)2

CZC̃Z(v1−v0)2 ev0+3v1 4v0v1(v1+v0)
CZCY(v1−v0)2 e4v0

⎞

⎠ ,

– for ϑ ∈ Θ22

lim
T−S→∞

∣

∣

∣

∣

∣

∣

e−2v1T

T
∫

S

Z̃2(t − 3)dt − e−6v1 ŨZ (T − 3)

∣

∣

∣

∣

∣

∣

= 0, (34)

lim
T−S→∞

∣

∣

∣
G̃−1

2 (S, T)− G̃22(T)
∣

∣

∣ = 0, (35)

where

G̃22(T) =

[

1

2v0
UZ̃Z(T, T − 3)− UZ(T − 3)UZ̃(T)

]−1

·

⎛

⎝

e3v1

2v0
− e3v0

CY
UZ̃(T)

− ev0+3v1

2v0

e4v0

CY
UZ̃(T)

⎞

⎠ .

The matrix G̃21 is constant and non-zero and G̃22(T) is the periodic matrix function with the
period Δ > 1 (see [3], [10, 12, 14]) and may have infinite norm for four points on each interval
of periodicity only.

The next step of the proof is the investigation of the asymptotic behaviour of the stopping
times ν2(n, ε), τ2(n, ε) and the estimators α2(n, ε).
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Denote

Cν1 = e−6v1 min

{

C̃2
Z

2v1
, inf

T>0
ŨZ(T)

}

, Cν2 = e−6v1 max

{

C̃2
Z

2v1
, sup

T>0

ŨZ(T)

}

.

Then for ϑ ∈ Θ2

Cν1 ≤ lim
T−S→∞

e−2v1T

T
∫

S

Z̃2(t − 3)dt ≤

≤ lim
T−S→∞

e−2v1T

T
∫

S

Z̃2(t − 3)dt ≤ Cν2 Pϑ − a.s. (36)

and from the definition (13) of ν2(n, ε) and (32), (34) we have

C−1
ν2 ≤ lim

n∨ε

e2v1ν2(n,ε)

(ε−1cn)δ
≤ lim

n∨ε

e2v1ν2(n,ε)

(ε−1cn)δ
≤ C−1

ν1 Pϑ − a.s.

and thus
1

2v1
ln C−1

ν2 ≤ lim
n∨ε

[ν2(n, ε)−
δ

2v1
ln ε−1cn] ≤

≤ lim
n∨ε

[ν2(n, ε)−
δ

2v1
ln ε−1cn] ≤

1

2v1
ln C−1

ν1 Pϑ − a.s. (37)

By the definition (12) of α2(n, ε) we find the following normalized representation for the
deviation α2(n, ε)− α :

ν2(n, ε)(α2(n, ε)− α) = ν2(n, ε)

⎛

⎜

⎜

⎜

⎜

⎝

ln
ν2(n,ε)
∫

0

(Δ̃Y(t − 3))2dt

ln
ν2(n,ε)
∫

0

Z̃2(t − 3)dt

−
v0

v1

⎞

⎟

⎟

⎟

⎟

⎠

=

= ν2(n, ε)

⎛

⎜

⎜

⎜

⎜

⎝

2v0ν2(n, ε) + ln e−2v0ν2(n,ε)
ν2(n,ε)
∫

0

(Δ̃Y(t − 3))2dt

2v1ν2(n, ε) + ln e−2v1ν2(n,ε)
ν2(n,ε)
∫

0

Z̃2(t − 3)dt

−
v0

v1

⎞

⎟

⎟

⎟

⎟

⎠

=

= ν2(n, ε)

v1 ln e−2v0ν2(n,ε)
ν2(n,ε)
∫

0

(Δ̃Y(t − 3))2dt − v0 ln e−2v1ν2(n,ε)
ν2(n,ε)
∫

0

Z̃2(t − 3)dt

2v2
1ν2(n, ε) + v1 ln e−2v1ν2(n,ε)

ν2(n,ε)
∫

0

Z̃2(t − 3)dt

and using the limit relations (31), (36) and (37) we obtain

α1 ≤ lim
n∨ε

(ln ε−1cn) · (α − α2(n, ε))≤ lim
n∨ε

(ln ε−1cn) · (α − α2(n, ε)) ≤ α2 Pϑ − a.s.,

where αi =
1

δv1
[v0 ln Cνi − v1 ln

C2
Y

2v0
e−6v0 ], i = 1, 2.
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Thus for ϑ ∈ Θ2

eα1 ≤ lim
n∨ε

(ε−1cn)
(α−α2(n,ε)) ≤ lim

n∨ε
(ε−1cn)

(α−α2(n,ε)) ≤ eα2 Pϑ − a.s. (38)

Let s1 and s2 be the positive roots of the following equations

Cν2 · s +
C2

Y

2v0
e−6v0 · eα2 · sα = 1 and Cν1 · s +

C2
Y

2v0
e−6v0 · eα1 · sα = 1

respectively. It is clear that 0 < s1 ≤ s2 < ∞.

By the definition of stopping times τ2(n, ε) we have

lim
n∨ε

⎡

⎢

⎣

1

ε−1cn

τ2(n,ε)
∫

ν2(n,ε)

Z̃2(t − 3)dt +
1

(ε−1cn)α2(n,ε)

τ2(n,ε)
∫

ν2(n,ε)

(Δ̃Y(t − 3))2dt

⎤

⎥

⎦
=

= lim
n∨ε

⎡

⎢

⎣

1

e2v1τ2(n,ε)

τ2(n,ε)
∫

0

Z̃2(t − 3)dt ·
e2v1τ2(n,ε)

ε−1cn
+

+
1

e2v0τ2(n,ε)

τ2(n,ε)
∫

0

(Δ̃Y(t − 3))2dt · (ε−1cn)
(α−α2(n,ε)) ·

(

e2v1τ2(n,ε)

ε−1cn

)α]

= 1.

Then, using (38), for ϑ ∈ Θ2 we have

s1 ≤ lim
n∨ε

e2v1τ2(n,ε)

ε−1cn
≤ lim

n∨ε

e2v1τ2(n,ε)

ε−1cn
≤ s2 Pϑ − a.s. (39)

and thus
1

2v1
ln s1 ≤ lim

n∨ε
[τ2(n, ε)−

1

2v1
ln ε−1cn] ≤

≤ lim
n∨ε

[τ2(n, ε)−
1

2v1
ln ε−1cn] ≤

1

2v1
ln s2 Pϑ − a.s. (40)

From (37) and (40) it follows, in particular, that

lim
n∨ε

[τ2(n, ε)− ν2(n, ε)] = ∞ Pϑ − a.s. (41)

By the definition of G̃2(n, ε), the following limit relation can be proved

lim
n∨ε

[||G̃−1
2 (n, ε)||2 − (1 + e2v0 ){

(

e2v1τ2(n,ε)

ε−1cn

)−2

(< G̃−1
2 (0, τ2(n, ε)− k2(n)h2) >11)

2+

+

(

e2v1τ2(n,ε)

ε−1cn

)−(1+α)

(ε−1cn)
α2(n,ε)−α(< G̃−1

2 (0, τ2(n, ε)− k2(n)h2) >12)
2}] = 0 Pϑ − a.s.,

where < G >ij is the ij-th element of the matrix G.
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Then, using (33), (35), (38), (39) and (41) we can find, similar to [12, 14], the lower and upper
bounds for the limits with Pϑ-probability one:

g̃21 ≤ lim
n∨ε

||G̃−1
2 (n, ε)|| ≤ lim

n∨ε
‖|G̃−1

2 (n, ε)|| ≤ g̃22, (42)

where g̃21 and g̃22 are positive finite numbers.

Thus, by the definition (14) of the stopping time σ2(ε) and from (42) we have

σ21 ≤ lim
ε→0

σ2(ε) ≤ lim
ε→0

σ2(ε) ≤ σ22 Pϑ − a.s., (43)

where

σ21 = inf{n ≥ 1 : N > g̃−1
22 (ρ2δ−1

2 )1/2}, σ22 = inf{n ≥ 1 : N > g̃−1
21 (ρ2δ−1

2 )1/2}

and from (40) and (43) we obtain the second property of the assertion I in Proposition 3.2:

1

2v1
ln s1σ21 ≤ lim

ε→0
[T2(ε)−

1

2v1
ln ε−1]≤ lim

ε→0
[T2(ε)−

1

2v1
ln ε−1] ≤

1

2v1
ln s2σ22 Pϑ − a.s.

The assertions I.1 and II of Proposition 3.2 can be proved similar to the proof of the
corresponding statement of Proposition 3.1.

Hence Proposition 3.2 is proven.

Proof of Proposition 3.3.
Similar to the proof of Propositions 3.1, 3.2 and [7]–[16] we get for ϑ ∈ Θ3 the needed
asymptotic as t → ∞ relations for the processes Δ̃Y(t), Z(t) and Z̃(t). To this end we introduce
the following notation:

Z1(t) =

t
∫

−∞

ỹ0(t − s)dW(s), ỹ0(s) = x̃0(s)− λx̃0(s − 1),

ZV(t) =

t
∫

−∞

[Δ̃V(s)− λΔ̃V(s − 1)]e−v0(t−s)ds, Z2(t) = ZV(t) + Z3(t),

Z3(t) =

t
∫

−∞

Z1(s)e
−v0(t−s)ds, Z̃1(t) = Z1(t)− 2v0Z2(t − 1),

Z̃2(t) = ZV(t) + Z̃3(t), Z̃3(t) =

t
∫

−∞

Z̃1(s)e
−v0(t−s)ds,

C̃Z = 1 + λ2 + 4[λ − v−1
0 (λ − 1)] + EϑZ̃2

1(0),

CZ̃Z = 1 + λ2 + 2[λ − v−1
0 (λ − 1)] + EϑZ2

1(0)− EϑZ1(0)Z3(−1).
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It should be noted that in the considered case Θ3 all the introduced processes Z1(·), . . . , Z̃3(·)
are stationary Gaussian processes, continuous in probability, having a spectral density and, as
follows, ergodic, see [21].

According to the definition of the set Θ3 as t → ∞ we have:

Δ̃Y(t) = CYev0t + o(eγt) Pϑ − a.s.,

|Z(t)− [Δ̃V(t)− λΔ̃V(t − 1)]− Z1(t)| = o(1) Pϑ − a.s.,

where CY and γ < v0 are some constants.

Using this properties and the representation for the deviation

λt − λ =

t
∫

0

Z(s)Δ̃Y(s − 1)ds

t
∫

0

(Δ̃Y(s − 1))2ds

of the estimator λt defined in (11), it is easy to obtain with Pϑ-probability one the following
limit relations:

lim
T→∞

1

e2v0T

T
∫

0

Δ̃Y(t − u)Δ̃Y(t − s)dt =
C2

Y

2v0
e−v0(u+s), u, s ≥ 0, (44)

lim
T→∞

∣

∣

∣

1

ev0T

T
∫

0

Z(t)Δ̃Y(t − u)dt − CYe−v0uZ2(T)
∣

∣

∣ = 0, u ≥ 0, (45)

lim
t→∞

|ev0t(λt − λ)− 2v0ev0 C−1
Y Z2(t)| = 0, (46)

lim
t→∞

|Z̃(t)− (Δ̃V(t)− λΔ̃V(t − 1))− Z̃1(t)| = 0,

lim
T→∞

∣

∣

∣

1

ev0T

T
∫

0

Z̃(t)Δ̃Y(t)dt − CY Z̃2(T)
∣

∣

∣ = 0, (47)

lim
T→∞

1

T

T
∫

0

Z̃(t)Z(t)dt = CZ̃Z, (48)

lim
T→∞

1

T

T
∫

0

Z̃2(t)dt = C̃Z. (49)

For the investigation of the asymptotic properties of the components of sequential plan we
will use Propositions 2 and 3 from [14]. According to these propositions the processes

Zi(·), Z̃i(·), i = 1, 3 and ZV(·) defined above are O((log t)
1
2 ) as t → ∞ Pϑ − a.s.
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Denote

Q =

(

1 1
−λ 0

)

, ϕ(T) = diag{T, e2v0T}.

From (44), (45), (47), (48) with Pϑ-probability one holds

lim
T→∞

ϕ−1/2(T) · G3(0, T) · Q · ϕ−1/2(T) = diag{CZ̃Z,
C2

Y

2v0
}

and, as follows,

lim
T→∞

T · G−1
3 (0, T) = C−1

Z̃Z
·

(

1 0
−λ 0

)

Pϑ − a.s. (50)

Further, by the definition (17) of stopping times τ31(n, ε), first condition in (16) on the function
ν3(n, ε) and from (49) we find

lim
n∨ε

τ31(n, ε)

ε−1cn
= C̃−1

Z Pϑ − a.s. (51)

For the investigation of asymptotic properties of stopping times τ32(n, ε) with Pϑ-probability
one we show, using the second condition in (16) on the function ν3(n, ε) and (46), that

lim
n∨ε

ln
e2α3(n,ε)ε−1cn

e2α3ε−1cn
= lim

n∨ε
2(α3(n, ε)− α)ε−1cn= lim

n∨ε
2λ−1(λν3(n,ε) − λ)ε−1cn =

= 2C−1
3 lim

n∨ε

Z2(ν3(n, ε))ε−1cn

ev0ν3(n,ε)
= 2C−1

3 lim
n∨ε

Z2(ν3(n, ε))

log1/2 ν3(n, ε)
·
log1/2 ν3(n, ε)

ev0ν3(n,ε)
· ε−1cn = 0

and then

lim
n∨ε

e2α3(n,ε)ε−1cn

e2v0ε−1cn
= 1 Pϑ − a.s.

Thus, by the definition (18) of stopping times τ32(n, ε) and from (44) we find

lim
n∨ε

[τ32(n, ε)− ε−1cn] =
1

2v0
ln

2v0e6v0

C2
Y

Pϑ − a.s. (52)

Then, from (50)–(52) with Pϑ-probability one we obtain

lim
n∨ε

G̃−1
3 (n, ε) = {C̃Z ∨ 1}C−1

Z̃Z
·

(

1 0
−λ 0

)

,

where a ∨ b = max(a, b) and, by the definition (19) of the stopping time σ3(ε), for ε small
enough it follows

σ3(ε) = σ3 Pϑ − a.s.,

where

σ3 = inf{n ≥ 1 : N > g−1
3 (ρ3δ−1

3 )1/2}
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and g3 = {C̃Z ∨ 1}2C−2
Z̃Z

(1 + λ2).

Thus we obtain the Pϑ-finiteness of the stopping time T3(ε) and the assertion II.2 of Proposition
3.3:

lim
ε→0

εT3(ε) = {C̃−1
Z ∨ 1}cσ3

Pϑ − a.s.

The assertions I.1 and II of Proposition 3.3 can be proved similar to the proofs of Propositions
3.1 and 3.2.

Hence Proposition 3.3 is proven.

Proof of Proposition 3.4.
This case is a scalar analogue of the case Θ11 ∪ Θ12.

By the definition,
Z∗(t) = X̃(t)− X̃(t − 1) + Δ̃V(t)− Δ̃V(t − 1).

According to the asymptotic properties of the process (X̃(t)), for u = 0, 2 we have:

– for ϑ ∈ Θ41 :

exist the positive constant limits

lim
T→∞

1

T

T
∫

0

Z∗(t)Z∗(t − u)dt = C∗
41(u) Pϑ − a.s.; (53)

– for ϑ ∈ Θ42 :

e−v0tZ∗(t) = C∗
42 + o(e−(v0−γ)t)) as t → ∞ Pϑ − a.s.,

lim
T→∞

1

e2v0T

T
∫

0

Z∗(t)Z∗(t − u)dt =
(C∗

42)
2e−v0u

2v0
Pϑ − a.s., (54)

where

C∗
42 =

1 − ev0

v0(v0 − a + 1)
.

Assertions I.1 and II of Proposition 3.4 can be proved similar to Proposition 3.1.

Now we prove the closeness of the plan (22) and assertion I.2 of Proposition 3.4. To this end
we shall investigate the asymptotic properties of the stopping times τ4(n, ε) and σ4(ε).

From the definition of τ4(n, ε) and (53), (54) we have

– for ϑ ∈ Θ41 :

lim
n∨ε

τ4(n, ε)

ε−1cn
= (C∗

41(0))
−1 Pϑ − a.s.; (55)

– for ϑ ∈ Θ42 :
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lim
n∨ε

e2v0τ4(n,ε)

ε−1cn
=

(

2v0

C∗
42

)2

Pϑ − a.s., (56)

lim
n∨ε

[τ4(n, ε)−
1

2v0
ln ε−1cn] =

1

v0
ln

2v0

C∗
42

Pϑ − a.s. (57)

As follows, the stopping times τ4(n, ε) are Pϑ − a.s. finite for all ϑ ∈ Θ4.

Denote

σ41 = inf{n ≥ 1 : N > (ρ4δ−1
4 )1/2g

−1
41 }, σ42 = inf{n ≥ 1 : N > (ρ4δ−1

4 )1/2g
−1
42 },

where g41 = [C∗
41(2)(C

∗
41(0))

−1 ∨ 2v0e−2v0 ], g42 = [C∗
41(2)(C

∗
41(0))

−1 ∧ 2v0e−2v0 ], where
a ∧ b = min(a, b) and by the definition of the stopping time σ4(ε) (21) as well as from
(53)–(56) follows the Pϑ − a.s. finiteness of σ4(ε) and the following inequalities, which hold
with Pϑ-probability one for ε small enough:

σ41 ≤ σ4(ε) ≤ σ42 Pϑ − a.s. (58)

Then we obtain the finiteness of the stopping time T4(ε) and the assertion I.2 of Proposition
3.4, which follows from (55), (57) and (58):

– for ϑ ∈ Θ41 :

cσ41 (C
∗
41(0))

−1 ≤ lim
n∨ε

εT4(ε) ≤ lim
n∨ε

εT4(ε) ≤ cσ42 (C
∗
41(0))

−1 Pϑ − a.s.;

– for ϑ ∈ Θ42 :

1

2v0
ln cσ41

(

2v0

C∗
42(0)

)2

≤ lim
n∨ε

[T4(ε)−
1

2v0
ln ε−1] ≤

≤ lim
n∨ε

[T4(ε)−
1

2v0
ln ε−1] ≤

1

2v0
ln cσ42

(

2v0

C∗
42(0)

)2

Pϑ − a.s.

Hence Proposition 3.4 is valid.

Proof of Theorem 3.1. The closeness of the sequential estimation plan SEP�(ε) (assertion 1)
and assertion 3 of Theorem 3.1 follow from Propositions 3.1-3.4 directly.

Now we prove the assertion 2. To this end we show first, that all the stopping times
τi(n, ε), i = 1, 2, 4 and τ3i(n, ε), i = 1, 2 are Pϑ − a.s.-finite for every ϑ ∈ Θ. It should be
noted, that the integrals

∞
∫

0

(Δ̃Y(t))2dt = ∞ and

∞
∫

0

(Z∗(t))2dt = ∞ Pϑ − a.s. (59)

in all the cases Θ1, . . . , Θ4 and, as follows, all the stopping times τi(n, ε), i = 1, 2, 4 and τ32(n, ε)
are Pϑ-a.s.-finite for every ε > 0 and all n ≥ 1. The properties (59) can be established by using
the asymptotic properties of the process (X(t), Y(t)) (see proofs of Propositions 3.1–3.4 and
[3], [7]–[16]).

The stopping times τ31(n, ε) are finite in the region Θ2 ∪ Θ3 according to Propositions 3.2, 3.3.
As follows, it remind only to verify the finiteness of the stopping time τ31(n, ε) for ϑ ∈ Θ1 ∪Θ4.
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According to the definition (17) of these stopping times it is enough to show the divergence of
the following integral

∫ ∞

0
Z̃2(t)dt = ∞ Pϑ − a.s.,

where Z̃(t) = Δ̃Y(t)− λtΔ̃Y(t − 1).

This property follows from the following facts:

– for ϑ ∈ Θ11

lim
t→∞

λt = λ̃, Pϑ − a.s.,

where λ̃ is some constant and the process Z̃(t) can be approximated, similar to the case Θ3

(see the proof of Proposition 3.3) by a Gaussian stationary process;

– for ϑ ∈ Θ12

lim
t→∞

|λt − C1(t)| = 0 Pϑ − a.s.,

and then
lim
t→∞

|e−v0tZ̃(t)− C2(t)| = 0 Pϑ − a.s.,

where C1(t) and C2(t) are some periodic bounded functions;

– for Θ13

lim
t→∞

t(λt − λ) = C3 Pϑ − a.s.

and
lim
t→∞

e−v0tZ̃(t) = C4 Pϑ − a.s.,

where C3 and C4 are some non-zero constants;

– for Θ41

lim
t→∞

∣

∣

∣

∣

∣

∣

Z̃(t)−
1 − λ

1 − a

⎛

⎝X0(0) + b

0
∫

−1

X0(s)ds

⎞

⎠ −

−
1

1 − a
(W(t)− λW(t − 1))− (Δ̃V(t)− λΔ̃V(t − 1))

∣

∣

∣

∣

= 0 Pϑ − a.s.;

– for Θ42

lim
t→∞

e−v0tZ̃(t) = C5 Pϑ − a.s.,

where C5 is some non-zero constant.

Denote μ1 = μ2 = 1, μ3 = μ4 = 2/5.

Now we can verify the second property of the estimator ϑ(ε). By the definition of stopping
times σj(ε), j = 1, 4, we get

sup
ϑ∈Θ

Eϑ||ϑ(ε)− ϑ||2 ≤ ε sup
ϑ∈Θ

Eϑρ−1
j� δj�

σj∗ (ε)

∑
n=1

1

cn
β2

j∗ (n, ε) · ||G̃−1
j∗ (n, ε)||2 · ||ζ̃ j� (n, ε)||2 ≤

≤ ε sup
ϑ∈Θ

Eϑρ−1
j� δj� ∑

n≥1

1

cn
||ζ̃ j� (n, ε)||2.
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Due to the obtained finiteness properties of all the stopping times in these sums all the
mathematical expectations are well-defined and we can estimate finally

sup
ϑ∈Θ

Eϑ||ϑ(ε)− ϑ||2 ≤ ε
4

∑
j=1

ρ−1
j δj ∑

n≥1

1

cn
sup
ϑ∈Θ

Eϑ||ζ̃ j(n, ε)||2 ≤

≤ 15(3 + R2)ε
4

∑
j=1

ρ−1
j δjμj ∑

n≥1

1

cn
= ε

4

∑
j=1

δj = ε.

Hence Theorem 3.1 is proven.

5. Conclusion

This chapter presents a sequential approach to the guaranteed parameter estimation problem
of a linear stochastic continuous-time system. We consider a concrete stochastic delay
differential equation driven by an additive Wiener process with noisy observations.

At the same time for the construction of the sequential estimation plans we used mainly
the structure and the asymptotic behaviour of the solution of the system. Analogously, the
presented method can be used for the guaranteed accuracy parameter estimation problem of
the linear ordinary and delay stochastic differential equations of an arbitrary order with and
without noises in observations.

The obtained estimation procedure can be easily generalized, similar to [9, 11, 13, 16], to
estimate the unknown parameters with preassigned accuracy in the sense of the Lq-norm
(q ≥ 2). The estimators with such properties may be used in various adaptive procedures
(control, prediction, filtration).
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