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1. Introduction 

On-line parameter identification is a key problem of adaptive control and also an 

important part of self-tuning regulator (STR) (Astrom & Wittenmark, 1994). In the widely 

equipped large-scale systems, distributed systems and remote systems, the plants, 

controllers, actuators and sensors are connected by communication channels which 

possess only finite communication capability due to, e.g., data loss, bandwidth constraint, 

and access constraint. From a heuristic analysis perspective, the existence of 

communication constraints has the effect of complicating what are otherwise well-

understood control problems, including the traditional methods, such as the H control 

(Fu & Xie, 2005), and even the basic theoretic notions, such as the stability (De Persis & 

Mazenc, 2010).  

Due to the constraints of the communication channels, it is difficult to transmit data with 

infinite precision. Quantization is an effective way of reducing the use of transmission 

resource, and then meeting the bandwidth constraint of the communication channels. 

However, quantization is a lossy compression method, and hence the performance of 

parameter identification, even the validity or effectiveness of identification may be 

changed by quantization, along with which the performance of adaptive control may 

deteriorate. This has attracted plenty of works. The problem of system identification with 

quantized observation was investigated in (Wang, et al, 2003, 2008, 2010), where issues of 

optimal identification errors, time complexity, optimal input design, and the impact of 

disturbances and unmodeled dynamics on identification accuracy and complexity are 

included.  

In the light of the fundamental effect of quantization on system identification, it is 

necessary to pay attention to the parameter identifiability property of quantized systems. 

The concept of identifiability has been defined by maximal information criterion in 

(Durgaryan & Pashchenko, 2001): the system is parameter identifiable by maximal 
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information criterion, if the mutual information between actual output and model output 

is greater than zero. However, the concept of identifiability in (Durgaryan & Pashchenko, 

2001) is defined in principle, based on which there is no practical result. Reference 

(Zhang, 2003; Zhang & Sun, 1996; Baram & Kailath, 1988) have discussed the problem of 

states estimability, which is related closely with parameter identifiability, for that input-

output description of linear systems with Gauss-Markov parameters can be transformed 

to state space model, and then the problem of parameter identifiability can be treated as 

state estimability. Reference (Zhang, 2003) has proposed the definition of parameter 

identifiability under the criterion of minimum maximum error entropy (MMSE) 

estimation referring to the definition of states estimability, and also obtained some useful 

conclusions. Reference (Wang & Zhang, 2011) has studied the parameter identifiability of 

linear systems under access constraints. However, there is few work on that for quantized 

systems. 

This paper mainly analyzes the parameter identifiability of quantized linear systems with 

Gauss-Markov parameters from information theoretic point of view. The definition of 

parameter identifiability proposed in (Zhang, 2003) is reviewed: the linear system with 

Gauss-Markov parameters is identifiable, if and only if the mutual information between the 

actual value and estimates of parameters is greater than zero, which is extended to 

quantized systems by considering the intrinsic property of the system. Then the parameter 

identifiability of linear systems with quantized outputs is analyzed and the criterion of 

parameter identifiability is obtained based on the measure of mutual information. 

Furthermore, the convergence property of the quantized parameter identifiability Gramian 

is analyzed. 

The rest of the paper is organized as follows: In section 2, we introduce the model that we 

are interested in; Section 3 discusses the existing definition of parameter identifiability, 

proposes our new definition, and gives analytic conclusion focusing on quantized linear 

systems with Gauss-Markov parameters; The convergence property of Gramian matrix of 

parameter identifiability for quantized systems is discussed in section 4; Section 5 and  

6 are illustrative simulation and conclusion, respectively. 

2. System description 

Consider the following SISO linear system expressed by Auto-Regressive and Moving 

Average Model (ARMA) (Astrom & Wittenmark, 1994): 

 
1

1

( ) ( ) ( - 1) ( ) ( - )

( ) ( - 1) ( ) ( - ) ( )
n

m

y k a k y k a k y k n

       b k u k b k u k m e k

  
   


  (1) 

where ( )u k and ( )y k are input and output of the system respectively, stochastic noise 

sequence { ( )}e k is Gaussian and white with zero-mean and covariance R, and uncorrelated 

with ( )y k , ( - 1)y k and ( )u k , ( - 1)u k  . Let 
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 T
1 1( ) = [ ( ) ( ) ( ) ( )]m nθ k b k b k a k a k   (2) 

be the parameter vector, where T( )  denotes the operation of transposition, and let 

 T( ) = [ ( - 1) ( - ) - ( - 1) - ( - )]F k u k u k m y k y k n   (3) 

then system (1) can be described as 

 T( ) = ( ) ( ) + ( )y k F k θ k e k  (4) 

Suppose that the parameter ( )θ k can be modeled by a Gauss-Markov process, i.e., 

 ( + 1) = ( ) + ( )θ k Aθ k Bw k  (5) 

where A, B are known matrices with appropriate dimensions; noise sequence { ( )}w k  is 

Gaussian and white with zero-mean and covariance Q; initial value of the parameter (0)θ  is 

Gaussian with mean θ  and covariance (0)Π . Suppose that ( )e k , ( )w k  and (0)θ  are 

mutually uncorrelated. Hence, linear system (1) with Gauss-Markov parameters can be 

described by (4) and (5), i.e., 

 
T

( + 1) = ( ) + ( )

( ) = ( ) ( ) + ( )

θ k Aθ k Bw k

y k F k θ k e k





 (6) 

Due to bandwidth constraint of the channel, quantization is required. The discussion in the 

present paper does not focus on a special quantizer, but on general N-level quantization 

(Curry 1970; Gray and Neuhoff 1998) which can be described as: 

 q( ) = ( ( )) = ,  for ( ) , = 1,2, ,l ly k Q y k z y k δ l N   (7) 

where ( )Q  is the general quantizer, q 1 2( ) { , , , }Ny k z z z  denote the quantizer outputs with 

, = 1, ,lz l N as the reproduction values; = ( , ],  = 1,2, ,l l l+1δ a a l N  denote the quantization 

intervals, where   +1

=1

N

i i
a , 1 2 +1- = < < < = +Na a a   are the thresholds of the quantizer. 

The channel is assumed to be lossless. q 1 2( ) { , , , }Ny k z z z   is transmitted and then received 

at the channel receiver. ,  = 1,2, ,iz i N  are symbols denoting the ith quantization interval 

and not necessarily real numbers, hence, further decoding is required, as follows 

 
*
q q( ) = ( ( ))ky k D y k  (8) 

where ( )kD   is assumed to be a one to one mapping. A common decoding method (Curry, 

1970) is 

q q( ( )) = E{ ( )| ( )= },  = 1,2, ,k lD y k y k y k z l N  

where E{.} is the operation of expectation. 
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3. Parameter identifiability 

3.1. Definition of parameter identifiability 

Reference (Zhang, 2003) proposed the definition of parameter identifiability for system (6) 

referring to the definition of state estimability under MMEE. 

Let ˆ( )θ k be the MMEE estimation of ( )θ k based on ( )F k , and ˆ( )= ( ) - ( )θ k θ k θ k be the 

estimation error. Define the prior and posterior mean-square estimation error matrices 

respectively as 

T( ) = E{( ( ) - ( ))( ( ) - ( )) }Π k θ k θ k θ k θ k  

T( ) = E{ ( ) ( )}P k θ k θ k   

where ( )θ k is the mean of ( )θ k , i.e. ( )=E{ ( )}θ k θ k . 

Definition 1(Zhang, 2003): The linear system (1) with Gauss-Markov parameters (i.e. system 

(6)) is identifiable, if and only if 

 ˆ( ( ); ( )) > 0, + - 1I θ k θ k k n m    (9) 

where ( ; )I   denotes mutual information. 

Based on Definition 1, the following conclusion was obtained in (Zhang, 2003). 

Lemma 1(Zhang, 2003): The linear system (1) with Gauss-Markov parameters (i.e. system 

(6)) is identifiable, if and only if, the identifiability Gramian 

 
0

- -id T T

=

= ( ) ( ) ( ) ( )( ) ,k j k j
k

j k

W A Π j F j F j Π j A + - 1k n m   (10) 

has full rank, i.e. id( ) = +krank W n m , + - 1k n m  . 

In the present paper, we propose an alternative definition of parameter identifiability for the 

quantized system (6)(7)(8) from information theoretic point of view, as follows. 

Definition 2: The quantized linear system with Gauss-Markov parameters (6)(7)(8) is 

identifiable, if and only if 

 *
q( ( ); ) > 0,  k + - 1kI θ k Y n m   (11) 

where * * * * T
q q q q= [ (0) (1) ( )] .kY y y  y k  

Remark 1: 

1. From information theory (Cover & Thomas, 2006), condition (11) is equivalent to that 
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 ˆ( ( )) > ( ( )), + - 1H θ k H θ k k n m   (12) 

where ( )H   denotes entropy, i.e. the prior error entropy ( ( ))H θ k  is strictly greater than 

posterior error entropy ˆ( ( ))H θ k ; 

2. Definition 1 considers the mutual information between the actual value and estimate of 

parameters, so it relies on the estimation principle, while Definition 2 takes into account 

the intrinsic property of the system independent of the estimator used. If Definition 2 is 

adopted to analyze unquantized system (6), the identifiability condition (11) turns into 

 ( ( ); ) > 0, k + - 1kI θ k Y n m   (13) 

where T= [ (0) (1) ( )]kY y y y k , and condition (9) is equivalent to (13) for linear Gaussian 

system (6) (Zhang, 2003). Hence, in some sense, Definition 2 is a more general one than 

Definition 1. 

3.2. Identifiability analysis of quantized linear systems 

Mutual information ( ; )I   (Cover & Thomas, 2006) is a measure of the information amount 

commonly contained in, and the statistic dependence between two random variables. 

( ; ) 0I     with equality if and only if these two random variables are independent. Therefore 

(11) based on the information theoretic Definition 2 indicates that system is parameter 

identifiable if and only if any direction of parameter space is not orthogonal to all the past 

(quantized) measurements (Baram & Kailath, 1988), i.e. + , 0,n mg g  R  

 T * *
q qE{( ( ) - ( ))( ( ) - ( ))} 0, , + - 1g θ k θ k y j y j j k k n m      (14) 

where *
q( )y j  is the mean of *

q( )y j , i.e. * *
q q( ) E{ ( )}y j y j . 

From the Gauss-Markov property of the parameters, we have 

 
- -1

- - -1-

=0

( ) = ( ) + ( + )
k j

k j ik

i

θ k A θ j A Bw j ij  (15) 

 -( ) = ( )k jθ k A θ j  (16) 

where 
-1

- -1

=0

( + ) = 0i

i

A Bw k i  when =j k,  then 

 

* *
q q

*
q

- -1
- - - -1 *

q
=0

- *
q

- *
q

   E{( ( ) - ( ))( ( ) - ( ))}

= E{( ( ) - ( )) ( )}

= E{[ ( ( ) - ( )) + ( + )] ( )}

= E{( ( ) - ( )) ( )}

= E{ '( ) ( )}

k j
k j k j i

i

k j

k j

θ k θ k y j y j

θ k θ k y j

A θ j θ j A Bw j i y j

A θ j θ j y j

A θ j y j









  (17) 
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where '( ) = ( ) - ( )θ j θ j θ j . Let ' '( )θ θ j , * *
q q( )y y j , and the time variable j of other relevant 

time-variant variables (e.g. F(j), ( )Π j ) is omitted for notational simplicity, then 

 
+

+

* * *
q q q

=1 '

*
q

=1 '

E{ '( ) ( )} E{ ' } = ' ( ) ( ', = ( ))d '

                                       = ( ) ' ( ', = ( ))d '

n m

n m

N

j l j l
l θ

N

j l j l
l θ

θ j y j θ y θ D z p θ y D z θ

D z θ p θ y D z θ





   

 

R

R



 (18) 

Based on the Bayesian law, 

 

*
q

*
q

+1

T
+1

T
+1

T T T T
+1

T T T T
+1

    ( ', = ( ))

= ( = ( )| ') ( ')

= ( < | ') ( ')

= ( < + | ')p( ')

= ( < ( ' + ) + | ') ( ')

= ( - - ' < - - '| ') ( ')

= ( - - ' < - - ') ( ')

j l

j l

l l

l l

l l

l l

l l

p θ y D z

p y D z θ p θ

p a y a θ p θ

p a F θ e a θ θ

p a F θ θ e a θ p θ

p a F θ F θ e a F θ F θ θ p θ

p a F θ F θ e a F θ F θ p θ











  (19) 

where the last equality is based on the fact that '( )θ j  and e(j) are stochastically independent, then 

 

+

+

+

*
q

'

T T T T
+1

'

T T T T
+1

'

   ' ( ', = ( ))d '

= ' ( - - ' < - - ') ( ')d '

- - ' - - '
= '( ( ) - ( )) ( ',0, )d '

n m

n m

n m

j l

θ

l l

θ

l l

θ

θ p θ y D z θ

θ p a F θ F θ e a F θ F θ p θ θ

a F θ F θ a F θ F θ
θ T T G θ Π θ

R R















R

R

R

 (20) 

where T(.) is the probability distribution function of standardized normalized distribution 

(note that, T(.) is different from the tail function defined in (Ribeiro et al., 2006; You et al., 

2011)), ( ',0, )G θ Π denotes the probability density function which means that stochastic vector 

'θ is Gaussian with zero-mean and covarianceΠ . Following the similar line of argument as in 

(Ribeiro et al., 2006; You et al., 2011), we calculate the integral (20) and then obtain  

 
+

T T
* +1
q

T T T
'

- -
' ( ', = ( ))d ' = ( ( ) - ( ))

+ + +n m

l l
j l

θ

a F θ a F θ ΠFθ p θ y D z θ
F ΠF R F ΠF R F ΠF R

 


R

 (21) 

where ( )   is the probability density function of standardized normalized distribution. 

Substitute (21) into (18), we have 

T T
* +1
q

T T T
=1

( ) - ( ) ( ) - ( ) ( )
E{ '( ) ( ) = ( ( ) - ( )) ( ) ( ).

( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ) +

N
j l l l

l

D z a F j θ j a F j θ j
θ j y j Π j F j

F j Π j F j R F j Π j F j R F j Π j F j R
   (22) 
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Combining (22) with (17) and (14), we get that T * *
q qE{( ( ) - ( ))( ( ) - ( ))} 0g θ k θ k y j y j   is 

equivalent to 

 

T T
-T +1

T T T
=1

( ) - ( ) ( ) - ( ) ( )
( ( ) - ( )) ( ) ( ) 0, 

( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ) +

                                                                                         

N
j l k jl l

l

D z a F j θ j a F j θ j
g A Π j F j

F j Π j F j R F j Π j F j R F j Π j F j R
  

                             , + - 1 .j k k n m   

 (23) 

Let 

 
T T

+1

T T T
=1

( ) - ( ) ( ) - ( ) ( )
( ) ( ( ) - ( ))

( ( ) ( ) + ( ( ) ( ) + ( ( ) ( ) +

N
j l l l

l

D z a F j θ j a F j θ j
ψ j

F j)Π j F j R F j)Π j F j R F j)Π j F j R
   (24) 

Then (23) is equivalent to that 

 
0

idq - -2 T T

=

= ( ) ( ) ( ) ( ) ( )( ) , + - 1k j k j
k

j k

W ψ j A Π j F j F j Π j A k n m   (25) 

has full rank. We conclude the above analysis as follows. 

Theorem 1: The quantized linear system with Gauss-Markov parameters (6)(7)(8) is 

parameter identifiable, if and only if 

 idq = + , + - 1krank W n m k n m   (26) 

Remark 2: 

1. In Theorem 1, ( ),  = 0,1,2, ,ψ j j k is defined by the quantizer, while
- -T T( ) ( ) ( ) ( )( )k j k jA Π j F j F j Π j A , = 0,1,2, ,j k , which is the same part as in the 

unquantized system, reflects the intrinsic properties of the system. Hence, the full rank 

requirement of idq
kW shows that the parameter identifiability of the quantized system is 

defined by quantizer and intrinsic properties of the system jointly; 

2. When quantization level = 1N , i.e. 1 = -a  , 2 = +a  , ( ) 0ψ j  , then idq 0kW  , condition 

(26) is not satisfied and the system is not identifiable. This is consistent with the 

intuition. From (10) and (25), it can be observed that the difference between 

unquantized estimability Gramian id
kW  and quantized estimability Gramian idq

kW  is 

that the later includes additional weights 2( ),  = 0,1,2, ,ψ j j k . As a result, it can be seen 

that besides the situation of quantization level = 1N , the matrix idq
kW  may become 

singular due to the property of 2( )ψ j , though id
kW  has full rank; 

3. The quantizer in Theorem 1 is time-invariant. However, by using the above analysis 

method, a conclusion similar to Theorem 1 can be derived for time-variant quantizer, 

except that the weights in the estimability Gramian reflects the time-variant property of 

the quantizer, i.e., 

 
T T

+1

T T T
=1

( ( )) ( ) - ( ) ( ) ( ) - ( ) ( )
( ) ( ( ) - ( ))

( ( ) ( ) + ( ( ) ( ) + ( ( ) ( ) +

N
j l l l

l

D z j a j F j θ j a j F j θ j
ψ j

F j)Π j F j R F j)Π j F j R F j)Π j F j R
   (27) 
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4. Condition (26) is equivalent to that the matrix sequence  
-{ ( ) ( ) ( ), }k jψ j A Π j F j j k  has 

column rank n+m.  
-{ ( ) ( ) ( ), }k jψ j A Π j F j j k can be decomposed as 

 
-{ ( ) ( ) ( ), } { (0), (1), , ( )}k jψ j A Π j F j j k diag ψ ψ ψ k  , where { }diag  denotes diagonal matrix. 

Hence the parameter identifiability of the original system can be preserved if 

( ) 0, = 0,1,2,ψ j j  . Especially, condition (26) is equivalent to Lemma 1 for (6). 

Suppose we can design a time-variant quantizer as follows 

 

T

T T

( ( )) = ( ) ( ) ( ) + ,  = 1,2, , ,

( ) = ( ) ( ) ( ) + + ( ) ( ),  = 1,2, , + 1 , = 0,1,2, ,  ,

j l l

l l

D z j c F j Π j F j R l N

a j d F j Π j F j R F j θ j l N j k



 
   (28) 

where lc  and ld  are constants which make 

 +1
=1

( ) = ( ( ) - ( )) 0
N

l l l
l

ψ j c d d    (29) 

be the same for every j, thus, 

 
0

idq - -2 2 T T
+1

=1 =

= ( ( ( ) - ( ))) ( ) ( ) ( ) ( ) ( )( ) .
N

k j k j
k l l l

l j k

W c d d ψ j A Π j F j F j Π j A     (30) 

By comparing (30) with (10), we can find that such a time-variant quantizer does not change 

the parameter identifiability of the original system if and only if (29) is satisfied; 

5. The parameter identifiability of the system can be preserved even if the quantization 

level is low as long as the quantizer is designed reasonably. Especially, when 

quantization level = 2N , set 1 = -1c , 2 = 1c , 1 = -d  , 2 = 0d , 3 = +d   in the formula 

(28), then ( ) 2 / , = 0,1,2,ψ j π j  , namely a coarse quantizer of 1 bit can preserve the 

parameter identifiability of the original system. 

4. Convergence analysis 

In this section, we discuss the convergence property of the Gramian in Theorem 1, i.e., the 

convergence property of ( ), = 0,1,2,ψ j j  . 

We know that 

 
T TT

+1

T T T
=1

- ( ) ( ) - ( ) ( )( ) ( )
( ) - ( )) = 0

( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ) +

N
l l

l

a F j θ j a F j θ jF j θ j

F j Π j F j R F j Π j F j R F j Π j F j R
   (31) 

by the property of ( )  , then ( )ψ j  can be re-expressed as 

 

T T T
+1

T T T
=1

( ) - ( ) ( ) - ( ) ( ) - ( ) ( )
( ) = ( ) - ( ))

( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ) +

N
j l l l

l

D z F j θ j a F j θ j a F j θ j
ψ j

F j Π j F j R F j Π j F j R F j Π j F j R
   (32) 
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LetΔ = sup Δl
1 k N 

,where +1Δ = -l l la a , = 1,2, ,l N , let T( ) - ( ) ( )l la j a F j θ j  , then +1Δ = ( ) - ( ),l l la j a j   

T( ) ( ) ( ) +F j Π j F j R  , T( ) ( ) - ( ) ( )*
l j lz j D z F j θ j . Consider the convergence property of the 

Gramian idq
kW  whenΔ 0 . Note that N   when Δ 0 , and then 

      

+1

=1

Δ 0
=1

Δ 0
=1

( ) ( ) ( )
lim ( ) = lim ( ( ) - ( ))

( ) ( ) a ( ) +Δ
              = lim ( ( ) - ( ))

( ) ( ) +Δ
( ) - ( )

( ) Δ
             = lim .(- )

Δ
-

              = li

l

l

*N
l l l

N N
l

*
l l l l

l

l l l
*
l l

ll

z j a j a j
ψ j

z j a j j

a j a j

z j

 

 

 

 









  

  

 
 









 

 

 

( )Δ 0 ==1

2

2

Δ 0
=1

2

2

( ) Δd
m ( )| (- )

d

( )1
exp{- ( ) }

( ) Δ2
              = lim ( )

2

( )1
exp{- ( ) }

( ) d ( )2
              = ( )

2

l
l

l

*
l l

a j
sl

*
l

*
l l

l

*
l

* *
l l

z j
s

s

z j

z j

π
z j

z j z j

π











 


 


 






R



  (33) 

Let 
( )

= ,
*
lz j

r


 then 
d ( )

d = ,
*
lz j

r


 

 

2

-
2

2lim ( ) = d = 1.
2

r

N

eψ j r r
π 

R

 (34) 

Remark 3: Equation (34) implies the convergence of Theorem 1 to Lemma 1 when Δ 0 , 

i.e. the quantized identifiability Gramian idq
kW  converges to the unquantized identifiability 

Gramian id
kW . 

5. Simulation 

In order to illustrate our main conclusion, the following system is simulated with the tool of 

Matlab: 

( ) = ( ) ( - 1) + ( )y k b k u k e k  

where ( )b k  is the parameter to be identified, and can be modeled as a Gauss-Markov 

process. Then the system model can be transformed to 
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T

( + 1) = ( ) + ( )

( ) = ( ) ( ) + ( )

θ k aθ k w k

y k F k θ k e k





 

where ( ) = ( )θ k b k , a=0.5. ( )e k , ( )w k  and (0)θ  are mutually statistically uncorrelated, their 

covariance are Q=1, R=0.1, (0) = 1Π  respectively, and the mean of (0)θ  is = 1θ . Here we 

set ( ) = ( - 1) = 2sin( ) + 3F k u k k  as the assumed system input (i.e., the control signal, which 

can be considered to be generated, for example, by the adaptive controller), where the 

additive term “3” plays the role of avoiding the problem of “turn-off” (Astrom & 

Wittenmark, 1994). 

To do the illustrative simulation, an optimal filter is required though the analysis about 

parameter identifiability is independent of the estimator used. The discussed linear system 

with Gauss-Markov parameter is transformed to state space model, and then the problem of 

parameter identification can be treated as states estimation. A number of quantized state 

estimators have been proposed by scholars in various areas, and we choose the Gaussian fit 

algorithm (Curry, 1970) as the filter in this section for that this filter which bases on the 

Gaussian assumption is near optimal and convenient to be implemented. Note that, in this 

simulated model, ( )F k is defined by ( - 1)u k  completely, so it is known at the channel 

receiver; however, in general model (1) ( ), = 1,2, ,ia k i n  and ( ), = 1,2, ,ib k i m  are to be 

identified, then ( )F k  is defined by ( - 1) ( - )u k u k m  and - ( - 1) - ( - )y k y k n  jointly. So in 

general, the quantized signals q q( - 1), , ( - )y k y k n , instead of the actual outputs 

( - 1), , ( - )y k y k n  are received at the channel receiver, thus ( - 1), , ( - )y k y k n  in ( )F k  

should be replaced by their estimates. 

The analysis about parameter identifiability of quantized systems is suitable for any 

rational quantizer. Here the Max-Lloyd quantizer (Proakis, 2001) generally adopted in 

areas of communication and signal processing is employed. In the following statement, 

cases of quantization level = 4N  and = 2N  in (7) are simulated, respectively. The 

thresholds of the 4 level Max-Lloyd quantizer are {–∞, –0.9816, 0, 0.9816, +∞} and the 

outputs of the quantizer are {–1.51, –0.4528, 0.4528, 1.51} when the signal to be quantized 

is standardized normally distributed. In the case of 2 level quantizer, the thresholds are {–

∞, 0, +∞} and the outputs of the quantizer are {–0.7979, 0.7979}. Hence the thresholds of 

the time-variant quantizers with 4 and 2 levels are respectively ( )σ ×y k {–∞, –0.9816, 0, 

0.9816, +∞}+ ( ) ×y kE {1, 1, 1, 1, 1} and ( )σ ×y k {–∞, 0, +∞}+ ( ) ×y kE {1, 1, 1}, the outputs of the 

quantizers are ( )σ ×y k {–1.51, –0.4528, 0.4528, 1.51}+ ( ) ×y kE {1, 1, 1, 1} and ( )σ ×y k {–0.7979, 

0.7979}+ ( ) ×y kE {1, 1}, where ( )y kE  and ( )σy k  are the mean and standard deviation of the 

output y(k) respectively. 

It is obvious that the above model is parameter identifiable by Lemma 1 when it is 

unquantized. We get ( ) 0.8823ψ j   by calculating the weight ( )ψ j  in equation (27) when the 

4 level time-variant Max-Lloyd quantizer is used and ( ) 0.6366ψ j   when quantization level 

= 2N . Hence the parameter identifiability will not be changed by the quantization 

according to Remark 2, i.e. the quantized system is still parameter identifiable, theoretically. 

The simulation results of the quantized system shown in Fig. 1 ( = 4N ) and Fig. 2 ( = 2N ) 

illustrate the above conclusion. 
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In Fig. 1(a) and Fig. 2(a), actual values of parameter are denoted by solid lines and the 

estimates are denoted by dotted lines. Estimation errors are shown in Fig. 1(b) and Fig. 2(b). 

Fig. 1 and Fig. 2 show that the estimate can track the real value of the parameter when the 

outputs are quantized coarsely. The curves of prior error entropy and posterior error 

entropy are shown in Fig. 1(c) and Fig. 2(c). The entropy is calculated by  

 
1

( ) = ln2 + ln
2 2

n
H x πe C  (35) 

where nxR  is a Gaussian vector with covariance C, | | denotes determinant. For 

quantized systems, the probability distribution of estimation error ( )θ k  is unknown, but is 

supposed to make the entropy of ( )θ k  maximal according to “maximal entropy principle” 

of Jaynes (Jaynes, 1957), namely, the uncertainty of ( )θ k  is supposed to be maximal in the 

situation of lack of prior information, hence ( )θ k  is assumed to be Gaussian, and thus (35) 

can be adopted to calculate the entropy of ( )θ k  in this simulation. We can observe from Fig. 

1(c) and Fig. 2(c) that the posterior error entropy is strictly smaller than prior error entropy 

from the initial time instant. This indicates that this quantized system is parameter 

identifiable, and these observations consist with our analysis mentioned above perfectly. 

Besides, we can observe that the estimation error when quantization level = 2N  is greater 

than that in the case of quantization level = 4N  though the system is parameter identifiable 

in both of the two quantization cases. This shows that systems with different quantizers lead 

to different estimation precision, though all of them are parameter identifiable when rational 

quantizers are used. 

 

50 55 60 65 70 75 80 85 90 95 100
-3

-2

-1

0

1

2

3

k

A
c
tu

a
l 
v
a
lu

e
 a

n
d
 E

s
ti
m

a
te

 o
f 
b
(k

)

 

 

actual value

estimate

(a)



 
Stochastic Modeling and Control 290 

 

 

Figure 1. (a) Actual value and estimate of b(k), N=4, (b) Estimation error of b(k), N=4,  

(c) Prior and posterior error entropy, N=4 
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Figure 2. (a) Actual state and estimate of b(k), N=2, (b) Estimation error of b(k), N=2,  

(c) Prior and posterior error entropy, N=2 

6. Conclusion 

This paper discusses the parameter identifiability of quantized linear systems with Gauss-

Markov parameters from information theoretic point of view. The existing definition 

concerning this property is reviewed and new definition is proposed for quantized systems. 

Criterion function, the Gramian of parameter identifiability for quantized systems is 

analyzed based on the quantity of mutual information. The derived conclusions consist with 

our intuition very well and also provide us with intrinsic perspective for the quantizer 

design. The analysis shows that the Gramian of quantized systems converge to that of 

unquantized systems when the quantization intervals turn to zero, and a well designed 

quantizer can preserve the identifiability of the original system even if the quantizer is as 

coarse as one bit. The analytical analysis is verified by the illustrative simulation. 
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