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1. Introduction 

Speech technology is a broader area comprising many applications like speech recognition, 

Text to Speech (TTS) Synthesis, speaker identification and verification and language 

identification. Different applications of speech technology impose different constraints on the 

problem and these are tackled by different algorithms. In this chapter, the focus is on 

automatically transcribing speech utterances to text. This process is called Automatic Speech 

Recognition (ASR). ASR deals with transcribing speech utterances into text of a given 

language. Even after years of extensive research and development, ASR still remains a 

challenging field of research. But in the recent years, ASR technology has matured to a level 

where success rate is higher in certain domains. A well-known example is human-computer 

interaction where speech is used as an interface along with or without other pointing devices. 

ASR is fundamentally a statistical problem. Its objective is to find the most likely sequence of 

words, called hypothesis, for a given sequence of observations. The sequence of observations 

involves acoustic feature vectors representing the speech utterance. The performance of an 

ASR system can be measured by aligning the hypothesis with the reference text and by 

counting errors like deletion, insertion and substitution of words in the hypothesis.  

ASR is a subject involving signal processing and feature extraction, acoustics, information 

theory, linguistics and computer science. Speech signal processing helps in extracting 

relevant and discriminative information, which is called features, from speech signal in a 

robust manner. Robustness involves spectral analysis used to characterize time varying 

properties of speech signal and speech enhancement techniques for making features resilient 

to noise. Acoustics provides the necessary understanding of the relationship between speech 

utterances and the physiological processes in speech production and speech perception. 

Information theory provides the necessary procedures for estimating parameters of 

statistical models during training phase. Computer science plays a major role in ASR with 

its implementation of efficient algorithms in software or hardware for decoding speech in 

real-time. 
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Currently, an important area in speech recognition is Large Vocabulary Continuous Speech 

Recognition (LVCSR). A large vocabulary means that system has a vocabulary ranging from 

5,000 to 60,000 words. Continuous speech means that the utterances have words which are 

run together naturally. This is different from isolated word speech recognition where each 

word is demarcated with initial and final silence. Speech recognition algorithms can also be 

speaker independent, i.e. they are even able to recognize the speech of new users with 

whom the system is not exposed. Xuedong et al (2001) present a very good reference on 

algorithms and techniques in speech processing. 

1.1. Issues in speech variability 

Even though state-of-the-art speech recognition systems cannot match human performance, 

still they can recognize spoken input accurately but with some constraints. Some of the 

constraints may be speaker dependency, language dependency, speaking style, and 

applicability to a particular task and environment. Therefore, building a speech recognizer 

that could recognize the speech of any speaker, speaking in any language, style, domain and 

environment is far from realization. 

a. Context variability 

In any language, words with different meanings have the same phonetic realization. Their 

usage depends on the context. There is even more context dependency at the phone level. 

The acoustic realization of a phone is dependent on its neighboring phones. This is because 

of the physiology of articulators involved in speech production.   

b. Style variability 

In isolated speech recognition with a small vocabulary, a user pauses between every word 

while speaking. Thus it is easy to detect the boundary between words and decode them using 

the silence context. This is not possible in continuous speech recognition. The speaking rate 

affects the word recognition accuracy. That is, the higher the speaking rate, the higher the WER. 

c. Speaker variability 

Every speaker’s utterance is unique per se. The speech produced by a speaker is dependent 

on a number of factors, namely vocal tract physiologies, age, sex, dialect, health, education, 

etc. For speaker independent speech recognition, more than 500 speakers from different age 

groups, their sex, educational background, and dialect are necessary to build a combined 

model. The speaker independent system includes a user enrollment process where a new 

user can train his voice with the system for 30 minutes before using it. 

d. Environment variability 

Many practical speech recognizers lack robustness against changes in the acoustic 

environment. This has always been a major limitation of speech based interfaces used in 

mobile communication devices. The acoustic environment variability is highly 

unpredictable and it cannot be accounted for during training of models. A mismatch will 

always occur between the trained speech models and test speech. 
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1.2. Measure of performance 

The ultimate measures of success for any speech recognition algorithms are accuracy and 

robustness. Therefore, it is important to evaluate the performance of such a system. The 

WER is one of the most widely used measures for accuracy. The system may be tested on 

sample utterances from the training data for understanding the system and identification of 

bugs during the development process. This would result in a better performance than what 

one can get with test data. In addition, a development set can also be used to test the system 

and also fine-tune its parameters.  Finally, the system can be tested on a test set comprising 

around 500 speech utterances of 5-10 different users in order to reliably estimate accuracy. 

This test set should be completely new with respect to training and development. There are 

three types of word recognition errors in speech recognition: 

 Substitution (Subs): An incorrect word substituted for a correct word. 

 Insertion (Ins): An extra word added in the recognized sentence. 

 Deletion (Dels): A correct word omitted in the recognized sentence. 

Generally, a hypothesis sentence is aligned with the correct reference sentence. The number 

of insertions, substitutions and deletions are computed using maximum substring matching. 

This is implemented using dynamic programming. The WER is computed as shown in 

equation (1): 

ܴܧܹ  =	 ௌ௨௕௦ା஽௘௟௦ାூ௡௦ே × 100 (1) 

Other performance measures are speed and memory footprints. The speed is an important 

factor which quantifies the turn around time of the system once the speech is uttered. It is 

calculated as shown in equation (2): 

݀݁݁݌ݏ  = 	 ௧௜௠௘	௧௔௞௘௡	௙௢௥	௣௥௢௖௘௦௦௜௡௚௨௧௧௘௥௔௡௖௘	ௗ௨௥௔௧௜௢௡ ×  (2)                 ݁݉݅ݐ	݈ܽ݁ݎ

Obviously, the time taken for processing should be shorter than the utterance duration for a 

quicker response from the system. Memory footprints show the amount of memory 

required to load the model parameters. 

There are a number of well-known factors which affect the accuracy of an ASR system. 

The prominent factors are those which include variations in context, speakers and noise in 

the environment. Research in ASR is classified into different types depending on the 

nature of the problems, like a small or a large vocabulary task, isolated or continuous 

speech, speaker dependent or independent and robustness to environmental variations. 

The state-of-the-art speech recognition systems can recognize spoken input accurately 

with some constraints. The constraints can be speaker dependency, language dependency, 

speaking style, task or environment. Therefore, building an automatic speech recognizer 

which can recognize the speech of different speakers, speaking in different languages, 

with a variety of accent, in any domain and in any ambience environmental background is 

far from reality. 
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ASR for languages like English, French and Czech is well matured. A lot of research and 

development have also been reported for oriental languages like Chinese and Japanese. But 

in the Indian scenario, ASR is still in its nascent stage due to the inherent agglutinative 

nature of most of its official languages. Agglutination refers to the extensive morphological 

inflection in which one can find a one-to-one correspondence between affixes and syntactic 

categories. This nature results in a large number of words in the dictionary which hinders 

modeling and training of utterances, and also creates Out-Of-Vocabulary (OOV) words 

when deployed.  

2. Speech units 

The objective of this chapter is to discuss a few methods to improve the accuracy of ASR 

systems for agglutinative languages. The language presented here as a case study is Tamil 

(ISO 639-3 tam). Tamil is a Dravidian language spoken predominantly in the state of 

Tamilnadu in India and in Sri Lanka. It is the official language of the Indian state of 

Tamilnadu and also has official status in Sri Lanka, Malaysia and Singapore. With more 

than 77 million speakers, Tamil is one of the widely spoken languages in the world. Tamil 

language has also been conferred the status of classical language by the government of 

India.  

Currently, there is a growing interest among Indian researchers for building reliable ASR 

systems for Indian languages like Hindi, Telegu, Bengali and Tamil. Kumar et al (2004) 

reported the implementation of a Large Vocabulary Continuous Speech Recognition 

(LVCSR) system for Hindi. Many efforts have been put to build continuous speech 

recognition systems for Tamil language with a limited and restricted vocabulary 

(Nayeemulla Khan and Yegnanarayana 2001, Kumar and Foo Say Wei 2003, Saraswathi and 

Geetha 2004, Plauche et al 2006). Despite repeated efforts, a LVCSR system for the foresaid 

languages is yet to be explored to a significant level.  Keeping agglutination apart, there are 

other issues to be addressed like aspirated and un-aspirated consonants, and retroflex 

consonants.  

2.1. Phones, phonemes and syllables 

Before embarking on the concepts, it is always better to review a few terminologies 

pertaining to linguistics. In any language, there are acoustic properties of speech units and 

symbolic representation of lexical units. For more information, please refer (Xuedong et al, 

2001). 

a. Phonemes and phones 

From the acoustics point of view, a phoneme is defined as the smallest segmental unit of 

sound employed to tell apart meaningfully between utterances. A phoneme can be 

considered as a group of slightly different sounds which are all perceived to have the same 

function by the speakers of a language or a dialect. An example of a phoneme is the /k/ 

sound in the words kit and skill. It is customary to place phonemes between slashes in 
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transcriptions. However, the phoneme /k/ in each of these words is actually pronounced 

differently i.e. it has different realizations. It is because the articulators which generate the 

phoneme cannot move from one position to another instantaneously. Each of these different 

realizations of the phoneme is called a phone or technically an allophone (in transcriptions, 

a phone is placed inside a square bracket like [k]). A phone can also be defined as an 

instance of a phoneme. In kit [k] is aspirated while in skill [k] is un-aspirated. Aspiration is a 

period of voiceless-ness after a stop closure and before the onset of voicing of the following 

vowel.  Aspiration sounds like a puff of air after the [k] and before the vowel. An aspirated 

phone is represented as [kh]. In some languages, aspirated and un-aspirated consonants are 

treated as different phonemes. Hindi, for instance, has four realizations for [k] and they are 

considered as different phonemes. Tamil does not discriminate them and treats them as 

allophones. 

b. Words 

Next comes the representation in symbolic form. According to linguistics, word is defined as 

a sequence of morphemes. The sequence is determined by the morpho-tactics. A morpheme 

is an independent unit which makes sense in any language. It could refer to the root word or 

any of the valid prefixes or suffixes. Therefore what is called a word is quite arbitrary and 

depends on the language in context. In agglutinative languages a word could consists of a 

root along with its suffixes – a process known as inflectional morphology. Syntax deals with 

sentence formation using lexical units. Agglutinative languages, on one hand, exhibit 

inflectional morphology to a higher extent. On the other hand, the syntactic structure is 

quite simple which enables free-word ordering in a sentence. The English language, which 

is not agglutinative, has simpler lexical morphology but the complexity of the syntactic 

structure is significantly higher. 

c. Syllables 

A syllable is a unit of organization for a sequence of speech sounds. It is composed of three 

parts: the onset, the nucleus and the coda. A syllable has a hierarchical structure as shown in 

Figure 1. It can also be expressed in Backus-Naur Form (BNF) as follows: 

<syllable> ::= <onset> <rhyme> 

<rhyme> ::= <nucleus> <coda> 

A vowel forms the nucleus of the syllable while an optional consonant or consonant cluster 

forms the onset and coda. In some syllables, the onset or the coda will be absent and the 

syllables may start and/or end with a vowel. 

Generally speaking, a syllable is a vowel-like sound together with some of the 

surrounding consonants that are most closely associated with it. For example, in the word 

parsley, there are two syllables [pars.ley] – CVCC and CVC. In the word tarragon, there are 

three syllables [tar.ra.gon] – CVC, CV and CVC. The process of segmenting a word into 

syllables is called syllabification. In English, the syllabification is a hard task because there 
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is no agreed upon definition of syllable boundaries. Furthermore, there are some words 

like meal, hour and tire which can be viewed as containing one syllable or two (Ladefoged 

1993). 

 

Figure 1. A Syllable’s Hierarchical Structure 

A syllable is usually a larger unit than a phone, since it may encompass two or more 

phonemes. There are a few cases where a syllable may only consist of single phoneme. 

Syllables are often considered the phonological building blocks of words. Syllables have a 

vital role in a language’s rhythm, prosody, poetic meter and stress.  

The syllable, as a unit, inherently accounts for the severe contextual effects among its 

phones as in the case of words. Already it has been observed that a syllable accounts for 

pronunciation variation more systematically than a phone (Greenberg 1998). Moreover, 

syllables are intuitive and more stable units than phones and their integrity is firmly based 

on both the production and perception of speech. This is what sets a syllable apart from a 

triphone. Several research works using syllable as a speech unit have been successfully 

carried out for English and other oriental languages like Chinese and Japanese by 

researchers across the world.   

In Japanese language, for instance, the number of distinct syllables is 100, which is very 

small (Nakagawa et al 1999). However in a language like English, syllables are large in 

number. In some studies, it is shown that they are of the order of 30,000 syllables in English. 

The number of lexically attested syllables is of the order of 10,000. When there are a large 

number of syllables, it becomes difficult to train syllable models for ASR (Ganapathiraju et 

al 2001). 

3. Agglutinative languages – Tamil 

Tamil language, for instance, employs agglutinative grammar, where suffixes are used to 

mark noun class, number, and case, verb tense and other grammatical categories.  As a 
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result, a large number of inflectional variants for each word exist. The use of suffixes is 

governed by morpho-tactic rules. Typically, a STEM in Tamil may have the following 

structure.  

STEM +negative+participle +nominalization +plural +locative +ablative +inclusive 

For each stem, there are at least 27 = 128 inflected word forms, assuming only two affixes of 

each type. Actually, there may be more than two options, but there may be gaps. In contrast, 

English has maximally 4 word forms for a verb as in swim, swims, swam and swum, and for 

nouns as in man, man's, men and men’s.  Hence, for a lexical vocabulary of 1,000, the actual 

Tamil words list of inflected forms will be of the order of 1,28,000.  

3.1. Inflectional morphology 

The Parts of Speech (POS) categories in Tamil take different forms due to inflections. 

According to Rajendran (2004) morphological inflections on nouns include gender and 

number. Prepositions take either independent or noun combined forms with various cases 

like accusative, dative, instrumental, sociative, locative, ablative, benefactive, genitive, 

vocative, clitics and selective. Table 1 arrays a list of examples of cases and their possible 

suffixes. 

 

Cases Suffixes

Accusative ஏ, ஐ 

Dative க்கு, ற்கு 

Instrumental ஆல் 

Sociative ஓடு, உடன் 

Locative இல், உள், இடம் 

Ablative இருந்து 

Benefactive க்காக, ற்காக 

Genetive இன், அது, உைடய 

Vocative ஏ 

Clitics உம், ஓ, தான் 

Selective ஆவது 

Interrogative ஆ, ஓ 

Table 1. Case Suffixes used with Noun in Tamil  
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The verbs in Tamil take various forms like simple, transitive, intransitive, causative, 

infinitive, imperative and reportive. Verbs are also formed with a stem and various suffix 

patterns. Some of the verbal suffix patterns are shown in Table 2. Rajendran et al (2003) had 

done a detailed study on computational morphology of verbal patterns in Tamil. 

 

Suffix Categories Sub categories Suffixes

Tense 

Present  கிறு, கின்று,  ஆனின்று 

Past  த் , ந் , ற் , இன் 

Future  ப் , வ் 

Person 

First 
Singular ஏன் 

Plural ஓம் 

Second 

Singular ஆய் 

Plural ஈர்கள் 

Honorific ஈர் 

Third 

Male Singular ஆன் ,அன் 

Female Singular ஆள், அள் 

Common Plural ஆர்கள் 

Honorific ஆர் , அர் 

Neutral Singular அது 

Neutral Plural அன 

Others 

Causative  இ 

Verbal Noun Untensed  அல் 

Infinitive  உ 

Imperative 
Plural உங்கள் 

Negative ஆேத, ஆது 

Passive  படு 

Future Negative மாட், இல்ைல 

Optative 

 
முடியும், ேவண்டும், கூடும், 

ஆம் 

negative 
முடியாது, கூடாது, 

ேவண்டாம் 

Morpho-phonology 

(Sandhi) 
 ந், க், ம், ச், த் 

Plural  கள் 

Table 2. Verbal Suffixes in Tamil 
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Adjectives and adverbs are generally obtained by attaching the suffix – ஆன and ஆக to 

noun forms respectively. Tamil often uses a verb, an adjective or an adverb as the head of a 

noun phrase. This process is called nominalization where a noun is produced from another 

POS with morphological inflections.  

3.2. Morpho-phonology 

Morpho-phonology, also known as sandhi, wherein two consecutive words combine by 

deletion, insertion or substitution of phonemes at word boundaries to form a new word is 

very common in Tamil. In English, one can find morpho-phonology to a limited extent. For 

example, the negative prefix (in) when attached to different words, changes according to the 

first letter of the word.   

in + proper   improper 

in + logical  illogical 

in + rational  irrational 

in + mature  immature 

However in Tamil, use of morpho-phonology is more common among two adjacent 

words. The last phoneme of the first word and the first phoneme of the following word 

combine and undergo a transformation. Based on certain phono-tactic rules and context, 

there may be no transformation, or an insertion of a consonant, or a deletion of a 

vowel/consonant, or a substitution of a vowel/consonant.   The following examples 

illustrate this phenomenon. 

அரசு (government) + பணி (service)   அரசுப்பணி 

ஆபரணம் (ornament) + தங்கம் (gold)  ஆபரணத்தங்கம் 

ஒன்று (first) + ஆவது (selective case suffix)  ஒன்றாவது 

In the first example, there is an insertion of a consonant (ப்) between the two words. The 

second example shows a substitution of the last consonant (ம்) of the first word by another 

consonant (த்). In the third example, there is a deletion of the last vowel (உ i.e. று  ற் + 

உ) of the first word and the consonant (ற்) merges with the incoming vowel (ஆ i.e. ற் + ஆ 

 றா) of the second word. As a result of morpho-phonology, two distinct words combine 

and sound as a single word. In fact, Morpho-phonology has evolved as a result of context 

dependencies among the phonetic units at the boundary of adjacent words or morphemes.  

To a certain extent morpho-phonology is based on phono-tactics. The following rules 

encompass most of them. 
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 ‘உ’ removal rule: This rule states that when one morpheme ends in the vowel ‘உ’ and 

the following morpheme starts with a vowel, then the ‘உ’ would be removed from the 

combination. 

 ‘வ்’ and ‘ய்’ addition rule: When one morpheme ends with a vowel from a particular a 

set of vowels and the morpheme it joins starts with a vowel then the morpheme ‘வ்’ or 

‘ய்’ would be added to the end of the first morpheme. 

 Doubling rule: According to this rule, when one morpheme ends with either ‘ண்’, ‘ன்’, 

‘ம்’ or ‘ய்’ and the next morpheme starts with a vowel then the ‘ண்’, ‘ன்’, ‘ம்’ or ‘ய்’ is 

doubled. 

 Insertion of க், ச், ட் or ப்: This rule states that when one morpheme ends with a vowel 

and the next morpheme begins with either க், ச், ட் or ப் followed by a vowel there is a 

doubling of the corresponding க், ச், ட் or ப். 

Apart from these rules, there are instances of morpho-phonology based on the context. For 

example, பழங் கூைட (old basket) and பழக் கூைட (fruit basket). Therefore, modelling 

morpho-phonology in Tamil is still a challenging issue for research.   

3.3. Pronunciation in Tamil 

Generally languages structure the utterance of words by giving greater prominence to some 

constituents than others. This is true in English where one or more syllables standout as 

more prominent than the rest. This is typically known as word stress. The same is true for 

higher level prosody in a sentence where one or more syllables may bear sentence stress or 

accent.  Spoken Tamil language has a number of dialects. People from different parts of 

Tamilnadu state in India speak different accents.  Harold Schiffman (2006) is a good 

reference for studying the grammar of spoken Tamil. As far as formal Tamil language is 

concerned, it is assumed that there is no stress or accent (Arden 1934, Arokianathan 1981, 

Soundaraj 2000) at word level and all syllables are pronounced with the same emphasis. 

However, there are other opinions that the position of stress in the word is by no means 

fixed to any syllable of individual word (Marthandan 1983). In connected speech, the stress 

is found more often in the initial syllable (Balasubramaniam 1980). In some studies (Asher 

and Keane 2005) it is shown that there is a marked reduction in vowel’s duration of non-

initial syllables compared to initial syllables.  

4. Novel methods for improving accuracy of ASR systems 

This section concentrates on two novel approaches adopted in ASR systems for 

agglutinative languages. In the first approach, an enhanced bi-gram or tri-gram morpheme 

based language model is designed to reduce the vocabulary size and reliably predict the 

strings in an agglutinative language. The second approach leverages the syllabic structure of 

the word and builds a syllable based acoustic model.  
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4.1. Language models 

A language model is defined as the probability distribution over strings in a language. 

Frequencies of patterns of words as they occur in any training corpus are recorded as 

probability distributions. A language model is an indispensable part of ASR and machine 

translation systems. Language model helps in reducing the decoder’s search space and in 

generating optimal sequence of words. For strict word-order languages like English, 

statistical language models have been effectively used because trigram or bigram models 

accurately model short distance relationship in a sentence. Other sophisticated language 

models also exist like class based model, distance based model and dependency based 

model. The performance of a statistical language model is measured in terms of perplexity. 

The perplexity refers to the branching factor in the search graph. If the perplexity is low, 

better the performance of a language model. 

Owing to resource deficiency in text and annotated corpora in Tamil, building reliable 

statistical language models is a difficult task. Even with the available corpus, the 

agglutinative nature of the language further deepens the problem. Statistical studies using 

large corpora are still in the nascent stage. However, Rajendran (2006) has given a review of 

various recent works carried out in morphological analysis, morphological disambiguation, 

shallow parsing, POS tagging and syntactic parsing in Tamil. 

For instance, let ௜ܹିଵ and ௜ܹ be two consecutive words in a text.  The probability ܲ( ௜ܹ| ௜ܹିଵ)   is the bi-gram that measures the correlation between the words ௜ܹିଵ and	 ௜ܹ. 
This bi-gram measure is sufficient for modeling strings of words in a language where 

inflectional morphology is low.  However in agglutinative languages, like Tamil, a more 

minute measure is warranted.  This issue has been successfully resolved by Saraswati and 

Geetha (2007) with their enhanced morpheme based language model. The size of the 

vocabulary was reduced by decomposing the words into stems and endings. These sub-

word units (morphemes) are stored in the vocabulary separately. The enhanced morpheme-

based language model is designed and trained on the decomposed corpus. A Tamil text 

corpus is decomposed into stem and its associated suffixes using an existing Tamil 

morphological analyzer (Anandan P et al, 2002).  The decomposition helps reduce the 

number of distinct words by around 40% on two different corpora namely News and 

Politics. The stems and its endings are marked with a special character ‘#’ for stems and ‘$’ 

for suffixes in order to co-join them back after recognition is done.   

A general morpheme based language model is one where the stem and suffixes are treated 

as independent words. No distinction is made between a stem and a morpheme. Figure 2 

depicts the various probability measures involved in a morpheme based language model. 

The word W୧ିଵ is split into the stem S୧ିଵand suffix	E୧ିଵ, and the word W୧is split into the stem S୧ and suffix		E୧.  
In this case, the prediction of suffix E୧ିଵ will be based on S୧ିଵ which is strongly correlated 

since a stem can have a few suffixes among the possible 7 suffixes. This information is 
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modeled in ܲ(ܧ௜ିଵ| ௜ܵିଵ) and ܲ(ܧ௜| ௜ܵ) which can be reliably gathered from a corpus.  

However, the correlation between stem S୧ and the suffix of the previous word E୧ିଵ is weak, 

because the suffix bears very little information of the next word in a sentence. But when it 

comes to stem to stem correlation, the probability ܲ( ௜ܵ| ௜ܵିଵ) can be reliably used, since there 

is contextual information that exists between adjacent words in a sentence and stem is the 

primary part of a word. In Tamil language there is strong subject-predicate agreement 

which leads to contextual information between suffixes of words in a sentence. This 

information is available in ܲ(ܧ௜|ܧ௜ିଵ) 
The perplexity and WER are obtained using a Tamil speech recognition system. While figure 

3.a portrays the perplexity of the language models, figure 3.b compares the WER of the ASR 

system employing both language models. 

The results has confirmed that the modified morpheme-based trigram language model 

with Katz back-off smoothing technique is better perplexity and lower WER on two 

Tamil corpora. The results confirm that the proposed enhanced morpheme-based 

language model is much better than the word-based language models for agglutinative 

languages.  

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2. Morpheme based language Modeling 
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(a) Comparison of Perplexity

(b) Comparison of WER
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4.2. Syllable modeling 

The importance of syllable as a unit in ASR was felt in early researches starting with 

(Fujimura 1975) where irregularities in phonemes have been discussed and it has been 

claimed that a syllable will serve as the viable minimal unit of speech in time domain.  

In the paper (Greenberg 1998), it is stated that pronunciation variation in Switchboard 

corpus is more systematic at the level of a syllable.  It has been emphasized that the onset 

and nucleus of a syllable do not show much contextual dependencies while the coda may 

still be susceptible to some contextual effects with the following syllable. Greenberg (1998) 

proposed that syllables are frequently realized in their standard or canonical form but in the 

case of phones, canonical realization is mostly unusual.  

In the paper by Ganapathiraju et al (2001), the first successful robust LVCSR system that 

used syllable level acoustic unit in telephone bandwidth spontaneous speech is reported. 

The paper begins with a conjecture that syllable based system would perform better than 

existing triphone systems and concludes with experimental verification after comparing a 

syllable based system performance with that of a word-internal and a cross-word triphone 

system on publicly available databases, viz. Switchboard and Alphadigits. A number of 

syllable based experiments involving syllables and CI phones, syllables and CD phones, 

syllables, mono-syllabic words and CD phones have been reported in that paper. However, 

this system is deficient especially in the integration of syllable and phone models as mixed-

word entry. It is because mixing models of different lengths and context might result only in 

marginal improvements.  

4.2.1. Justification for using prosodic syllable as a speech unit 

Thangarajan et al (2008a) have proposed a syllable based language model for combating the 

agglutinative nature of Tamil language. The basic syllable consonant-vowel phono-tactics in 

Tamil is characterized by a regular expression shown in equation (3). There are constraints 

on which consonants can appear in each of the three consonant positions and in 

combination with vowels. With no constraints, the maximum number of syllables will be 

183 × 12 = 69,984. However, because of constraints the actual number of possible syllables is 

in order of magnitude smaller. The number of lexically attested syllable is smaller still. In 

addition, there are constraints on stress patterning in Tamil words. 

(ܵ)ܧܴ  =  (3)   [[ܥ]ܥ]ܸ[ܥ]

Properties that constitute prosody are fundamental frequency or formant f0 (perceived 

pitch), duration, intensity (perceived loudness) and to some extent vowel quality.  Prosodic 

properties of speech are also used in detection of word boundaries and in other higher tasks 

of speech understanding like encoding or decoding pragmatic differences like a statement 

vs. a question, emotion and so on. At the word level, prosodic properties encode lexical 

tone, lexical stress and lexical pitch accent.   
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There are two types of prosodic syllables namely Ner-acai and Nirai-acai. Ner-acai is 

monosyllabic. It may consist of either one short vowel or one long vowel, either of which 

may be open or closed, i.e. ending in a vowel or consonant(s) respectively. Nirai-acai is 

always disyllabic with an obligatorily short vowel at first position, while the second 

phoneme is unrestricted. Like Ner-acai, Nirai-acai may also be of open or closed type. The 

prosodic syllable representation can take any of the following eight patterns as shown in 

Table 3. An uninflected Tamil word may comprise one to four prosodic syllables.  

 

Description Pattern 
Example (with Romanized 

Tamil and meaning) 

Short vowel, long vowel followed by 

consonant(s)* (Nirai) 
SV + LV + C(s) புலால் (pulal) (meat) 

Short vowel followed by a long 

vowel, (Nirai) 
SV + LV விழா (vizha) (function) 

Two short vowels followed by 

consonant(s)*, (Nirai) 
SV + SV + C(s) களம் (kaLam) (field) 

Two short vowels, (Nirai) SV + SV கல (kala) (echo sound) 

Short vowel followed by 

consonant(s)*, (Ner) 
SV + C(s) கல் (kal) (stone) 

Long vowel followed by 

consonant(s)*, (Ner) 
LV + C(s) வாள் (vaL) (sword) 

Long vowel, (Ner) LV வா (va) (come) 

Short vowel, (Ner) SV க (ka) 

* At the maximum, two consonants can occur 

Table 3. The Linguistic Rules of Tamil Prosodic Syllables 

4.2.2. Formal representations of prosodic syllables 

Prosodic syllables are composed of phonemes. Based on the linguistic rules tabulated in 

Table 3, a regular expression can be formulated as shown in equation (4). 

(ܵ)ܧܴ  =  (4)    [[ܥ]ܥ](ܸܮ|ܸܵ)[ܸܵ]

This expression describes all the possible patterns of prosodic syllables. In other words, an 

optional short vowel is followed obligatorily by either a short vowel or a long vowel, and 

zero or one or two consonants.  

Theoretically, the number of prosodic syllables will be quite larger (of the order of 

3,674,160), since there are 90 (18 times 5) short vowels, 126 (18 times 7) long vowels and 18 

consonants.  But, the actual number will be smaller due to constraints like phono-tactics and 

morpho-tactics. Hence, it is essential to estimate the number of prosodic syllables with the 

help of a corpus.  
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4.2.3. Analysis of Tamil text corpus 

In this section, a Tamil text corpus provided by Central Institute for Indian Languages 

(CIIL) with 2.6 million words is taken and useful statistics about prosodic syllables is 

collected.  This corpus is a collection of Tamil text documents collected from various 

domains, viz. agriculture, biographies, cooking tips and news articles. A simple algorithm to 

segment prosodic syllables from a word is proposed whose pseudo code is given below. 

Function Syllabify (Word[0..n-1]) 

 

k ← 0 // Index of current letter in the WORD 
m ← 0 // Index of syllable array 
// for each letter in the ‘Word’ categorize it as 

// short vowel, long vowel or consonant 

for k ← 0 to n-1  
 if (Word[k] is a short vowel) 

  CharCategory[k] ← 0 
 else if (Word[k] is a long vowel) 

  CharCategory[k] ← 1 
 else  

  CharCategory[k] ← 2   // it is a consonant 
end for 
 

for k ← 0 to n-1   
 if ((k+2) <= n and CharCategory[k] = 0 and  

    CharCategory[k + 1] = 1 or  

    CharCategory[k + 1] = 0)) 

  copy(Syllable[m], Word[k], Word[k+1]); 

  k ← k + 2;    

 else if (CharCategory[k] = 1 || CharCategory[k] = 0) 

   copy(Syllable[m], Word[k]); 

  k ← k + 1;    

 end if          
         

 while(k < n && CharCategory[k] = 2) 

         copy(Syllable[m], Word[k]); 

  k ← k + 1; 
 end while  

 m ← m + 1; 
end for 

  return m; // returns the no. of syllables; syllables  

    // are stored Syllable[] 

end function 

The algorithm works in two stages. Initially, grapheme to phoneme conversion 

(phonetisation) is done by scanning all the letters of a word and categorizing them as vowels 

and consonants. The next step of the algorithm combines the letters into syllables with the 

help of linguistic rules which are presented in Table 3. This step is called syllabification. 

Syllable patterns are checked from the biggest syllable to the smallest one. The algorithm 

stores the syllables in an array and returns their count.  
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After applying the algorithm to the text corpus, the frequency counts of various prosodic 

syllable patterns were gathered. The algorithm segmented 26,153 numbers of unique 

prosodic syllables in the corpus.  Since the text corpus used here was not clean, it contained 

a lot of abbreviations, digits and other foreign characters. Therefore, the prosodic syllable 

patterns with frequency less than 10 were eliminated.  Then, it was found that there were 

only 10,015 numbers of unique prosodic syllables as shown in Table 4. 

 

Details Frequency

Documents 686 

Sentences 455,504 

Words 2,652,370 

No. of unique prosodic syllables segmented by the algorithm 26,153 

No. of unique prosodic syllables validated by the DFA 10,015 

Table 4. Prosodic Syllables in CIIL Corpus 

4.2.4. Creating context independent syllable models 

A lexicon based on prosodic syllables was created with the aid of the algorithm where every 

word in the dictionary was segmented into its constituent prosodic syllables. Along with the 

dictionary, a list of prosodic syllable models and continuous speech with sentence aligned 

transcription were given as input to the training program. The transcription were force-

aligned with Baum-Welch training followed by Viterbi alignment.  

In order to keep the complexity low, it was preferable to model CI syllable units with single 

Gaussian continuous density HMM.  The continuous speech was transformed into a 

sequence of feature vectors. This sequence was matched with the optimal/best concatenated 

HMM sequence found using Viterbi algorithm. The time stamps of segmented syllable 

boundaries were obtained as a by-product of Viterbi decoding. The duration of the prosodic 

syllables was found to vary from 290 ms to 315 ms. Even though a prosodic syllable is either 

monosyllabic or disyllabic, the duration was more or less equal to 300 ms on average. This 

may be due to vowel duration reduction which occurs in non-initial syllables as reported by 

Asher and Keane (2005).  

Based on these considerations, eight states per HMM were decided to be adequate for the 

experiment. Figure 4 shows the schematic block diagram of a syllable based recognizer. 

 

Figure 4.  The Syllable Modeling and Recognition System 
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4.2.5. Results and discussions 

For simplicity, an acoustic model was trained with 1,398 unique prosodic syllables drawn from 

agriculture domain. These prosodic syllables almost covered the agriculture data and the test 

set completely. In the experiment, the number of models to be trained was significantly 

reduced compared to the triphone models. The baseline triphone model had 3,171 numbers of 

unique triphones extracted from the transcript. The experiment was carried out using syllable 

based continuous speech recognition for Tamil. The dictionary and the transcripts were 

segmented into prosodic syllables with the proposed algorithm and models were trained.  The 

syllable based acoustic model was deployed on a conventional continuous speech recognizer 

and tested with the same test set comprising 400 sentences. When comparing the WER, it is 

found that the WER of syllable models were considerably reduced (by 10% ) compared to 

word models. However the triphone models performed well with a WER of 9.44% 

 It was also observed that in the prosodic syllable models, there were larger number of 

substitution errors than that of insertions and deletions whereas in the case of word models, 

there was a majority of deletion errors. This comparison is shown in Figure 5. The majority 

of deletion errors in word models signify OOV rate due to morphological inflections. The 

OOV words in syllable models significantly got reduced. This proves the fact that syllables 

are effective as sub-word units according to Thangarajan et al (2008b) 

 

Figure 5. The Types of Word Errors in Word Models and Syllable Models 

The increase in WER by 10% approximately in syllable models compared to triphone 

models can be attributed to the large number of syllables to be modeled with the available 

limited training set. This also indicates the presence of a little contextual effect between 

syllables. This is an avenue for future research. 
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5. Summary 

In this chapter, the nature of agglutinative languages is discussed with Tamil language 

taken as a case study. The inflectional morphology of Tamil language is described in great 

detail. The challenges that are faced in ASR systems for such languages are highlighted.  

Two different approaches – enhanced morpheme based languages model and syllable based 

models - used in ASR for agglutinative languages are elaborated along with their results. 

The merits and scope for further research is also discussed.  
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