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1. Introduction

The least-squares estimation problem in linear discrete-time stochastic systems in which the
signal to be estimated is always present in the observations has been widely treated; as is well
known, the Kalman filter [12] provides the least-squares estimator when the additive noises
and the initial state are Gaussian and mutually independent.

Nevertheless, in many real situations, usually the measurement device or the transmission
mechanism can be subject to random failures, generating observations in which the state
appears randomly or which may consist of noise only due, for example, to component
or interconnection failures, intermittent failures in the observation mechanism, fading
phenomena in propagation channels, accidental loss of some measurements or data
inaccessibility at certain times. In these situations where it is possible that information
concerning the system state vector may or may not be contained in the observations, at each
sampling time, there is a positive probability (called false alarm probability) that only noise is
observed and, hence, that the observation does not contain the transmitted signal, but it is
not generally known whether the observation used for estimation contains the signal or it
is only noise. To describe this interrupted observation mechanism (uncertain observations),
the observation equation, with the usual additive measurement noise, is formulated by
multiplying the signal function at each sampling time by a binary random variable taking
the values one and zero (Bernoulli random variable); the value one indicates that the
measurement at that time contains the signal, whereas the value zero reflects the fact that
the signal is missing and, hence, the corresponding observation is only noise. So, the
observation equation involves both an additive and a multiplicative noise, the latter modeling
the uncertainty about the signal being present or missing at each observation.

Linear discrete-time systems with uncertain observations have been widely used in estimation
problems related to the above practical situations (which commonly appear, for example, in
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Communication Theory). Due to the multiplicative noise component, even if the additive
noises are Gaussian, systems with uncertain observations are always non-Gaussian and hence,
as occurs in other kinds of non-Gaussian linear systems, the least-squares estimator is not a
linear function of the observations and, generally, it is not easily obtainable by a recursive
algorithm; for this reason, research in this kind of systems has focused special attention on the
search of suboptimal estimators for the signal (mainly linear ones).

In some cases, the variables modeling the uncertainty in the observations can be assumed
to be independent and, then, the distribution of the multiplicative noise is fully determined
by the probability that each particular observation contains the signal. As it was shown by
Nahi [17] (who was the first who analyzed the least-squares linear filtering problem in this
kind of systems assuming that the state and observation additive noises are uncorrelated)
the knowledge of the aforementioned probabilities allows to derive estimation algorithms
with a recursive structure similar to the Kalman filter. Later on, Monzingo [16] completed
these results by analyzing the least-squares smoothing problem and, subsequently, [3] and [4]
generalized the least-squares linear filtering and smoothing algorithms considering that the
additive noises of the state and the observation are correlated.

However, there exist many real situations where this independence assumption of the
Bernoulli variables modeling the uncertainty is not satisfied; for example, in signal
transmission models with stand-by sensors in which any failure in the transmission is detected
immediately and the old sensor is then replaced, thus avoiding the possibility of the signal
being missing in two successive observations. This different situation was considered by
[9] by assuming that the variables modeling the uncertainty are correlated at consecutive
time instants, and the proposed least-squares linear filtering algorithm provides the signal
estimator at any time from those in the two previous instants. Later on, the state estimation
problem in discrete-time systems with uncertain observations, has been widely studied under
different hypotheses on the additive noises involved in the state and observation equations
and, also, under several hypotheses on the multiplicative noise modeling the uncertainty in
the observations (see e.g. [22] - [13], among others).

On the other hand, there are many engineering application fields (for example, in
communication systems) where sensor networks are used to obtain all the available
information on the system state and its estimation must be carried out from the observations
provided by all the sensors (see [6] and references therein). Most papers concerning systems
with uncertain observations transmitted by multiple sensors assume that all the sensors have
the same uncertainty characteristics. In the last years, this situation has been generalized by
several authors considering uncertain observations whose statistical properties are assumed
not to be the same for all the sensors. This is a realistic assumption in several application fields,
for instance, in networked communication systems involving heterogeneous measurement
devices (see e.g. [14] and [8], among others). In [7] it is assumed that the uncertainty in
each sensor is modeled by a sequence of independent Bernoulli random variables, whose
statistical properties are not necessarily the same for all the sensors. Later on, in [10] and
[1] the independence restriction is weakened; specifically, different sequences of Bernoulli
random variables correlated at consecutive sampling times are considered to model the
uncertainty at each sensor. This form of correlation covers practical situations where the
signal cannot be missing in two successive observations. In [2] the least-squares linear and
quadratic problems are addressed when the Bernoulli variables describing the uncertainty in
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the observations are correlated at instants that differ two units of time. This study covers
more general practical situations, for example, in sensor networks where sensor failures may
happen and a failed sensor is replaced not immediately, but two sampling times after having
failed. However, even if it is assumed that any failure in the transmission results from sensor
failures, usually the failed sensor may not be replaced immediately but after m instants of
time; in such situations, correlation among the random variables modeling the uncertainty
in the observations at times k and k + m must be considered and new algorithms must be
deduced.

The current chapter is concerned with the state estimation problem for linear discrete-time
systems with uncertain observations when the uncertainty at any sampling time k depends
only on the uncertainty at the previous time k − m; this form of correlation allows us
to consider certain models in which the signal cannot be missing in m + 1 consecutive
observations.

The random interruptions in the observation process are modeled by a sequence of Bernoulli
variables (at each time, the value one of the variable indicates that the measurement is the
current system output, whereas the value zero reflects that only noise is available), which
are correlated only at the sampling times k − m and k. Recursive algorithms for the filtering
and fixed-point smoothing problems are proposed by using an innovation approach; this
approach, based on the fact that the innovation process can be obtained by a causal and
invertible operation on the observation process, consists of obtaining the estimators as a linear
combination of the innovations and simplifies considerably the derivation of the estimators
due to the fact that the innovations constitute a white process.

The chapter is organized as follows: in Section 2 the system model is described; more
specifically, we introduce the linear state transition model perturbed by a white noise,
and the observation model affected by an additive white noise and a multiplicative noise
describing the uncertainty. Also, the pertinent hypotheses to address the least-squares linear
estimation problem are established. In Section 3 this estimation problem is formulated
using an innovation approach. Next, in Section 4, recursive algorithms for the filter and
fixed-point smoother are derived, including recursive formulas for the estimation error
covariance matrices. Finally, the performance of the proposed estimators is illustrated in
Section 5 by a numerical simulation example, where a two-dimensional signal is estimated
and the estimation accuracy is analyzed for different values of the uncertainty probability and
several values of the time period m.

2. Model description

Consider linear discrete-time stochastic systems with uncertain observations coming from
multiple sensors, whose mathematical modeling is accomplished by the following equations.

The state equation is given by

xk = Fk−1xk−1 + wk−1, k ≥ 1, (1)

where {xk; k ≥ 0} is an n-dimensional stochastic process representing the system state,
{wk; k ≥ 0} is a white noise process and Fk, for k ≥ 0, are known deterministic matrices.

3
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We consider scalar uncertain observations {yi
k; k ≥ 1}, i = 1, . . . , r, coming from r sensors

and perturbed by noises whose statistical properties are not necessarily the same for all the
sensors. Specifically, we assume that, in each sensor and at any time k, the observation yi

k,
perturbed by an additive noise, can have no information about the state (thus being only
noise) with a known probability. That is,

yi
k =

⎧
⎨
⎩

Hi
kxk + vi

k, with probability θ
i
k

vi
k, with probability 1 − θ

i
k

where, for i = 1, . . . , r, {vi
k; k ≥ 1} is the observation additive noise process of the i-th sensor

and Hi
k, for k ≥ 1, are known deterministic matrices of compatible dimensions. If we introduce

{θi
k; k ≥ 1}, i = 1, . . . , r, sequences of Bernoulli random variables with P[θi

k = 1] = θ
i
k, the

observations of the state can be rewritten as

yi
k = θi

kHi
kxk + vi

k, k ≥ 1, i = 1, . . . , r. (2)

Remark 1. If θi
k = 1, which occurs with known probability θ

i
k, the state xk is present in the

observation yi
k coming from the i-th sensor at time k, whereas if θi

k = 0 such observation

only contains additive noise, vi
k, with probability 1 − θ

i
k. This probability is called false alarm

probability and it represents the probability that only noise is observed or, equivalently, that yi
k

does not contain the state.

The aim is to address the state estimation problem considering all the available observations
coming from the r sensors. For convenience, denoting yk = (y1

k , . . . , yr
k)

T , vk = (v1
k , . . . , vr

k)
T ,

Hk = (H1T
k , . . . , HrT

k )T and Θk = Diag(θ1
k , . . . , θr

k), Equation (2) is equivalent to the following
stacked observation equation

yk = ΘkHkxk + vk, k ≥ 1. (3)

2.1. Model hypotheses

In order to analyze the least-squares linear estimation problem of the state xk from the
observations y1, . . . , yL, with L ≥ k, some considerations must be taken into account. On
the one hand, it is known that the linear estimator of xk, is the orthogonal projection of xk

onto the space of n-dimensional random variables obtained as linear transformations of the
observations y1, . . . , yL, which requires the existence of the second-order moments of such
observations. On the other hand, we consider that the variables describing the uncertainty in
the observations are correlated in instants that differ m units of time to cover many practical
situations where the independence assumption on such variables is not realistic. Specifically,
the following hypotheses are assumed:

Hypothesis 1. The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = P0.

Hypothesis 2. The state noise {wk; k ≥ 0} is a zero-mean white sequence with Cov[wk] =
Qk, ∀k ≥ 0.
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Hypothesis 3. The observation additive noise {vk; k ≥ 1} is a zero-mean white process with
Cov[vk] = Rk, ∀k ≥ 1.

Hypothesis 4. For i = 1, . . . , r, {θi
k; k ≥ 1} is a sequence of Bernoulli random variables with

P[θi
k = 1] = θ

i
k. For i, j = 1, . . . , r, the variables θi

k and θ
j
s are independent for |k− s| �= 0, m and

Cov[θi
k, θ

j
s] are known for |k − s| = 0, m. Defining θk = (θ1

k , . . . , θr
k)

T, the covariance matrices of
θk and θs will be denoted by Kθ

k,s.

Finally, we assume the following hypothesis on the independence of the initial state and
noises:

Hypothesis 5. The initial state x0 and the noise processes {wk; k ≥ 0}, {vk; k ≥ 1} and
{θk; k ≥ 1} are mutually independent.

Remark 2. For the derivation of the estimation algorithms a matrix product, called Hadamard

product, which is simpler than the conventional product, will be considered. Let A, B ∈ Mmn,
the Hadamard product (denoted by ◦) of A and B is defined as [A ◦ B]ij = AijBij. From this
definition it is easily deduced (see [7]) the next property that will be needed later.

For any random matrix Gm×m independent of {Θk; k ≥ 1}, the following equality is satisfied

E[ΘkGm×mΘs] = E[θkθT
s ] ◦ E[Gm×m].

Particularly, denoting Θk = E[Θk], it is immediately clear that

E[(Θk − Θk)Gm×m(Θs − Θs)] = Kθ
k,s ◦ E[Gm×m]. (4)

Remark 3. Several authors assume that the observations available for the estimation come
either from multiple sensors with identical uncertainty characteristics or from a single sensor
(see [20] for the case when the uncertainty is modeled by independent variables, and [19] for
the case when such variables are correlated at consecutive sampling times). Nevertheless,
in the last years, this situation has been generalized by some authors considering multiple
sensors featuring different uncertainty characteristics (see e.g. [7] for the case of independent
uncertainty, and [1] for situations where the uncertainty in each sensor is modeled by variables
correlated at consecutive sampling times). We analyze the state estimation problem for the
class of linear discrete-time systems with uncertain observation (3), which, as established
in Hypothesis 4, are characterized by the fact that the uncertainty at any sampling time k

depends only on the uncertainty at the previous time k − m; this form of correlation allows
us to consider certain models in which the signal cannot be absent in m + 1 consecutive
observations.

3. Least-squares linear estimation problem

As mentioned above, our aim in this chapter is to obtain the least-squares linear estimator,
x̂k/L, of the signal xk based on the observations {y1, . . . , yL}, with L ≥ k, by recursive
formulas. Specifically, the problem is to derive recursive algorithms for the least-squares
linear filter (L = k) and fixed-point smoother (fixed k and L > k) of the state using uncertain
observations (3). For this purpose, we use an innovation approach as described in [11].

5
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Since the observations are generally nonorthogonal vectors, we use the Gram-Schmidt

orthogonalization procedure to transform the set of observations {y1, . . . , yL} into an equivalent
set of orthogonal vectors {ν1, . . . , νL}; equivalent in the sense that they both generate the same
linear subspace; that is,

L(y1, . . . , yL) = L(ν1, . . . , νL) = LL.

Let {ν1, . . . , νk−1} be the set of orthogonal vectors satisfying L(ν1, . . . , νk−1) = L(y1, . . . , yk−1),
the next orthogonal vector, νk, corresponding to the new observation yk, is obtained by
projecting yk onto Lk−1; specifically

νk = yk − Proj{yk onto Lk−1},

and, because of the orthogonality of {ν1, . . . , νk−1} the above projection can be found by
projecting yk along each of the previously found orthogonal vectors νi, for i ≤ k − 1,

Proj{yk onto Lk−1} =
k−1

∑
i=1

Proj{yk along νi} =
k−1

∑
i=1

E[ykνT
i ]

(
E[νiν

T
i ]
)−1

νi.

Since the projection of yk onto Lk−1 is ŷk/k−1, the one-stage least-squares linear predictor of
yk, we have that

ŷk/k−1 =
k−1

∑
i=1

Tk,iΠ
−1
i νi , k ≥ 2 (5)

where Tk,i = E[ykνT
i ] and Πi = E[νiν

T
i ] is the covariance of νi.

Consequently, by starting with ν1 = y1 − E[y1], the orthogonal vectors νk are determined by
νk = yk − ŷk/k−1, for k ≥ 2. Hence, νk can be considered as the "new information" or the
"innovation" in yk given {y1, . . . , yk−1}.

In summary, the observation process {yk; k ≥ 1} has been transformed into an equivalent
white noise {νk; k ≥ 1} known as innovation process. Taking into account that both processes
satisfy that

νi ∈ L(y1, . . . , yi) and yi ∈ L(ν1, . . . , νi), ∀i ≥ 1,

we conclude that such processes are related to each other by a causal and causally invertible
linear transformation, thus making the innovation process be uniquely determined by the
observations.

This consideration allows us to state that the least-squares linear estimator of the state based
on the observations, x̂k/L, is equal to the least-squares linear estimator of the state based on
the innovations {ν1, . . . , νL}. Thus, projecting xk separately onto each νi, i ≤ L, the following
general expression for the estimator x̂k/L is obtained

x̂k/L =
L

∑
i=1

Sk,iΠ
−1
i νi, k ≥ 1, (6)

where Sk,i = E[xkνT
i ]. This expression is the starting point to derive the recursive filtering and

fixed-point smoothing algorithms in the next section.

6 Stochastic Modeling and Control
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4. Least-squares linear estimation recursive algorithms

In this section, using an innovation approach, recursive algorithms are proposed for the filter,
x̂k/k, and the fixed-point smoother, x̂k/L, for fixed k and L > k.

4.1. Linear filtering algorithm

In view of the general expression (6) for L = k, it is clear that the state filter, x̂k/k, is obtained
from the one-stage state predictor, x̂k/k−1, by

x̂k/k = x̂k/k−1 + Sk,kΠ−1
k νk , k ≥ 1; x̂0/0 = x0. (7)

Hence, an equation for the predictor x̂k/k−1 in terms of the filter x̂k−1/k−1 and expressions for
the innovation νk, its covariance matrix Πk and the matrix Sk,k are required.

State predictor x̂k/k−1. From hypotheses 2 and 5, it is immediately clear that the filter of the
noise wk−1 is ŵk−1/k−1 = E[wk−1] = 0 and hence, taking into account Equation (1), we have

x̂k/k−1 = Fk−1x̂k−1/k−1, k ≥ 1. (8)

Innovation νk. We will now get an explicit formula for the innovation, νk = yk − ŷk/k−1, or
equivalently for the one-stage predictor of the observation, ŷk/k−1. For this purpose, taking
into account (5), we start by calculating Tk,i = E[ykνT

i ], for i ≤ k − 1.

From the observation equation (3) and hypotheses 3 and 5, it is clear that

Tk,i = E
[
ΘkHkxkνT

i

]
, i ≤ k − 1. (9)

Now, for k ≤ m or k > m and i < k − m, hypotheses 4 and 5 guarantee that Θk is independent
of the innovations νi , and then we have that Tk,i = Θk HkE[xkνT

i ] = ΘkHkSk,i. So, after some
manipulations, we obtain

I. For k ≤ m, it is satisfied that ŷk/k−1 = Θk Hk

k−1

∑
i=1

Sk,iΠ
−1
i νi, and using (6) for L = k − 1 it is

obvious that
ŷk/k−1 = Θk Hk x̂k/k−1, k ≤ m. (10)

I I. For k > m, we have that ŷk/k−1 = Θk Hk

k−(m+1)

∑
i=1

Sk,iΠ
−1
i νi +

m

∑
i=1

Tk,k−iΠ
−1
k−iνk−i and adding

and subtracting
m

∑
i=1

Θk HkSk,k−iΠ
−1
k−iνk−i, the following equality holds

ŷk/k−1 = ΘkHk

k−1

∑
i=1

Sk,iΠ
−1
i νi +

m

∑
i=1

(Tk,k−i − Θk HkSk,k−i)Π
−1
k−iνk−i, k > m. (11)

Next, we determine an expression for Tk,k−i − ΘkHkSk,k−i, for 1 ≤ i ≤ m.

7
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Taking into account (9), it follows that

Tk,k−i − ΘkHkSk,k−i = E
[
(Θk − Θk)HkxkνT

k−i

]
, 1 ≤ i ≤ m, (12)

or equivalently,

Tk,k−i − Θk HkSk,k−i = E
[
(Θk − Θk)HkxkyT

k−i

]
− E

[
(Θk − Θk)Hkxk ŷT

k−i/k−(i+1)

]
.

To calculate the first expectation, we use again (3) for yk−i and from hypotheses 3 and 5,
we have that

E
[
(Θk − Θk)HkxkyT

k−i

]
= E

[(
Θk − Θk

)
HkxkxT

k−iH
T
k−iΘk−i

]

which, using Property (4), yields

E
[
(Θk − Θk)HkxkyT

k−i

]
= Kθ

k,k−i ◦
(

HkE[xkxT
k−i]H

T
k−i

)
.

Now, denoting Dk = E[xkxT
k ] and Fk,i = Fk−1 · · · Fi, from Equation (1) it is clear that

E[xkxT
k−i] = Fk,k−iDk−i, and hence

E
[
(Θk − Θk)HkxkyT

k−i

]
= Kθ

k,k−i ◦
(

HkFk,k−iDk−iH
T
k−i

)

where Dk can be recursively obtained by

Dk = Fk−1Dk−1FT
k−1 + Qk−1, k ≥ 1;

D0 = P0 + x0xT
0 .

(13)

Summarizing, we have that

Tk,k−i − ΘkHkSk,k−i = Kθ
k,k−i ◦

(
HkFk,k−iDk−iH

T
k−i

)

− E
[
(Θk − Θk)Hkxk ŷT

k−i/k−(i+1)

]
, 1 ≤ i ≤ m.

(14)

Taking into account the correlation hypothesis of the variables describing the uncertainty,
the right-hand side of this equation is calculated differently for i = m or i < m, as shown
below.
(a) For i = m, since Θk is independent of the innovations νi, for i < k − m, we have that

E
[
(Θk − Θk)Hkxk ŷT

k−m/k−(m+1)

]
= 0, and from (14)

Tk,k−m − Θk HkSk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−m

)
. (15)

(b) For i < m, from Hypothesis 4, Kθ
k,k−i = 0 and, hence, from (14)

Tk,k−i − Θk HkSk,k−i = −E
[
(Θk − Θk)Hkxk ŷT

k−i/k−(i+1)

]
.

8 Stochastic Modeling and Control
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Now, from expression (5),

ŷk−i/k−(i+1) =
k−(i+1)

∑
j=1

Tk−i,jΠ
−1
j νj ,

and using again that Θk is independent of νi , for i �= k − m, it is deduced that

Tk,k−i − Θk HkSk,k−i = −E[
(
Θk − Θk

)
HkxkνT

k−m]Π
−1
k−mTT

k−i,k−m

or, equivalently, from (12) for i = m, (15) and noting

Ψk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−m

)
Π−1

k−m,

we have that
Tk,k−i − ΘkHkSk,k−i = −Ψk,k−mTT

k−i,k−m, i < m. (16)

Next, substituting (15) and (16) into (11) and using (6) for x̂k/k−1, it is concluded that

ŷk/k−1 = Θk Hk x̂k/k−1 + Ψk,k−m

[
νk−m −

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iνk−i

]
, k > m. (17)

Finally, using (3) and (16) and taking into account that, from (1), Sk,k−i = Fk,k−iSk−i,k−i, the
matrices Tk,k−i in (17) are obtained by

Tk,k−i = ΘkHkFk,k−iSk−i,k−i, 2 ≤ k ≤ m, 1 ≤ i ≤ k − 1,

Tk,k−i = ΘkHkFk,k−iSk−i,k−i − Ψk,k−mTT
k−i,k−m, k > m, 1 ≤ i ≤ m − 1.

Matrix Sk,k. Since νk = yk − ŷk/k−1, we have that Sk,k = E[xkνT
k ] = E[xkyT

k ] − E[xkŷT
k/k−1].

Next, we calculate these expectations.

I. From Equation (3) and the independence hypothesis, it is clear that E[xkyT
k ] = Dk HT

k Θk,
∀k ≥ 1, where Dk = E[xkxT

k ] is given by (13).

I I. To calculate E[xkŷT
k/k−1], the correlation hypothesis of the random variables θk must be

taken into account and two cases must be considered:

(a) For k ≤ m, from (10) we obtain

E[xkŷT
k/k−1] = E[xk x̂T

k/k−1]H
T
k Θk.

By using the orthogonal projection lemma, which assures that E[xk x̂T
k/k−1] = Dk −

Pk/k−1, where Pk/k−1 = E[(xk − x̂k/k−1)(xk − x̂k/k−1)
T ] is the prediction error

covariance matrix, we get

E[xkŷT
k/k−1] = (Dk − Pk/k−1) HT

k Θk, k ≤ m.

9
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(b) For k > m, from (17) it follows that

E[xk ŷT
k/k−1] = E[xk x̂T

k/k−1]H
T
k Θk + E[xkνT

k−m]Ψ
T
k,k−m

− E

⎡
⎣xk

(
m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iνk−i

)T
⎤
⎦ ΨT

k,k−m,

hence, using again the orthogonal projection lemma and taking into account that
Sk,k−i = E[xkνT

k−i], for 1 ≤ i ≤ m, it follows that

E[xk ŷT
k/k−1] = (Dk − Pk/k−1) HT

k Θk + Sk,k−mΨT
k,k−m

−
m−1

∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−mΨT

k,k−m, k > m.

Then, substituting these expectations in the expression of Sk,k and simplifying, it is clear that

Sk,k = Pk/k−1HT
k Θk, 1 ≤ k ≤ m,

Sk,k = Pk/k−1HT
k Θk −

(
Sk,k−m −

m−1

∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−m

)
ΨT

k,k−m, k > m.
(18)

Now, an expression for the prediction error covariance matrix, Pk/k−1, is necessary. From
Equation (1), it is immediately clear that

Pk/k−1 = Fk−1Pk−1/k−1FT
k−1 + Qk−1, k ≥ 1,

where Pk/k = E[(xk − x̂k/k)(xk − x̂k/k)
T ] is the filtering error covariance matrix. From

Equation (7), it is concluded that

Pk/k = Pk/k−1 − Sk,kΠ−1
k ST

k,k, k ≥ 1; P0/0 = P0.

Covariance matrix of the innovation Πk = E[νkν
T
k ]. From the orthogonal projection lemma,

the covariance matrix of the innovation is obtained as Πk = E[ykyT
k ]− E[ŷk/k−1ŷT

k/k−1].

From (3) and using Property (4), we have that

E[ykyT
k ] = E[θkθT

k ] ◦
(

HkDk HT
k

)
+ Rk, k ≥ 1.

To obtain E[ŷk/k−1ŷT
k/k−1] two cases must be distinguished again, due to the correlation

hypothesis of the Bernoulli variables θk:

I. For k ≤ m, Equation (10) and Property (4) yield

E[ŷk/k−1ŷT
k/k−1] =

(
θkθ

T
k

)
◦
(

HkE[x̂k/k−1x̂T
k/k−1]H

T
k

)

and in view of the orthogonal projection lemma,

E[ŷk/k−1ŷT
k/k−1] =

(
θkθ

T
k

)
◦
(

Hk(Dk − Pk/k−1)HT
k

)
, k ≤ m.

10 Stochastic Modeling and Control
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I I. For k > m, an analogous reasoning, but using now Equation (17), yields

E[ŷk/k−1ŷT
k/k−1] =

(
θkθ

T
k

)
◦
(

Hk(Dk − Pk/k−1)HT
k

)
+ Ψk,k−mΠk−mΨT

k,k−m

+ Ψk,k−m

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iΠk−iΠ
−1
k−iTk−i,k−mΨT

k,k−m

+ ΘkHkE[x̂k/k−1νT
k−m]Ψ

T
k,k−m + Ψk,k−mE[νk−mx̂T

k/k−1]H
T
k Θk

− ΘkHkE[x̂k/k−1

m−1

∑
i=1

νT
k−iΠ

−1
k−iTk−i,k−m]Ψ

T
k,k−m

− Ψk,k−m

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iE[νk−i x̂
T
k/k−1]H

T
k Θk.

Next, again from the orthogonal projection lemma, E[x̂k/k−1νT
k−i] = E[xkνT

k−i] = Sk,k−i, for
1 ≤ i ≤ m, and therefore

E[ŷk/k−1ŷT
k/k−1] =

(
θkθ

T
k

)
◦
(

Hk(Dk − Pk/k−1)HT
k

)
+ Ψk,k−mΠk−mΨT

k,k−m

+ Ψk,k−m

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iTk−i,k−mΨT
k,k−m

+ Θk Hk

(
Sk,k−mΨT

k,k−m −
m−1

∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−mΨT

k,k−m

)

+

(
Ψk,k−mST

k,k−m − Ψk,k−m

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iS
T
k,k−i

)
HT

k Θk.

Finally, from Equation (18), we have

Sk,k−mΨT
k,k−m −

m−1

∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−mΨT

k,k−m = −(Sk,k − Pk/k−1HT
k Θk),

and hence,

E[ŷk/k−1ŷT
k/k−1] =

(
θkθ

T
k

)
◦
(

Hk(Dk − Pk/k−1)HT
k

)
+ Ψk,k−mΠk−mΨT

k,k−m

+ Ψk,k−m

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iTk−i,k−mΨT
k,k−m

− ΘkHk

(
Sk,k − Pk/k−1HT

k Θk

)
−

(
ST

k,k − Θk HkPk/k−1

)
HT

k Θk, k > m.

Finally, since Kθ
k,k = E[θkθT

k ]− θkθ
T
k , the above expectations lead to the following expression

for the innovation covariance matrices

Πk = Kθ
k,k ◦

(
HkDk HT

k

)
+ Rk + Θk HkSk,k, k ≤ m,

11
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Πk = Kθ
k,k ◦

(
HkDk HT

k

)
+ Rk − Ψk,k−m

(
Πk−m +

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iTk−i,k−m

)
ΨT

k,k−m

+ Θk HkSk,k + ST
k,kHT

k Θk − Θk HkPk/k−1HT
k Θk, k > m.

All these results are summarized in the following theorem.

Theorem 1. The linear filter, x̂k/k, of the state xk is obtained as

x̂k/k = x̂k/k−1 + Sk,kΠ−1
k νk, k ≥ 1; x̂0/0 = x0,

where the state predictor, x̂k/k−1, is given by

x̂k/k−1 = Fk−1x̂k−1/k−1, k ≥ 1.

The innovation process satisfies

νk = yk − ΘkHk x̂k/k−1, k ≤ m,

νk = yk − ΘkHk x̂k/k−1 + Ψk,k−m

[
νk−m −

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iνk−i

]
, k > m,

where Θk = E[Θk] and Ψk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−mΠ−1
k−m

)
, with ◦ the

Hadamard product, Fk,i = Fk−1 · · · Fi and Dk = E[xkxT
k ] recursively obtained by

Dk = Fk−1Dk−1FT
k−1 + Qk−1, k ≥ 1; D0 = P0 + x0xT

0 .

The matrices Tk,k−i are given by

Tk,k−i = ΘkHkFk,k−iSk−i,k−i, 2 ≤ k ≤ m, 1 ≤ i ≤ k − 1,

Tk,k−i = ΘkHkFk,k−iSk−i,k−i − Ψk,k−mTT
k−i,k−m, k > m, 1 ≤ i ≤ m − 1.

The covariance matrix of the innovation, Πk = E[νkνT
k ], satisfies

Πk = Kθ
k,k ◦

(
HkDk HT

k

)
+ Rk + ΘkHkSk,k, k ≤ m,

Πk = Kθ
k,k ◦

(
HkDk HT

k

)
+ Rk − Ψk,k−m

(
Πk−m +

m−1

∑
i=1

TT
k−i,k−mΠ−1

k−iTk−i,k−m

)
ΨT

k,k−m

+ Θk HkSk,k + ST
k,kHT

k Θk − Θk HkPk/k−1HT
k Θk, k > m.

The matrix Sk,k is determined by the following expression

Sk,k = Pk/k−1HT
k Θk, k ≤ m,

Sk,k = Pk/k−1HT
k Θk −

(
Sk,k−m −

m−1

∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−m

)
ΨT

k,k−m, k > m,

12 Stochastic Modeling and Control
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where Pk/k−1, the prediction error covariance matrix, is obtained by

Pk/k−1 = Fk−1Pk−1/k−1FT
k−1 + Qk−1, k ≥ 1,

with Pk/k, the filtering error covariance matrix, satisfying

Pk/k = Pk/k−1 − Sk,kΠ−1
k ST

k,k, k ≥ 1; P0/0 = P0. (19)

4.2. Linear fixed-point smoothing algorithm

The following theorem provides a recursive fixed-point smoothing algorithm to obtain the
least-squares linear estimator, x̂k/k+N, of the state xk based on the observations {y1, . . . , yk+N},
for k ≥ 1 fixed and N ≥ 1. Moreover, to measure of the estimation accuracy, a recursive
formula for the error covariance matrices, Pk/k+N = E

[
(xk − x̂k/k+N)(xk − x̂k/k+N)

T
]
, is

derived.

Theorem 2. For each fixed k ≥ 1, the fixed-point smoothers, x̂k/k+N , N ≥ 1 are calculated by

x̂k/k+N = x̂k/k+N−1 + Sk,k+NΠ−1
k+Nνk+N , N ≥ 1, (20)

whose initial condition is the filter, x̂k/k, given in (7).

The matrices Sk,k+N are calculated from

Sk,k+N =
(

DkF
T
k+N,k − Mk,k+N−1FT

k+N−1

)
HT

k+NΘk+N , k ≤ m − N, N ≥ 1,

Sk,k+N =
(

DkF
T
k+N,k − Mk,k+N−1FT

k+N−1

)
HT

k+NΘk+N

−

(
Sk,k+N−m −

m−1

∑
i=1

Sk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)

× ΨT
k+N,k+N−m, k > m − N, N ≥ 1.

(21)

where the matrices Mk,k+N satisfy the following recursive formula:

Mk,k+N = Mk,k+N−1FT
k+N−1 + Sk,k+NΠ−1

k+NST
k+N,k+N, N ≥ 1,

Mk,k = Dk − Pk/k.
(22)

The innovations νk+N , their covariance matrices Πk+N, the matrices Tk+N,k+N−i,
Ψk+N,k+N−m, Dk and Pk/k are given in Theorem 1.

Finally, the fixed-point smoothing error covariance matrix, Pk/k+N, verifies

Pk/k+N = Pk/k+N−1 − Sk,k+NΠ−1
k+NST

k,k+N, N ≥ 1, (23)

with initial condition the filtering error covariance matrix, Pk/k, given by (19).

Proof. From the general expression (6), for each fixed k ≥ 1, the recursive relation (20) is
immediately clear.

13
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Now, we need to prove (21) for Sk,k+N = E[xkνT
k+N ] = E[xkyT

k+N ] − E[xkŷT
k+N/k+N−1], thus

being necessary to calculate both expectations.

I. From Equation (3), taking into account that E[xkxT
k+N ] = DkF

T
k+N,k and using that Θk+N

and vk+N are independent of xk , we obtain

E[xkyT
k+N ] = DkF

T
k+N,kHT

k+NΘk+N, N ≥ 1.

I I. Based on expressions (10) and (17) for ŷk+N/k+N−1, which are different depending on
k + N ≤ m or k + N > m, two options must be considered:

(a) For k ≤ m − N, using (10) for ŷk+N/k+N−1 with (8) for x̂k+N/k+N−1, we have that

E
[

xk ŷT
k+N/k+N−1

]
= Mk,k+N−1FT

k+N−1HT
k+NΘk+N ,

where Mk,k+N−1 = E
[

xk x̂T
k+N−1/k+N−1

]
.

(b) For k > m − N, by following a similar reasoning to the previous one but starting from
(17), we get

E[xk ŷT
k+N/k+N−1] = Mk,k+N−1FT

k+N−1HT
k+NΘk+N +

(
Sk,k+N−m

−
m−1

∑
i=1

Sk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)
ΨT

k+N,k+N−m.

Then, the replacement of the above expectations in Sk,k+N leads to expression (21).

The recursive relation (22) for Mk,k+N = E
[

xk x̂T
k+N/k+N

]
is immediately clear from (7) for

x̂k+N/k+N and its initial condition Mk,k = E[xk x̂k/k] is calculated taking into account that,
from the orthogonality, E[xk x̂T

k/k] = E[x̂k/kx̂T
k/k] = Dk − Pk/k.

Finally, since Pk/k+N = E
[
xkxT

k

]
− E

[
x̂k/k+N x̂T

k/k+N

]
, using (20) and taking into account that

x̂k/k+N−1 is uncorrelated with νk+N , we have

Pk/k+N = E
[

xkxT
k

]
− E

[
x̂k/k+N−1x̂T

k/k+N−1

]
− Sk,k+NΠ−1

k+NST
k,k+N, N ≥ 1

and, consequently, expression (23) holds.

�

5. Numerical simulation example

In this section, we present a numerical example to show the performance of the recursive
algorithms proposed in this chapter. To illustrate the effectiveness of the proposed estimators,
we ran a program in MATLAB which, at each iteration, simulates the state and the observed
values and provides the filtering and fixed-point smoothing estimates, as well as the
corresponding error covariance matrices, which provide a measure of the estimators accuracy.

14 Stochastic Modeling and Control
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Consider a two-dimensional state process, {xk; k ≥ 0}, generated by the following first-order
autoregressive model

xk =

(
1 + 0.2 sin

(
(k − 1)π

50

))(
0.8 0
0.9 0.2

)
xk−1 + wk−1, k ≥ 1

with the following hypotheses:

• The initial state, x0, is a zero-mean Gaussian vector with covariance matrix given by P0 =(
0.1 0
0 0.1

)
.

• The process {wk; k ≥ 0} is a zero-mean white Gaussian noise with covariance matrices

Qk =

(
0.36 0.3
0.3 0.25

)
, ∀k ≥ 0.

Suppose that the scalar observations come from two sensors according to the following
observation equations:

yi
k = θi

kxk + vi
k, k ≥ 1, i = 1, 2.

where {vi
k; k ≥ 1}, i = 1, 2, are zero-mean independent white Gaussian processes with

variances R1
k = 0.5 and R2

k = 0.9, ∀k ≥ 1, respectively.

According to our theoretical model, it is assumed that, for each sensor, the uncertainty at time
k depends only on the uncertainty at the previous time k − m. The variables θi

k, i = 1, 2,
modeling this type of uncertainty correlation in the observation process are modeled by two
independent sequences of independent Bernoulli random variables, {γi

k; k ≥ 1}, i = 1, 2, with
constant probabilities P[γi

k = 1] = γi. Specifically, the variables θi
k are defined as follows

θi
k = 1 − γi

k+m(1 − γi
k), i = 1, 2.

So, if θi
k = 0, then γi

k+m = 1 and γi
k = 0, and hence, θi

k+m = 1; this fact guarantees that, if
the state is absent at time k, after k + m instants of time the observation necessarily contains
the state. Therefore, there cannot be more than m consecutive observations consisting of noise
only.

Moreover, since the variables γi
k and γi

s are independent, θi
k and θi

s also are independent for

|k − s| �= 0, m. The common mean of these variables is θ
i
= 1 − γi(1 − γi) and its covariance

function is given by

Kθ
k,s = E[(θi

k − θ
i
)(θi

s − θ
i
)] =

⎧
⎨
⎩

0 if |k − s| �= 0, m,

−(1 − θ
i
)2 if |k − s| = m,

θ
i
(1 − θ

i
) if |k − s| = 0.

To illustrate the effectiveness of the respective estimators, two hundred iterations of the
proposed algorithms have been performed and the results obtained for different values of
the uncertainty probability and several values of m have been analyzed.

15
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Let us observe that the mean function of the variables θi
k, for i = 1, 2 are the same if 1 − γi is

used instead of γi; for this reason, only the case γi ≤ 0.5 will be considered here. Note that, in

such case, the false alarme probability at the i-th sensor, 1 − θ
i
, is an increasing function of γi.

Firstly, the values of the first component of a simulated state together with the filtering and the
fixed-point smoothing estimates for N = 2, obtained from simulated observations of the state
for m = 3 and γ1 = γ2 = 0.5 are displayed in Fig. 1. This graph shows that the fixed-point
smoothing estimates follow the state evolution better than the filtering ones.

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

4

5

Time k

 

 

Simulate state 

Filtering estimates

Smoothing estimates

Figure 1. First component of the simulate state, filtering and fixed-point smoothing estimates for N = 2,
when m = 3 and γ1 = γ2 = 0.5.

Next, assuming again that the Bernoulli variables of the observations are correlated at
sampling times that differ three units of time (m = 3), we compare the effectiveness of the
proposed filtering and fixed-point smoothing estimators considering different values of the

probabilities γ1 and γ2, which provides different values of the false alarm probabilities 1 − θ
i
,

i = 1, 2; specifically, γ1 = 0.2, γ2 = 0.4 and γ1 = 0.1, γ2 = 0.3. For these values, Fig. 2 shows
the filtering and fixed-point smoothing error variances, when N = 2 and N = 5, for the first
state component. From this figure it is observed that:

i) As both γ1 and γ2 decrease (which means that the false alarm probability decreases), the
error variances are smaller and, consequently, better estimations are obtained.

ii) The error variances corresponding to the fixed-point smoothers are less than those of
the filters and, consequently, agreeing with the comments on the previous figure, the
fixed-point smoothing estimates are more accurate.

iii) The accuracy of the smoothers at each fixed-point k is better as the number of available
observations increases.
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Figure 2. Filtering and smoothing error variances for the first state component for γ1 = 0.2, γ2 = 0.4 and
γ1 = 0.1, γ2 = 0.3, when m = 3.

On the other hand, in order to show more precisely the dependence of the error variance on
the values γ1 and γ2, Fig. 3 displays the filtering and fixed-point smoothing error variances
of the first state component, at a fixed iteration (namely, k = 200) for m = 3, when both γ1

and γ2 are varied from 0.1 to 0.5, which provide different values of the probabilities θ
1

and θ
2
.

More specifically, we have considered the values γi = 0.1, 0.2, 0.3, 0.4, 0.5, which lead to the

false alarm probabilities 1 − θ
i
= 0.09, 0.16, 0.22, 0.24, 0.25, respectively.

In this figure, both graphs (corresponding to the filtering and fixed-point smoothing error
variances) corroborate the previous results, showing again that, as the false alarm probability
increases, the filtering and fixed-point smoothing error variances (N = 2) become greater and
consequently, worse estimations are obtained. Also, it is concluded that the smoothing error
variances are better than the filtering ones.

Analogous results to those of Fig. 1-3 are obtained for the second component of the state. As
example, Fig. 4 shows the filtering and fixed-point smoothing error variances of the second
state component, at k = 200, versus γ1 for constant values of γ2, when m = 3 and similar
comments to those made from Fig. 3 are deduced.

Finally, for γ1 = 0.2, γ2 = 0.4 the performance of the estimators is compared for different
values of m; specifically, for m = 1, 3, 6, the filtering error variances of the first state component
are displayed in Fig. 5. From this figure it is gathered that the estimators are more accurate as
the values of m are lower. In other words, a greater distance between the instants at which the
variables are correlated (which means that more consecutive observations may not contain
state information) yields worse estimations.
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Figure 3. Filtering error variances and smoothing error variances for N = 2 of the first state component
at k = 200 versus γ1 with γ2 varying from 0.1 to 0.5 when m = 3.
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Figure 4. Filtering error variances and smoothing error variances for N = 2 of the second state
component at k = 200 versus γ1 with γ2 varying from 0.1 to 0.5 when m = 3.
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Figure 5. Filtering error variances for γ1 = 0.2, γ2 = 0.4 and m = 1, 3, 6.

6. Conclusions and future research

In this chapter, the least-squares linear filtering and fixed-point smoothing problems have
been addressed for linear discrete-time stochastic systems with uncertain observations coming
from multiple sensors. The uncertainty in the observations is modeled by a binary variable
taking the values one or zero (Bernoulli variable), depending on whether the signal is present
or absent in the corresponding observation, and it has been supposed that the uncertainty
at any sampling time k depends only on the uncertainty at the previous time k − m. This
situation covers, in particular, those signal transmission models in which any failure in the
transmission is detected and the old sensor is replaced after m instants of time, thus avoiding
the possibility of missing signal in m + 1 consecutive observations.

By applying an innovation technique, recursive algorithms for the linear filtering and
fixed-point smoothing estimators have been obtained. This technique consists of obtaining
the estimators as a linear combination of the innovations, simplifying the derivation of these
estimators, due to the fact that the innovations constitute a white process.

Finally, the feasibility of the theoretical results has been illustrated by the estimation of a
two-dimensional signal from uncertain observations coming from two sensors, for different
uncertainty probabilities and different values of m. The results obtained confirm the greater
effectiveness of the fixed-point smoothing estimators in contrast to the filtering ones and
conclude that more accurate estimations are obtained as the values of m are lower.

In recent years, several problems of signal processing, such as signal prediction, detection and
control, as well as image restoration problems, have been treated using quadratic estimators
and, generally, polynomial estimators of arbitrary degree. Hence, it must be noticed that
the current chapter can be extended by considering the least-squares polynomial estimation
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problems of arbitrary degree for such linear systems with uncertain observations correlated
in instants that differ m units of time. On the other hand, in practical engineering, some recent
progress on the filtering and control problems for nonlinear stochastic systems with uncertain
observations is being achieved. Nonlinearity and stochasticity are two important sources that
are receiving special attention in research and, therefore, filtering and smoothing problems
for nonlinear systems with uncertain observations would be relevant topics on which further
investigation would be interesting.
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