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1. Introduction

Assume (Q, F, (F(t),t > 0),P) is a given filtered probability space and W = (W(t), t >
V = (V(t), t > 0) are real-valued standard Wiener processes on (Q), F, (F(t),t ,
adapted to (F(t)) and mutually independent. Further assume that Xy = (Xo(t), t €
[—1,0]) and Y{ are a real-valued cadlag process and a real-valued random variable on
(Q, F, (F(t),t > 0),P) respectively with

0
E/ X3(s)ds < 0o and EY3 < c.
-1

Assume Yj and Xy (s) are Fp—measurable, s € [—1,0] and the quantities W, V, Xj and Y are
mutually independent.

Consider a two—dimensional random process (X,Y) = (X(t),Y(t),t > 0) described by the
system of stochastic differential equations

dX(t) = aX(t)dt + bX(t — 1)dt + dW (), (1)

dY(t) = X(Hdt +dV(t), t >0 2)

with the initial conditions X (t) = Xo(t), t € [—1,0],and Y(0) = Y. The process X is supposed
to be hidden, i.e., unobservable, and the process Y is observed. Such models are used in
applied problems connected with control, filtering and prediction of stochastic processes (see,
for example, [1, 4, 17-20] among others).

The parameter & = (a4,b)) € © is assumed to be unknown and shall be estimated based
on continuous observation of Y, © is a subset of R? ((a,b)’ denotes the transposed (a,b)).
Equations (1) and (2) together with the initial values X(+) and Y{ respectively have uniquely
solutions X(+) and Y(-), for details see [19].
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24 Stochastic Modeling and Control

Equation (1) is a very special case of stochastic differential equations with time delay, see [5, 6]
and [20] for example.

To estimate the true parameter ¢ with a prescribed least square accuracy ¢ we shall construct a
sequential plan (T*(¢), 9*(¢)) working for all ¢ € ®. Here T* () is the duration of observations
which is a special chosen stopping time and ¢*(¢) is an estimator of 9. The set @ is defined
to be the intersection of the set ® with an arbitrary but fixed ball Byr C R?. Sequential
estimation problem has been solved for sets © of a different structure in [7]-[9], [11, 13, 14, 16]
by observations of the process (1) and in [10, 12, 15] — by noisy observations (2).

In this chapter the set © of parameters consists of all (a,b)’ from R? which do not belong to
lines L or L; defined in Section 2 below and having Lebesgue measure zero.

This sequential plan is a composition of several different plans which follow the regions to
which the unknown true parameter ¢ = (a,b)’ may belong to. Each individual plan is based
on a weighted correlation estimator, where the weight matrices are chosen in such a way that
this estimator has an appropriate asymptotic behaviour being typical for the corresponding
region to which ¢ belongs to. Due to the fact that this behaviour is very connected with
the asymptotic properties of the so-called fundamental solution xy(-) of the deterministic
delay differential equation corresponding to (1) (see Section 2 for details), we have to treat
different regions of @ = R?\ L, L = L; U L, separately. If the true parameter ¢ belongs
to L, the weighted correlation estimator under consideration converges weakly only, and
thus the assertions of Theorem 3.1 below cannot be derived by means of such estimators. In
general, the exception of the set L does not disturb applications of the results below in adaptive
filtration, control theory and other applications because of its Lebesgue zero measure.

In the papers [10, 12] the problem described above was solved for the two special sets of
parameters O (a straight line) and ®; (where X(-) satisfies (1) is stable or periodic (unstable))
respectively. The general sequential estimation problem for all & = (a,b)’ from R? except of
two lines was solved in [13, 14, 16] for the equation (1) based on the observations of X(-).

In this chapter the sequential estimation method developed in [10, 12] for the system (1), (2) is
extended to the case, considered by [13, 14, 16] for the equation (1) (as already mentioned, for
all ¥ from R? except of two lines for the observations without noises).

A related result in such problem statement was published first for estimators of an another
structure and without proofs in [15].

A similar problem for partially observed stochastic dynamic systems without time-delay was
solved in [22, 23].

The organization of this chapter is as follows. Section 2 presents some preliminary facts
needed for the further studies about we have spoken. In Section 3 we shall present the main
result, mentioned above. In Section 4 all proofs are given. Section 5 includes conclusions.

2. Preliminaries

To construct sequential plans for estimation of the parameter ¢ we need some preparation. At
first we shall summarize some known facts about the equation (1). For details the reader is
referred to [3]. Together with the mentioned initial condition the equation (1) has a uniquely
determined solution X which can be represented for t > 0 as follows:
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0 t
X(t) = xo(t) Xo(t) + b/ ) xo(t —s—1)Xo(s)ds + /0 xo(t—s)dW(s). 3)
Here xg = (x¢(t),t > —1) denotes the fundamental solution of the deterministic equation

t
xo(f) =1+ /(axg(s) +bxo(s —1))ds, t>0, 4)
0

corresponding to (1) with x(t) = 0,t € [-1,0), xo(0) = 1.
The solution X has the property E fOT X?(s)ds < oo for every T > 0.

From (3) it is clear, that the limit behaviour for t — co of X very depends on the limit behaviour
of xo(-). The asymptotic properties of xy(-) can be studied by the Laplace-transform of x,
which equals (A —a — be=*)~1, A any complex number.

Lets = u(r) (r < 1)and s = w(r) (r € R!) be the functions given by the following parametric
representation (r(¢),s(&)) in R? :

r(¢) = gcotd, s(8) = —¢/sing
with ¢ € (0,71) and ¢ € (7, 27) respectively.

Now we define the parameter set @ to be the plane R? without the lines Ly = (a,u(a)),<1
and Ly = (a,w(a)),cp1 such that R?> = @ U L; U L.

It seems not to be possible to construct a general simple sequential procedure which has the
desired properties under Py for all ¢ € ©. Therefore we are going to divide the set ® into some
appropriate smaller regions where it is possible to do. This decomposition is very connected
with the structure of the set A of all (real or complex) roots of the so-called characteristic
equation of (4):
A—a—be ! =0.

Put vg = v9(9) = max{ReA|A € A}, v =v1(8) = max{ReA|A € A, ReA < vp}. Beside of
the case b = 0 itholds —co < v1 < vy < o0. By m(A) we denote the multiplicity of the solution
A € A. Note that m(A) = 1 for all A € A beside of (a,b) € R? with b = —e”. In this cases we
have A =a—1 € Aand m(a — 1) = 2. The values vy(8) and v;(¢) determine the asymptotic
behaviour of x((t) as t — oo (see [3] for details).

Now we are able to divide ® into some appropriate for our purposes regions. Note, that
this decomposition is very related to the classification used in [3]. There the plane R2 was
decomposed into eleven subsets. Here we use another notation.

Definition (®). The set ©® of parameters is decomposed as
O=0,UB, UB3U0By,
where @1 = Q11 U O, UB13, Oy = Oy UBy, O3 = O31, O4 = Oy U Oy with
@11 = {8 € R?| vy(8) < 0},
O = {8 € R?| vp(8) > 0and vy(9) € A},
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@13 = {8 € R?| vp(®) > 0; vo(8) € A, m(vg) =2},

Oy = {8 € R?| vp(8) > 0,09(0) € A, m(vg) =1, v1(8) >0 and v1(8) € A},
@ = {8 € R?| vp(8) > 0,09(0) € A, m(vg) =1, v1(9) >0 and v1(8) € A},
@31 = {8 € R?| vp(®) >0, v9(®) € A, m(vg) =1 and v1(8) < 0},

@4 = {9 € R*| v(8) =0, vo(8) € A, m(vg) =1},

Oup = {8 € R?| vp(8) >0, vo(8) € A, m(vg) =1, v1(8) =0and vy(8) € A}.

It should be noted, that the cases (Q2UQ3) and (Q5) considered in [3] correspond to our
exceptional lines L; and L, respectively.

Here are some comments concerning the ® subsets.

The unions ©y,...,0, are marked out, because the Fisher information matrix and related
design matrices which will be considered below, have similar asymptotic properties for all ¢
throughoutevery ®; (i =1,...,4).

Obviously, all sets ©@11, ...,y are pairwise disjoint, the closure of ® equals to R2? and the
exceptional set L1 U Ly has Lebesgue measure zero.

The set ©1 is the set of parameters ¢ for which there exists a stationary solution of (1).

Note that the one-parametric set Oy is a part of the boundaries of the following regions: @11,
©12,071,03. In this case b = —a holds and (1) can be written as a differential equation with
only one parameter and being linear in the parameter.

We shall use a tr@cation of all the introduced sets. First chose an arbitrarl but fixe_d positive
R. Define the set ©@ = {¢ € O] ||9|| < R} and in a similar way the subsets @11, ..., Oyp.

Sequential estimators of @ with a prescribed least square accuracy we have already
constructed in [10, 12]. But in these articles the set of possible parameters ¢ were restricted to
©11 UBO12 U{O41 \{(0,0)}} U Oy,

To construct a sequential plan for estimating ¢ based on the observation of Y(-) we follow the
line of [10, 12]. We shall use a single equation for Y of the form:

dY(t) = & A(t)dt + &(t)dt +dV(t), (5)
where A(t) = (Y(¢),Y(t—1)),

&(t) = X(0) — aY(0) — bY(0) +b/_01 Xo(s)ds — aV(t) — bV (t — 1) + W(¢).

The random variables A(t) and ¢(t) are F(t)-measurable for every fixed + > 1 and a short
calculation shows that all conditions of type (7) in [12], consisting of

T
15/1 (1Y ()] + [E(t)|)dt < o forall T > 1,

E[AZ(1)|F(t —2)] = 0, E[(A(1))*|F(t —2)] < 1+R?
hold in our case. Here A denotes the difference operator defined by Af(t) = f(t) — f(t —1).
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Using this operator and (5) we obtain the following equation:
dAY (t) = aAY (t)dt + bAY (t — 1)dt + AZ(t)dt + dAV (t) (6)
with the initial condition AY (1) = Y(1) — Y.

Thus we have reduced the system (1), (2) to a single differential equation for the observed
process (AY(t),t > 2) depending on the unknown parameters a and b.

3. Construction of sequential estimation plans

In this section we shall construct the sequential estimation procedure for each of the cases
@1 ...,@4 separately. Then we shall define, similar to [11, 13, 14, 16], the final sequential
estimation plan, which works in @ as a sequential plan with the smallest duration of
observations.

We shall construct the sequential estimation procedure of the parameter ¢ on the basis of the
correlation method in the cases ®1,®, (similar to [12, 14, 15]) and on the basis of correlation
estimators with weights in the cases ®, U @3. The last cases and @13 are new. It should be
noted, that the sequential plan, constructed e.g. in [2] does not work for ®j3 here, even in the
case if we observe (X(-)) instead of (Y(+)).

3.1. Sequential estimation procedure for ¢ € O,

Consider the problem of estimating ¢ € ®@;. We will use some modification of the estimation
procedure from [12], constructed for the Case II thereon. It can be easily shown, that
Proposition 3.1 below can be proved for the cases @17 U ©1; similarly to [12]. Presented below
modified procedure is oriented, similar to [16] on all parameter sets @17, @12, ©13. Thus we
will prove Proposition 3.1 in detail for the case @13 only. The proofs for cases ®1; U @, are
very similar.

For the construction of the estimation procedure we assume /1 is a real number in (0,1/5)
and h; is a random variable with values in [k, 1/5] only, F(0)-measurable and having a
known continuous distribution function.

Assume (c),>1 is a given unboundedly increasing sequence of positive numbers satisfying
the following condition:

— < 0. (7)

This construction follows principally the line of [14, 16] (see [12] as well), for which the reader
is referred for details.

We introduce for every ¢ > 0 and every s > 0 several quantities:

— the functions ) 3
g, = [ BY(O,AY(E=5)) for t21+s,
SSYUT1(0,0) for b <1+

— the sequence of stopping times

kh
T (n,e) = hyinf{k > 1: /0 1 I[¥y, (t—2—5m)|dt > e ey} for n>1;
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— the matrices

T T -
Gi(T,s) = [ ¥a(t—2~5s) ¥} (), <I>1(T,s)=/0 Y, (t— 2 — 5s)dAY(t),

Gl(n,k,s) = Gl(Tl(Tl,g) - khl,hl), <I>1(n,k,e) = @1(1’1(1’1,8) — khl,hl),'

— the times

ki(n) = arg migHGl_l(n,k,s)H, n>1;
k=1,5
— the estimators
% (n,e) = Gl_l(n,e)cbl(n,s), n>1, Gi(n,e) =Gi(nki(n)e), ®1(ne) = D1(n,ki(n),e);

— the stopping time
o1(e) = inf{N > 1: S(N) > (0107 1)/?}, (8)

where S1(N) = % B3(n,e),
n=1

Bi(n,e) = |G (me)ll, Gi(ne) = (7 en) " Giln ki(n),e)

and &, € (0,1) is some fixed chosen number,

The deviation of the “first-step estimators’ ¢ (1, €) has the form:
% (n,e)—0= (e_lcn)_l/zéfl(n,s)fl(n, e), n>1, 9)

7 (n,e)—ki (n)h
Ei(n,€) = (e ley)~1/2 / W, (t—2 — 5hy) (AE(H)dt + dV () — dV (t —1)).
0
By the definition of stopping times T; (1, &) — k1 (1), we can control the noise {1 (1, €) :

Esl|l1(n,e)]|> <153+ R?), n>1, e>0

and by the definition of the stopping time o (¢) - the first factor G, ! (1, €) in the representation
of the deviation (9).

Define the sequential estimation plan of ¢ by

1 o1 (e)

Ti(e) = i (oq1(e),€), B1(e) = ) B3 (n, €)1 (n,e). (10)

We can see that the construction of the sequential estimator ¢ (¢) is based on the family of
estimators #(T,s) = Gy Y(T,s)®(T,s), s > 0. We have taken the discretization step h; as
above, because for ¢ € @1, the functions

f(T,s) = T Gy 1(T,s)
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for every s > 0 have some periodic matrix functions as a limit on T almost surely. These
limit matrix functions are finite and may be infinite on the norm only for four values of their
argument T on every interval of periodicity of the length A > 1 (see the proof of Theorem 3.2
in [10, 12]).

In the sequel limits of the type nh_r>r010 a(n,e) or 1iII(1) a(n, &) will be used. To avoid repetitions
E—
of similar expressions we shall use, similar to [12, 14, 16], the unifying notation li\r/n a(n, ) for
nve

both of those limits if their meaning is obvious.

We state the results concerning the estimation of the parameter & € ®; in the following
proposition.

Proposition 3.1. Assume that the condition (7) on the sequence (cy) holds and let the parameter
¢ = (a,b)" in (1) be such that ¥ € ©y.

Then:

I For any ¢ > 0 and every © € @ the sequential plan (Ty(e), 1 (e)) defined by (10) is closed
(Ty(e) < o0 Py —a.s.) and possesses the following properties:

1°. sup Eng?l(e) - 19”2 < (518;
196@1

2°. the inequalities below are valid:
—fOT 0 e @11

0<lime-Ti(e) < lime-Ty(e) < co Py—as.,
e—0 e=0

—fOT v e @12

. 1 -1 —_— 1 -1
0<}:11'I(1)[ 1(8) 011’18 ] lm(l)[ 1(8) 011’18 ] < P19 as.,

—fOT’ v e @13

1 — 1

0 < lim [Ty(e) + —InTy(e) — ¥i5(e)],  lim [Ti(e) + — InTy(e) — ¥i5(e)] < o0 Py —as.,
e—0 (40} e—0 ()

the functions ¥}, (e) and ¥';(e) are defined in (30).

I1. For every © € ©q the estimator 01 (n, €) is strongly consistent:

lnl% % (n,e) =9 Py—as.

3.2. Sequential estimation procedure for ¢ € O,

Assume (cy),>1 is an unboundedly increasing sequence of positive numbers satisfying the
condition (7).

We introduce for every £ > 0 several quantities:

— the parameter A = e% and its estimator

29
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ftAY(s)AY(S —1)ds
2

A = , t>2, Ay = 0 otherwise;

ft(AY(s —1))2ds
2

— the functions
Z(t) = {0 for t<2;

() = AY(t) — MAY(t—1) for t>2,
10 for t<2

[ (AY(t),AY(t—1)) for t>2,
¥ = { (0,0) for t<2,

[ (Z(t),AY(t))" for t>2,
_{(0,0)’ for t<2;

— the parameter & = vy /v and its estimator

—~
~
~—

v (n,€) _
In [ (AY(t—3))%dt
4
SIne1c,

ay(n,e) =

7

where T
vp(n,e) =inf{T > 4: A Z2(t —3)dt = (e 'cp)’},

0 € (0,1) is a given number;
— the sequence of stopping times

khy

1 (n,e) = hpinf{k > hy vy (ne) / 15 /2 (n, €)% (¢t — 3)| Pdt > 1},

va(n,e)
where suppose /i = 1/5 and
¥y (n,¢) = diag{e ey, (e Tey) 20,

— the matrices

Ga2(S,T) = /

S

T T

S

Ga(n,k,€) = Go(va(n,€), T5(n,e) —khy), Dy(n,k,e) = Dy(va(n,e), to(n,e) —khy);

— the times
ko(n) = arg miﬂHGZ’l(n,k,s)H, n>1;
=15

— the estimators
O (n,e) = Gz_l(n,s)QDZ(n,s), n>1,

F(E—3)¥ (1)dt, Dy(S,T) = / ¥(t —3)dAY (D),

(11)

(12)

(13)
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where
Gao(n,€) = Ga(n, ka(n),€), Pa(n,e) = Pa(n,ky(n), €);
— the stopping time
7a(e) = inf{n > 1: S(N) > (28, 1)1/?}, (14)

N
where S2(N) = Y. B2(n,e), p2=p1, 0 € (0,1) is some fixed chosen number,
n=1

Bame) = [IG (o), Calme) = (¢ o) /28,2 (m,) Galm, ).

In this case we write the deviation of ¢, (#, €) in the form
(n,e) =8 = (¢ 'ca)2G, ()02 (nje), m 2 1,

where

T (n,e)—kz(n)hy
La(ne) =¥ 2 (ne) / G (¢ — 3)(AE(t)dt +dV (1) — dV(t —1))

va(ne)

and we have )
EﬁHCZ(”,E)HZ < 15(3+R2), n>1, ¢>0.

Define the sequential estimation plan of & by
Tr(e) = 1a(02(e),€), Ba2(e) = Ba(02(e), €). (15)
The construction of the sequential estimator ¢,(¢) is based on the family of estimators
82(S,T) = G, 1(S, T)®2(S, T) = e 1 TGy(S, T)®2(S,T), T > S > 0, where
Go(S,T) = e T¥,V2(T)Gy(S, T), ®a(S,T) = ¥, V/2(T)®2(S, T)

and ¥»(T) = diag{eT,e%T}. We have taken the discretization step h as above, because for
¥ € Oy, similar to the case ¢ € @15, the function

£2(S,T) = G, 1(S, T)

has some periodic (with the period A > 1) matrix function as a limit almost surely (see (35)).
This limit matrix function may have an infinite norm only for four values of their argument T
on every interval of periodicity of the length A.

We state the results concerning the estimation of the parameter # € ©; in the following
proposition.

Proposition 3.2. Assume that the condition (7) on the sequence (cn) holds as well as the parameter
¢ = (a,b) in (1) be such that & € @,. Then:

L. For any ¢ > 0 and every ® € ©, the sequential plan (T,(e), 8, (¢)) defined by (15) is closed and
possesses the following properties:

1°. sup Eﬂ”l?z(s) — 19”2 S 528;
196@2
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2°. the inequalities below are valid:

. 1 _1 s 1 _1
O<1ln’é[ 2(8) 111’18 ] lll’]f(l)[ 2(8) 111’18 ] < oo Pl9 a.s.,

II. For every © € ©, the estimator 9,(n, €) is strongly consistent:

lrgr&} 0r(n,e) =09 Py —as.

3.3. Sequential estimation procedure for ¢ € O3

We shall use the notation, introduced in the previous paragraph for the parameter A = e®
and its estimator A as well as for the functions Z(t), Z(t), ¥ (t) and ¥ (¢).

Chose the non-random functions v3(n,¢), n > 1, € > 0, satisfying the following conditions as
e—0orn—oo:

log'/?v3(n,€) 4
Wﬁ Cp = 0(1) (16)
Example: v3(11,€) = log? e 'c,,.

We introduce several quantities:
— the parameter a3 = vg and its estimator

&3 (n/ S) =In ’AV3(7’Z,€) ’,

where A; is defined in (11);
— the sequences of stopping times

T
31 (n,€) = inf{T > 0 : / 22(t - 3)dt = e ey}, (17)
v3(ne)
T
T (n,€) = inf{T > 0 : / (RY(t — 3))2dt = e2rs(mo)e ey, (18)
v3(n,e)

Tnin (1, €) = min{ 131 (n,€), B2 (1, )}, Timax(n,€) = max{ws1(n,¢€), 132(n,€) },

— the matrices

— the estimators
U3(n,e) = G;l(n,s)d>3(n,s), n>1,&e>0;
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— the stopping time
o3(e) = inf{n > 1: S3(N) > (p3d5")/?}, (19)

N
where S3(N) = Y. B3(n,€), 3 € (0,1) is some fixed chosen number,
n=1

. 1
Bs(n,e) = IG5 (ne)ll, ps=6(3+R*) ) —,
n>1 Cn
Gs(n,e) = (s’lcn)’l/z‘lfgl/z(n,s)G3(n,s), Ys3(n,e) = diag{s’lcn,e2"‘3(”’8)8_16”}.
In this case we write the deviation of 93(#, €) in the form
U3(n,e) — 0 = (s’lcn)’l/zégl(n,e)gg(n,e), n>1,

where
Tmin (7’115)

C3(ne) = W52 (n,e) / 9 (t — 3)(A&(H)dt + dV(t) — dV(E —1))

v3(n,e)
and we have

Eol|Z3(n,€)||> <6(B+R?), n>1, ¢ >0.
Define the sequential estimation plan of ¢ by
T3(e) = Tmax(03(), €), V3(e) = B3(0n(e),€). (20)

Proposition 3.3. Assume that the condition (7) on the sequence (cy) holds and let the parameter
® = (a,b)" in (1) be such that ¢ € @3. Then:

L. For every O € ©3 the sequential plan (T5(e),03(e)) defined in (20) is closed and possesses the
following properties:

1°. forany e > 0
sup Es|[85(e) — 0]|* < d3¢;
196@3

2°. the following inequalities are valid:

0 < lim eT3(e) < lim eT3(g) < co Py — a.s.;
e—0 e—0

II. For every © € ©g3 the estimator 05(n, €) is strongly consistent:

ngrg U3(n,e) =9 Py —a.s.

3.4. Sequential estimation procedure for ¢ € O,
In this case b = —a and (6) is the differential equation of the first order:
dAY (t) = aZ*(t)dt + A&(t)dt +dV(t) —dV(t—1), t > 2,

where _ _
74 (t) = AY(t) —AY(t—1) for t>2,
10 for t<2.

33
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We shall construct sequential plan (Ty(e), 94(¢)) for estimation of the vector parameter ¢ =
a(1, —1)" with the (é4¢)-accuracy in the sense of the Ly-norm for every € > 0 and fixed chosen
04 € (0, 1).

First define the sequential estimation plans for the scalar parameter a2 on the bases of
correlation estimators which are generalized least squares estimators:

a4(T) = Gy H(T)@4(T),
T
Gy(T) = / Z5(t—2)Z*(1)dt,
0
T -
®y(T) = / Z5(t — 2)dAY(H), T > 0.
0
Let (cy, n > 1) be an unboundedly increasing sequence of positive numbers, satisfying the
condition (7).
We shall define

— the sequence of stopping times (14(n,¢),n > 1) as

T
Ty (n,e) =inf{T > 2: /0 (Z*(t=2))%dt =e e, ), n > 1;

— the sequence of estimators

ay(n,€) = ag(ta(n,€)) = Gy ' (1a(n, €)) Py (14(n, €));

— the stopping time
o4(e) = inf{n > 1: S4(N) > (48, 1)'/?}, (21)

N _ ~
where S4(N) = ¥ G;z(n,s), ps = p3, Gy(n,e) = (e 'cn)1Gy(14(n,€)). The deviation of
n=1

ag(n, ) has the form
ag(n,e) —a = (e_lcn)_l/zégl(n,s)&(n,s), n>1,

where
T4 (n,€)

Ealn,e) = (e Tep) 172 / Z¥(t — 2)(AE(t)dt +dV(£) — dV(E—1))
0

and we have i
Eg||Ca(n,e)]|> <3(3+R%), n>1, ¢>0.

We define the sequential plan (Ty (), 94(¢)) for the estimation of ¢ as
Ta(e) = 1a(0o4(e), €), 04(e) = ag(oa(e),e)(1,—1)". (22)

The following proposition presents the conditions under which Ty(e) and d4(e) are
well-defined and have the desired property of preassigned mean square accuracy.
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Proposition 3.4. Assume that the sequence (cy,) defined above satisfy the condition (7). Then we
obtain the following result:

I. For any ¢ > 0 and every ¢ € Oy the sequential plan (Ty(¢), 04(¢)) defined by (22) is closed and has
the following properties:
1°. sup E19H194(8) - 19H2 < (548;
LASON
2°. the following relations hold:
—if 9 € Oy then

0<lim e-Ty(e) < lime-Ty(e) < oo Py —as.,
£—0 e—0

- lfl9 € @42 then

0 < lim [Ty(e) — ZL Ine™ 1] < Tim [Ty(e) — 2L Ine '] < 00 Py—as;

£—0 00 e—0 40
I1. For every 8 € @y the estimator 94(n, €) is strongly consistent:

lrgrel O04(n,e) =9 Py—as.

3.5. General sequential estimation procedure of the time-delayed process

In this paragraph we construct the sequential estimation procedure for the parameters a2 and
b of the process (1) on the bases of the estimators, presented in subsections 3.1-3.4.

Denote j* = arg 'm%rl T;(e). We define the sequential plan (T*(e), ¢*(e)) of estimation ¢ € ]
=1,
on the bases of all constructed above estimators by the formulae

SEP*(e) = (T*(e),0%(e)), T*(e) = Tj-(e), 0"(e) = V- (e).

The following theorem is valid.

Theorem 3.1. Assume that the underlying processes (X(t)) and (Y (t)) satisfy the equations (1), (2),

the parameter ¥ to be estimated belongs to the region © and for the numbers 61, . . ., 04 in the definitions
4

(10), (15), (20) and (22) of sequential plans the condition Z% 60; = 1is fulfilled.
]:

Then the sequential estimation plan (T*(g), 9*(¢)) possess the following properties:
1°. for any € > 0 and for every ¢ € ©

T*(¢) < o0 Py —a.s.;

2°. forany e > 0
sup Eo||8*(e) — 8||* < &;
8O

3°. the following relations hold with Py — probability one:

—fOT LA @11 U @3 U @41

lime-T*(e) < oo;
e—0

35
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—fOT LAS @12 U @42

—for 9 € @3

fim [T*(6) + - InTi e) ~ ¥ (e)] < e,
the function ¥, (¢) is defined in (30);
—for ¥ € Oy

T [T 1 -1
}_‘l_l;]f(l) [T (8) Elns ] < o0.

4. Proofs

Proof of Proposition 3.1. The closeness of the sequential estimation plan, as well as assertions
1.2 and II of Proposition 3.1 for the cases ®11 U @1 can be easily verified similar to [10, 12, 14,
16]. Now we verify the finiteness of the stopping time Tj (&) in the new case ©13.

By the definition of AY (t) we have:

where

t
X(t) = / X(t)dt.
t—1

It is easy to show that the process (X(-)) has the following representation:

0 t
X(t) :fo(t)Xo(O)—i—b/fo(t—s—1)X0(s)ds+/0 %o(t — $)dW (s)

fort > 1, X(t) = ft(ll Xo(s)ds + fot X(s)ds fort € [0,1) and X(t) = 0 for t € [—1,0). Based on
the representation above for the function x((-), the subsequent properties of x(t) the function
To(t) = ftt_l xo(s)ds can be easily shown to fulfill %,(t) =0, t € [-1,0] and as t — oo

(0(e™), y<0, 8€0y,
(ﬁO(t)eUOt + O(EIYOt)r Yo < vy, U € O1p,
v% [(1 _ e—vo)t e % — 1—50—7]0 ]evot + o(e%t), Yo < Vo, 9 c @13’
1—e7% t 1—e t ¢
~ . UO(UO*_aj,l) eUO + gl(afvlfl) evl + 0(671 )’ T < 01, U c ®21,
XO(t) B vo(lvge—a—okl)e%t + ¢1(t>evlt + O(e%t)/ 71 <01, ¥ €Oy,
1_ —0
Uo(voe—ail) eUOt + O(EIYt)’ Y < 0, 9 e @3,
= +o(e™), 7 <0, 8€0y,
1—e ™ 1
vo(voe—ainevot —a1 T o(e™), v<0, 0€0y,

Ve
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where .
$i(t) = A;cos &t + B;sin it
and A;, B;, & are some constants (see [10, 12]).

The processes X(t) and AV(t) are mutually independent and the process X(t) has the
representation similar to (3). Then, after some algebra similar to those in [10, 12] we get for
the processes X(t), Y(t) = X(t) — AX(t — 1), A = €%, AY(t) and

Z(t) = AY(t) —AAY(t—1) for t>2,
10 for t<2

in the case @13 the following limits:

lim t~le AY(t) = lim t le @ X(t) =Cx Ps—as, (23)

t—o00 t—o0
lim e 'Y (t) = Cy, lim e 'Z(t) =C; Py—as.,
t—o0 t—oo

and, as follows, foru > 0

CZ
Y(t— AY dt——%X |1 —
M ) 200 [

é—” e "0 =0 Py—as, (24)

lim

‘ T 2 —200
T—o0

»-\\ﬂ

T ~ o~
CxC u
1 _22,0 . _ “XMZ _ 2 amuvo | _
Tlgrgo | T™ / (t —u)Z(t)dt 200 [1 T}e |=0 Py—as,
1

where Cy, Cy and C, are some nonzero constants, which can be found from [10, 12]. From
(24) we obtain the limits:

: 1 : 1 - _
715110 mGl(T/S) = Gi13(s), Tlgrgo T 1e 40T |Gy (T,s)| = Gizge” CH19)%  py — 45,

2 —(2+5s)vp —(145s)vg sC3 ¢
Gia(s) = o e—2(1+35)v e—(1+6s)v 4 13 = XZZ
209 \ e 0 e 0 4uj
and, as follows, we can find
lim T~ 'e?®TG, 1(T,s) = Gi3(s) Py —as.,
T—o0
N ZvOe(3+115)vo e—(146s)v0 _e—(1+58)v0
Gia(s) = —=—=— —2(143s)2, —(2+55)00
sCxCy —e e
is a non-random matrix function.
From (23) and by the definition of the stopping times 7; (1, €) we have
2 271 (n,€) v
T (n, €
lim L(n€)e =gj3 Py—as, (25)

nve g_lcn
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- -1
where g7; = 200C}_(2 (e_2”0(2+5h1) + e_400(1+3h1)> and, as follows,

, 1 1 1,

17}51; [t1(n,€) + — % Inty(n,e) — 200 Ine le,)= 200 Ingj; Py—as., (26)
e 1

%11@ Ine~lc, 20 Py —as, @7)

(28)

1 Z
lim [———G; ! (n,€) — [(200)°gT3) e 2 M Gya(hy)] =0 Py —as.
nve ‘In®e~1c,

From (8) and (28) it follows the Py — a.s. finiteness of the stopping time o7 (¢) for every ¢ > 0
The proof of the assertion 1.1 of Proposition 3.1 for the case @13 is similar e.g. to the proof of

corresponding assertion in [14, 16]:

Es|[91(e) — 19H2—E1952( H Z Bi(n,e)(B1(n,e) = 8)|* <

31 o) q ~_1 2 5 2
<e—Eg Y — - Bilne)-||G (o)l ||l1(ne)|* <
S —
_ & 1 5 15(3 + R?) 1
—Ep||G1(n,e)||* <eby——= ) — =¢6y.
.01 n; Cn H o1 n; Cn

Now we prove the assertion 1.2 for 8 € ®;3. Denote the number

§13 = [(200)551%01 1611 |Gra ()| 2

and the times

N
Tile) —inf(n > 11 3 Infe e, > graeth),

n=1

N
(7/1/3(“3) =< lnf{n Z 1: Z 11’16 g_lcn > g~1382000h]}.

n=1

From (8) and (28) it follows, that for ¢ small enough

T13(e) < 0q(e) <o3(e) Py —as. (29)
Denote . .
Yi5(e) = 200 In(e™ 100/13(8)), Y5 (e) = 200 ln(s_lcﬁg(g)). (30)

Then, from (8), (26) and (29) we obtain finally the assertion 1.2 of Proposition 3.1

1 1
lim [Ty (e) + —InTy(e) — ¥Yi5(e)] > =—Ingj; Py —as,
0o 200

e—0
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1 1
Lim [Ty(e) + —InTy(e) — ¥5(e)] < =—1Ingj; Py—as.
00 20g

e—0

For the proof of the assertion II of Proposition 3.1 we will use the representation (9) for the
deviation

1 ~_ T12(1’l,€) 271 (n,€)vo < Ine™ Cn>3‘ 1 Cl(n )

9 — = — G ! :
1(7’118) 1 (H,S) Eilcn T (n 8) Tl 1(1’1 s)eZ’rl(ng

where
C1(n,e) = C1(t1(n, e) —ky(n)hy, hy),

i(T,s) = /‘I’S(t — 2 5s)(AE(H)dt +dV(t) — dV(t —1)).

According to (25), (27) and (28) first three factors in the right-hand side of this equality have
Py — a.s. positive finite limits. The last factor vanishes in Py — a.s. sense by the properties of
the square integrable martingales {1 (T, s) :

lim G(n,2) _ i (D)
n\Ve Tfl(n’€>8211(n,e)vo Thoo T—1e200T

=0 Py—as.

Then the estimators 91 (n, ¢) are strongly consistent as ¢ — 0 or n — oo and we obtain the
assertion II of Proposition 3.1.

Hence Proposition 3.1 is valid.

Proof of Proposition 3.2.
Similar to the proof of Proposition 3.1 and [7]-[16] we can get the following asymptotic as
t — oo relations for the processes AY(t), Z(t) and Z(t) :

—for ¥ € ©y ~
AY(t) = Cyevot + Cy1€vlt + 0(6,”) Py —a.s.,
Z(t) = Cze™ +0(e™) Py—as.,
27)0600 1 —(vg— —(v0—
At —A = CzCyle (o)t @—vi9ty py—as,
t ——— zLy € —|-0(€ ) 9 —a.s

Z(t) = Cze™ +o(e™) Py—as,;

—for ¥ € Oy

|AY (t) — Cye™ — Cyq(t)e”f| = 0(e"") Py —as.
|Z(t) — Cz(t)e"| = o(e"") Py —aus.,
At — A = 20pe” C;lllz(t)e_(vo_vl)t +o(e~ @ty py_as,
|Z(t) — Cz(t)e"!| = o(e"") Py —as,,

where Cy and Cyq are some non-zero constants, 0 < ¢ < v1, Cz = Cy1(1 —e%" "), Cy
C2 220 (1), Uz / Ca(t — we 0+ 0)"d and Gy (£) = Cz () — 200U (1) are the

periodic (with the period A > 1) functions.

39



40 Stochastic Modeling and Control

Denote

Uy (T) = / Gy (T — u)e—(oro)igy,
0

Uy, (S,T) = /CZ(T —u)Cz(S — u)e 2dy, Uz(T) = Uyy(T,T).

It should be noted that the functions Cz(t), Uz(t), Cz(t) and U;(T) have at most two roots
on each interval from [0, o) of the length A. At the same time the function U5, (S, T) - at most
four roots.

With Py-probability one we have:

—for ¢ € ®,
20T r X 2 C%/ 60
I _UO/AYt— T L 1
TflSrgoo © ( ( 3)) Zer (3 )
S
—for ¢ € Oy
T ~
lim e_zvlT/Zz(t —3)dt = C—%e_&”, (32)
T—S—00 20q
S
Jlim Gy (S, T) = Gy, (33)
where
201 (v14709)? @301 _ 4vgvy (v1+v0) @370
Cor — CzCz(v1—1vp)? CzCy(v1—1p)?
21 = _201(014w)? el +301 4vov1 (v1+70) 4o, !
CzCz(v1—vp)? CzCy(v1—1p)?
—for ¢ € @y
T
lim |e 2T / Z2(t —3)dt — e %1 {1, (T —3)| =0, (34)
T—S—o0
S
I )G*l 5,T)—G T(:O, 35
PAm Gy (8, T) — G2(T) (35)
where
_ 301 e3vo
. 1 (5 — & Uz(T)
GZZ(T> — gUZZ(T,T—:}) — UZ(T—3)UZ(T>:| . vzv0+3v1 e47]0 ¥ .
0 B 2?)0 C_yuZ(T)

The matrix Gy is constant and non-zero and Gy (T) is the periodic matrix function with the
period A > 1 (see [3], [10, 12, 14]) and may have infinite norm for four points on each interval
of periodicity only.

The next step of the proof is the investigation of the asymptotic behaviour of the stopping
times v, (n, €), 72 (n, €) and the estimators ay(n, €).
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Denote

_ [ _ « N
C,1 = e o™ mm{ﬂ, %I;%U (T)} Cpp =e o rnax{2 - STli}SUZ(T)}-

Then for ¢ € ©,

T
Cp < lim e 20T / 3)dt <
T—S—o0
S
T
< . lgn;oo el / 3)dt <C,, Py—as. (36)
S
and from the definition (13) of v, (n, €) and (32), (34) we have
C! <lim M <EM <C! Py—as
2 =3 (e ley)d T oave (elg,)d — v ST
and thus , 5
—1 < li ——1 <
20, nC,, lim [vo(n,€) 200 ne lc,] <
T 4 1 1 1
< lnl\l’/l’gl [va(n,€) — 20, Ine “¢cy] < 20, InC;" Py—as. (37)

By the definition (12) of ay(n,&) we find the following normalized representation for the
deviation ap(n,€) —a :

va(ne)
In [ (AY(t—3))%dt
— 0 _ Y| _
VZ(”/ 8) (“2(”/ 8) - DC) =1 (1’1, 8) vy (11,e) . ) -
In [ Z2(t—3)dt
0
va(ne)
209vs (1, €) + Ine~200v2(12) [ (AY(t—3))%dt
=wy(n,e) 0 NI -
2\ va(ne) U
201v5(n,€) +Ine~2on2(me) [ Z72(t — 3)dt
0
va(ne) va(ne)
vpIne200%2(ne) [ (AY(t —3))2dt — vgIne 2012(08) [ Z2(t — 3)dt
_ 0 0
= 1/2(1’!, 8) v (me) ]
20205 (n,€) + vy Ine~2012(ne) [ Z2(t — 3)dt
0

and using the limit relations (31), (36) and (37) we obtain

ap < lim (Ine lcy) - (@ — ap(n,€))< lim (Ine " 'c,) - (¢ —ap(n,e)) <ap Py —as.,
nVve nve
2

1 C
where a; = o [0oInC,; — v11In ﬁe_&’o], i=1,2.
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Thus for ¢ € O,

e < lim (e 1¢,) @ 2(9) <Jim (e71¢,)*2(8) < e py_as, (38)
nVe nve

Let 51 and s; be the positive roots of the following equations

c3 c:
Chp-5+ Le 0. .e82.58 =1 and Cpj -5+ —Le 6% .M. g% =1
209 209

respectively. It is clear that 0 < 51 < s5p < 0.
P Yy

By the definition of stopping times 1, (7, ¢) we have

1 T (n,e) T (n,€)
. ~2 A 2
_ L _ i o=

lr}gel e 1c, / Z(t=3)dt + (e~ 1c, e (me) / (AY(t=3))d

v (n,€) va(n,€)

T (n,e)
s 1 s e20172(1,6)
o B\r/rg 2012 (1,€) / Z5(t = 3)at e 1y,

0

(me) 20115 (n,e) \
! / (AY(t—3))%dt - (e L)@ 2(ne)) . (e—> ] =1

eZU()Tz(i’l,E) E_lcn
0

Then, using (38), for ¥ € ®, we have

e2011'2(n,£) o e2011'2(n,£)
s1 < lim —— < lim —— <% Py — a.s. (39)
e € lcy nve e~ 1lc,
and thus ,
—~ Ins; < lim [m(n,€) — — Ineg 1¢,] <
7o Ins1 < lim [ra(n,€) = 7 Ine ey <
< lim [1(n,¢) ! Inele,] < L Ins, Py—a.s (40)
~ nVe 23 20q "= 209 2 ¢ -

From (37) and (40) it follows, in particular, that

17}51; [To(n,e) —vp(n,e)] =c0 Py —as. (41)

By the definition of G, (1, ¢), the following limit relation can be proved

20172 (n,¢€)

2
= ) (< Gz_l(O, T (n,e) —ko(n)hy) >11)°+

lim [11G5 ™ (n, )] P = (1+¢*){ (

2orn(ne)\ ~ 1 (ng)— =1 2
+ P — (67 cy) 2™ (< Gy (0, 12(n,8) —ko(n)ha) >12)°}] =0 Py —as,,

where < G >;; is the ij-th element of the matrix G.
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Then, using (33), (35), (38), (39) and (41) we can find, similar to [12, 14], the lower and upper
bounds for the limits with Py-probability one:

gn <lim [|G; ' (n,€)]| <Timl[||G; " (n,€)[| < gaa, (42)
nve nVe

where 1 and §»; are positive finite numbers.

Thus, by the definition (14) of the stopping time 03 (¢) and from (42) we have

o1 < 1171’1’1 UZ(S) < m(fz(c‘i) < 0y Pl9 —a.s., (43)
e—0 e—0

where
o =inf{n>1: N> &' (020, 1)/}, op=inf{n>1: N> &' (020, 1)"/?}
and from (40) and (43) we obtain the second property of the assertion I in Proposition 3.2:
1 Insy091 < lim [Th(e) — 1 lns_l]g lim [T>(e) — 1 lns_l] < 1 Insyopy Py —a.s.
201 =0 201 £—0 209 201

The assertions 1.1 and II of Proposition 3.2 can be proved similar to the proof of the
corresponding statement of Proposition 3.1.

Hence Proposition 3.2 is proven.

Proof of Proposition 3.3.

Similar to the proof of Propositions 3.1, 3.2 and [7]-[16] we get for ¢ € ©3 the needed
asymptotic as t — oo relations for the processes AY (), Z(t) and Z(t). To this end we introduce
the following notation:

N
_
—~

-
S~—

I
<
=)
—~~

—

|

©»
SN—

QU
=
S~—
3
<
o
—~

©w
S~—

Il

fo(s) — /\3?0(8 — 1),

Zo(t) = Zy(t) + Za(t), Za(t) = | Zi(s)e ™\ =ds,

Cz =1+ +4[A —v5 (A = 1)] + Eo Z3(0),

Cyy =1+ A*+2[A — v, (A = 1)] + EgZ3(0) — EgZ1(0)Z5(—1).
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It should be noted that in the considered case @3 all the introduced processes Z1 (), ..., Z3()
are stationary Gaussian processes, continuous in probability, having a spectral density and, as
follows, ergodic, see [21].

According to the definition of the set @3 as t — co we have:
AY(t) = Cye®™ 4 0(e"") Py —a.s.,
|Z(t) — [AV(t) = AAV(t —1)] — Z1(t)| = 0(1) Py —a.s.,
where Cy and v < vg are some constants.

Using this properties and the representation for the deviation

of the estimator A; defined in (11), it is easy to obtain with Py-probability one the following
limit relations:

T
1 . - C2
lim ——— [ AY(t—u)AY(t —s)dt = —Le~0+s) 4y 5>, 44
Tgrgoezz,ﬂo/ (t = w)BY(t —s)dt = o 5> 0 (44)
T
Jim eUOT/Z(t)AY(t—u)dt—Cye_UO”ZZ(T)’ —0, u>0, (45)
lim [e™f(A; — A) — 200e™Cy 1 Z,(t)| = 0, (46)

t—o0

lim |Z(t) — (AV(t) = AAV(t — 1)) — Z1(t)| =0,

t—o0
1 T
Jim [ / 2(AY (1)t — Cy Z(T)| =0, 47)
0
1 T
Tlgr;OT/Z(t)Z(t)dt:CZZ, (48)
0
1 T
lim = [ Z%(t)dt = Cy. 49
lim 0/ (t)dt = C; 49)

For the investigation of the asymptotic properties of the components of sequential plan we
will use Propositions 2 and 3 from [14]. According to these propositions the processes

Z:(+),Zi(+), i=1,3 and Zy (-) defined above are O((logt)%) ast — oo Py —aus.
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Denote
1 1 . 200 T
Q= (—A O) , ¢(T) = diag{T,e"™"}.

From (44), (45), (47), (48) with Py-probability one holds

CZ
1 ~1/2(7. T)-0-0V2(T) = di .
fim ¢ N(T) - G3(0.T)- Q- 97 /A(T) = diag{Cz7, 5 -}
and, as follows,
1 . _1 — _1. 1 0 J—
jlglgoT G, (O,T)—CZZ (—A 0) Py — a.s. (50)

Further, by the definition (17) of stopping times 131 (7, ¢), first condition in (16) on the function
v3(n, €) and from (49) we find

=C,! Py—as. (51)

nve g_lcn

For the investigation of asymptotic properties of stopping times 3, (1, €) with Py-probability
one we show, using the second condition in (16) on the function v3(n, ¢) and (46), that

o203 (ne)e ey,

1n11vr£1 In T 17115181 2(a3(n,e) —a)e tep= lnl\r/rgl 2}\_1(/\1/3(”,8) —MNe e, =
-1 1/2
ety DOy Zals(ne)) o (e

nVe evovs(ne) n\Ve 10g1/ 2ys(ne)  etors(me)

and then
o203 (ne)e ey,

lim ————— =1 Py—a.s.
nVe  e2voe tcy 9

Thus, by the definition (18) of stopping times T3, (1, ¢) and from (44) we find

1 200eb%
. 1 0
E@ [132(1,€) — € "y 200 In a

Py — a.s. (52)

Then, from (50)-(52) with Py-probability one we obtain

lim G3'(n,¢) = {Cz V1}C,, - (1—)\ 8)’

nVve

where a Vb = max(a,b) and, by the definition (19) of the stopping time o3(¢), for ¢ small
enough it follows
0'3(8) =03 Plg —a.s.,

where

73 =inf{n >1: N> g;" (030, ")}
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and g3 = {Cz V 1}2C S(1+ A?).

Thus we obtain the Py-finiteness of the stopping time T3(¢) and the assertion I1.2 of Proposition
3.3
lim eT3(e) = {Cgl V1}cg, Py —as.

e—0

The assertions I.1 and II of Proposition 3.3 can be proved similar to the proofs of Propositions
3.1and 3.2.

Hence Proposition 3.3 is proven.

Proof of Proposition 3.4.
This case is a scalar analogue of the case ©1; U O15.

By the definition,

Z5(t) = X(t) = X(t—=1)+AV(t) = AV(t - 1).
According to the asymptotic properties of the process (X(t)), for u = 0,2 we have:
—for ¥ € Oy :
exist the positive constant limits

lim —/z )Z*(t — u)dt = Cly (1) Py — as.; (53)

T—o0

—for ¥ € Oy :
e W ZH () = Cly+ole” @ M) ast s 0 Py—as,
(CZZ)Zefvou
Th_rgo eszT /Z* (t—u)dt = BT Py —a.s., (54)

where o

_ 0

C=—°"
vo(vo —a+1)

Assertions 1.1 and II of Proposition 3.4 can be proved similar to Proposition 3.1.

Now we prove the closeness of the plan (22) and assertion 1.2 of Proposition 3.4. To this end
we shall investigate the asymptotic properties of the stopping times 14 (1, €) and 04 (¢).

From the definition of 14 (1, ¢) and (53), (54) we have
—for® € Oy :

_T(ne) -
lim — e = (C;(0))7! Py —as,; (55)

—ford € Oy :
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21]01’4(1’1,8) 2 2
. e - 00 _
17}51; o, <C22> Py —as., (56)
) 1 1 4, 1. 20
lr}\l'/rgl [T4(7’l, 8) — % Ine Cn] = % In CZZ Pﬂ — a.s. (57)

As follows, the stopping times 74(n, €) are Py — a.s. finite for all ¢ € ©.

Denote
041 = inf{n 2 1: N> (p4(54_1)1/2g41} Oy = inf{n Z 1: N> (p454_1)1/2g42}

where gq1 = [C};(2)(C}(0))71 vV 200e72%],  gun = [C};(2)(Ci(0))~L A 209e72%], where
aAb = min(a,b) and by the definition of the stopping time o4(e) (21) as well as from
(53)—(56) follows the Py — a.s. finiteness of 0y(¢) and the following inequalities, which hold
with Pyg-probability one for e small enough:

041 S oy4(e) <oyp Py —as. (58)

Then we obtain the finiteness of the stopping time T4(¢) and the assertion 1.2 of Proposition
3.4, which follows from (55), (57) and (58):

—for ¥ € Oy :

Coy (Czlkl (O))_l < lim €T4<€> < %8714(8) < C0'42(C21 (O)>_1 Py —as,;

nVve

—for ¥ € Oy :

Hence Proposition 3.4 is valid.

Proof of Theorem 3.1. The closeness of the sequential estimation plan SEP*(e) (assertion 1)
and assertion 3 of Theorem 3.1 follow from Propositions 3.1-3.4 directly.

Now we prove the assertion 2. To this end we show first, that all the stopping times
Ti(n,e), i = 1,2,4 and 13;(n,¢), i = 1,2 are Py — a.s.-finite for every ¢ € ©. It should be
noted, that the integrals

/AY 2dt—oo and / 2dt—oo Py — a.s. (59)
0

in all the cases @1, ..., ©4 and, as follows, all the stopping times 7;(1,¢), i = 1,2,4 and 13, (1, €)
are Py-a.s.-finite for every ¢ > 0 and all n > 1. The properties (59) can be established by using
the asymptotic properties of the process (X(t),Y(t)) (see proofs of Propositions 3.1-3.4 and

[3], [7]-[16]).

The stopping times 131 (1, €) are finite in the region ®, U ®3 according to Propositions 3.2, 3.3.
As follows, it remind only to verify the finiteness of the stopping time 131 (1, ¢) for ¢ € ©1 U ©y.
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According to the definition (17) of these stopping times it is enough to show the divergence of
the following integral

/ 7%(t)dt =0 Py —as.,
0

where Z(t) = AY(t) — MMAY (t —1).

This property follows from the following facts:

—for ¥ € O

lim Ay = A, Py —a.s.,
t—o0

where A is some constant and the process Z(t) can be approximated, similar to the case ®;
(see the proof of Proposition 3.3) by a Gaussian stationary process;

—for ¢ € O1p
thm |)\t — Cl(i’)| =0 Pl? — a.s.,
—» 00

and then
lim |e"®'Z(t) -~ Cy(t)| =0 Py—as.,

t—o0

where C;(t) and C;(t) are some periodic bounded functions;

— for @13
lim t(/\t — )L) = C3 pl9 — a.s.
t—o0

and
lim e ™'Z(t) =Cy Py—as.,

t—o0

where C3 and C4 are some non-zero constants;

— for @41 .
tlggo Z(t) — % (Xo(O) +b/X0(S)dS) —
-1
1 i p (W(t) — AW (t—1)) — (AV(t) — AAV(t — 1))’ =0 Py—as;
— for @42

lim e “!'Z(t) = Cs Py—a.s.,
t—o0

where Cs is some non-zero constant.
Denote yy = pp =1, 3 = g = 2/5.

Now we can verify the second property of the estimator ¢(¢). By the definition of stopping
times 0']'(8), j=1,4, we get

2 15X S 2 %1 2 |17 2

sup Eyl[8(e) — 8||* < esup Egpj. 05 ), —Bj: (m,€) - [|Gj (n o) [ - [1j+ (n, 0)[|” <

€O €O n=1 ""

_ L
< esup Egp]-*15j* Y C—||Cj*(”/5)||2-
=5e) n>1""
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Due to the obtained finiteness properties of all the stopping times in these sums all the
mathematical expectations are well-defined and we can estimate finally

4

_ 1 5
sup Egl[8(e) — 8> < e Y P; 5y - sup Eol|Zi(n,€)||> <
9cO j=1 n>1"" 9ce
PRI E 1 <
<153 +R%)e)_p; Giuj ) — =e) 5=c¢
j=1 n>1 "1 j=1

Hence Theorem 3.1 is proven.

5. Conclusion

This chapter presents a sequential approach to the guaranteed parameter estimation problem
of a linear stochastic continuous-time system. We consider a concrete stochastic delay
differential equation driven by an additive Wiener process with noisy observations.

At the same time for the construction of the sequential estimation plans we used mainly
the structure and the asymptotic behaviour of the solution of the system. Analogously, the
presented method can be used for the guaranteed accuracy parameter estimation problem of
the linear ordinary and delay stochastic differential equations of an arbitrary order with and
without noises in observations.

The obtained estimation procedure can be easily generalized, similar to [9, 11, 13, 16], to
estimate the unknown parameters with preassigned accuracy in the sense of the L;-norm
(9 > 2). The estimators with such properties may be used in various adaptive procedures
(control, prediction, filtration).
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