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1. Introduction 

1.1. Glucocorticoids discovery started 160 years ago 

Glucocorticoids are subclass from corticosteroids. The other subclass of corticosteroids is 
mineralocorticoids. Historically, the discovery of glucocorticoids has been commenced 
during the early of last century. In fact, glucocorticoids have revealed themselves by their 
absence. In 1849, Thomas Addison, who was a physician at Guy`s Hospital in London, had 
noticed that certain patients were presenting with a cluster of characteristic clinical picture 
including anemia, weakness, peculiar dark skin color and eventually death (1). He 
presented his observation on 11 cases at the South London medical society meeting. In 1855 
he published monograph entitled (On the Constitutional and Local Effects of Disease of the 
Supra-Renal capsules), (2, 3). 100 years later, Dr Philip Hench with a collaborated work with 
Edward Kendall, Professor of Physiological Chemistry, were both at Mayo Clinic which was 
first rheumatic disease service, had extracted “substance X” and in 21 September 1948 first 
injection of substance X was given to 29 years old lady who was suffering from severe, 
erosive arthropathies and became able to walk out of the hospital after 4 days of treatment. 
Dr Hench then named substance X Cortisone and shared the Nobel prize with professor 
Kendall in 1950 (4). 

1.2. Glucocorticoids characteristics 

Glucocorticoids (GCs) are belonging to the steroid group of the hormones that bind to the 
glucocorticoid receptor, which is present in almost all cells (5). This is the reason why the 
GCs play wide range of vital physiological roles in the human and other vertebrate bodies 
(6, 7). They play pivotal role in modulation and regulation of metabolism (8), immune 
system reaction (9, 10) and more significantly they are essential for normal development and 
cognition (11). 
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1.2.1. Biochemical characteristics 

To know how GCs exerts their wide range effects, it is crucial to know about their structure 
and the synthesis pathway. GCs are one of the steroid hormones group. All steroid 
hormones are derived from cholesterol. These include: sex hormones (Testosterone, estrone 
(E1), estradiol (E2), estriol (E3), and progesterone) adrenal cortex hormones (Cortisone, the 
main glucocorticoid and Aldosterone, the main mineralocorticoid) in addition to vitamin D. 
It is essential to know that androgens are the synthetic precursors of estrogens which 
mediated mainly by a specific cytochrome P 450 enzyme named aromatase. Each one of 
these steroid hormones can be a product and precursor in the same time. This is the reason 
why any defect in the synthesis of one steroid hormone will lead to derangement in the 
synthesis of the other hormones. For instance, in congenital adrenal hyperplasia (CAH), an 
autosomal recessive gene defect of the enzyme 21-hydroxylase, there will be blocked 
synthesis of aldosterone and cortisol pathways. Subsequently, all precursors will be directed 
toward androgenic pathway which does not involve 21-hydroxylation and eventually lead 
to excess production of androgens (Figure 1). Fetus with this congenital disease will be 
exposed to high levels of androgens as early as 3 months of gestation and hence during a 
critical window of sexual differentiation. As a result a female fetus will develop an 
ambiguous genitalia or male external genitalia under the influences of adrenal androgens. 
However, this is associated with varying degrees of GCs and mineralocorticoids 
deficiencies. In severe cases there will be salt wasting with low sodium and potassium in 
serum due to aldosterone deficiency (12). Currently, all neonates in the most of world are 
screened for CAH by measuring 17-Hydroxyprogesteron (17-OHP) in filter-paper blood 
samples at week one of life. An elevated 17-OHP indicated affected baby. Recently, there are 
promising clinical trials in prenatal diagnosis and treatments of such condition by giving the 
mother dexamethasone injections to prevent increased secretion of Adreno-Cortico-Tropic 
Hormone (ACTH) and subsequently adrenal androgens(13-17). 

1.2.2. Physiological characteristics 

GCs are needed mainly for energy where as mineralocorticoids are needed for mineral 
balance. GCs regulates wide range of cellular, molecular and the physiological processes in 
human body that are crucial for life such as growth, reproduction, essential metabolism, 
immune responses and inflammatory reactions, as well as central nervous system and 
cardiovascular functions (19-22). For all these roles to be achieved, adrenal GCs is 
considered as a ring which coupled with many other rings to form an integrated chain that 
acts in coordination, this chain is the hypothalamus-pituitary- adrenal axis. 

1.2.2.1. Hypothalamus-pituitary-adrenal axis (HPA axis) 

HPA axis serves as a master that controls major body systems and is considered as a main 
connecting pathway between central nervous system and endocrine system. It regulates 
majority of physiological function as well as it maintains homeostasis in acute stress. In the 
later situation, the brain will signal the stress to the paraventricular nucleus (PVN) in the 
hypothalamus which eventually secretes corticotrophin releasing hormone (CRH). CRH is 
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then transported through hypophyseal portal system to the pituitary gland and induces the 
conversion of pro-opiomelanocortin into ACTH as well as its secretion from anterior 
pituitary to the systemic circulation. ACTH is the primary regulator of adrenal cortical 
steroidogenesis. ACTH will induce the synthesis of adrenal steroids (GCs and androgens) in 
zonae fasciculate and reticularis of adrenal cortex (Figure 1). The ACTH itself is under the 
influences of negative feedback inhibition which exerted by the plasma levels of circulating 
free GCs (Figure 2). 

 
Figure 1. Adrenal gland steroidogenesis. The synthesis of adrenal steroids is started by transfer of 
cholesterol either from blood or from adrenal gland lipid droplets into mitochondria where it will be 
converted to pregnenolone. In zona glomerulosa pregnenolone will be hydroxylated to corticosterone 
and further oxidized to aldosterone where as in zona fasciculate and zona reticularis it will be 
hydoxylated to cortisol or undergoes cleavage to form the main adrenal androgen (DHEA). HSD: 
Hydroxysteroid Dehydrogenase, OH: Hydroxylase, (18). Adrenal androgen synthesis is increased about 
age of 8 years, independent of gonads and puberty, and responsible for pubic and axillary hair growth 
and termed adrenarche. 

1.2.2.2. Molecular mechanisms of GCs action 

GCs secretion from zona fasciculata up on ACTH stimulation is not a continuance process 
but rather in a specific pattern known as circadian rhythm. Once GCs in circulation, 95% of 
them will be bound to a carrier proteins: 80–90% to corticosteroid binding globulin (CBG) 
and 10–15% to albumin, leaving only about 5% as active unbound cortisol (23). The free 
cortisol is the one which mediates the biological effect of GCs since it is able to diffuse 
through the cell membrane freely. The GCs are metabolized in liver by reduction followed 
by conjugation rendering them water soluble and ready for renal excretion in urine. Both 
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liver and kidney contain the enzyme 11 β-Hydroxysteroid dehydrogenase (11 β-HSD).There 
is two isoforms of this enzyme which catalyzes the opposite reactions. 11 β-Hydroxysteroid 
Dehydrogenase-2 (11 β-HSD 2) will inactivate the cortisol by converting it into cortisone. 
The 11 β-Hydroxysteroid dehydrogenase-1 (11 β-HSD 1) will convert inactive cortisone into 
cortisol. The net result will determine the plasma level of active cortisol in the body (24). 

 
Figure 2. Schematic representation of Hypothalamic-pituitary-adrenal axis. PVN: Paraventricular 
nucleus, CRH: Corticotrophin releasing hormone, ACTH: Adrenocorticotropic hormone, : 
Inhibition,

 
:Stimulation  

Once free GCs defused through the plasma membrane of the target cell they will bind to 
intra-cytoplasmic receptors called glucocorticoids receptor (GR). GR-GCs complex will be 
now translocated to the nucleus and bind to glucocorticoids responsive elements (GRE) in 
the promoter of the target gene (Figure 3). 

Human GR is 94 kDa protein which belongs to nuclear receptors known as 
Steroid/Thyroid/Retinoic acid superfamily and characterizing by being a ligand-dependent 
transcription factors that induce or suppress target gene expression (25). GCs are also able to 
alter gene expression of target genes independently to DNA-binding, but through 
interaction with other transcription factors, such as nuclear factor- κB, activator protein-1, 
p53 and signal transducers and activators of transcription (25). 

Interestingly, there are two isoforms of GR, alpha (α) and beta (β) (26, 27). The GR-α is the 
one which is able to bind with glucocorticoids and subsequently to the GCs responsive 
element (GRE) of the DNA promoter region on the target gene. However, GR-β has no such 
ability to bind to GCs but its main role thought to be inhibitory to GR-α action by 
competitive interference on the GRE target sites (28). It has been found that the variations in 

 

 - 

 + 
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expression of GR-β is responsible for tissue sensitivity and resistance to GCs. Clinically, 
pathological conditions such as hypertension, rheumatoid arthritis, systemic lupus 
erythmatosis, ischemic heart disease and nasal carriage of Staphylococcus aureus are all 
associated with GR-β protein over-expression (29). 

 
Figure 3. Representation of how glucocorticoid hormone enters to the cell and bind to intracellular 
glucocorticoids receptors (GR). Up on binding to GR they dissociate from heat shock proteins (HSP). 
The glucocorticoids-receptor complex enters the nucleus and bind to glucocorticoids responsive 
element (GRE) in the promoter of the responsive gene (25). Lastly, GR exit nucleus and recycled along 
with the HSP in the cytoplasm. 

2. Tissue responses to glucocorticoids 

As mentioned earlier that GR exist in almost every human cell, then we should not get 
surprised to observe the profound molecular, cellular, metabolic and other known biological 
events modulation in response to GCs excess or deficiency. Notwithstanding, for more 
understanding of these complex relationship and the huge difference in the treatment-
response equation we categorized the human tissue into adult or mature human tissue and 
fetal or immature human tissue. 

2.1. Adult (mature) tissue response to glucocorticoids 

Adult cells and tissue characterized by being fully differentiated and mature. Therefore, 
influences will mainly affect their function.  

2.1.1. Immune system 

It is well established that the first medical use of GCs 60 years ago was for inflammation and 
autoimmune disease (30). GCs have significant influences on both cellular and humeral 
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immunity. They induce plasma cell immunoglobuline production and secretion and hence 
enhance humeral immunity (31). With regard to cellular immunity, GCs induce T-cell 
lymphocytosis (32), basophil apoptosis and neutrophilia by increasing bone marrow release 
of polymorphic neutrophils and decrease their migration to the inflammatory site (33, 34). 
Moreover, GCs enhances the phagocytosis and hence maximize the tissue clearance ability 
of the microorganisms and foreign antigens (35). It has been recently revealed that GCs can 
exert their immune-function manipulation at gene expression level. Galon and colleagues 
found that GCs significantly suppress the proinflamatory cytokines (IL1b, TNFa, IL-6, IL-8, 
IL- 12, IL-18) and chemokines gene expression where as the gene expression of anti-
inflammatory cytokines (IL-10 and TGFb) are up-regulated (22). 

2.1.2. Musculoskeletal system 

It is known, from long history of GCs use, that prolonged high doses of GCs results in bone 
mineralization depletion with subsequent osteoporosis (36). As a result bone formation will 
be decreased and resorption will be increased (37-41). Bone loss occur in the first few 
months of treatment and can be improved after cessation of treatment (42-44). Importantly, 
the GCs induced-osteoporosis can be prevented by calcium and vitamin D supplementation 
along with GCs treatment course (45). GCs will also cause proximal myopathy which is dose 
dependent and again improves with discontinuation of treatment (46). GCs treatment 
increases the risk of femoral head avascular necrosis through a not well established 
mechanism, although some preliminary evidence pointing to venous endothelial injury (47, 
48). 

2.1.3. Vascular system 

Use of GCs is associated with increased risk of ischemic heart disease and heart failure by 
increasing the occurrence of hypertension, hyperglycemia, dyslipideamia and obesity (49, 
50). Rapid GCs infusion especially in patients with renal and cardiac co-morbidity was 
associated with sudden death (51). 

2.1.4. Serum lipid levels 

There are conflicting results from different studies regarding GCs induced hyperlipideamia. 
Berg and Nilsson-Ehle found that GCs may induce hyperlipideamia through ACTH 
suppression (52). Whereas others found that GCs may induce favorable lipid profiles in 
patients aged 60 years or more (53). 

2.1.5. Serum glucose levels 

GCs are considered diabetogenic hormones. Patients receiving therapeutic doses of GCs will 
have deranged plasma glucose level and even frank diabetes in glucose intolerant 
individuals (54, 55). The GCs-induced hyperglycemia is mainly due to reduced glucose 
peripheral disposal along with increased hepatic gluconeogenesis (56). 
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2.1.6. Central nervous system 

Prolonged use of high doses of GCs is associated with marked behavioral and cognitive 
deficits. These disorders are more prevalent in those who have risk factors such as pre-
existing psychiatric disorders, family history of depression or alcoholism (57). These 
disturbances are ranging from sleeping disturbances, insomnia, to hypomania, depression 
and psychosis (58) as well as memory disturbances (59). Recently, more evidences are 
accumulated to affirm the relationship between exposure to high GCs and impaired 
cognition. Ioannis and others found that chronic stress, through high endogenous GCs, 
precipitate cognitive impairment and Alzheimer's like disease (60). 

2.1.7. Gastrointestinal system 

Gastritis, peptic ulceration, and gastrointestinal hemorrhage all have been found to 
complicate GCs therapy especially if non-steroidal anti-inflammatory drugs are used 
concomitantly (61). Although, Chrousos and collegues indicated that GCs therapy could be 
related to acute pancreatitis in GCs user (62), but more recent studies have proven the 
opposite that GCs are not an etiological factor (63). 

2.2. Fetal (Immature) tissue responses to glucocorticoids 

Human intrauterine development is divided mainly into three stages: Zygote, from 
fertilization to implantation, embryo, from implantation to 8 weeks and fetus, from 8 weeks 
till term. The embryo and fetal tissues are characterized by rapid division and growth 
rendering them very susceptible to environmental influences and easily adaptive. 

2.2.1. Short term effects of GCs over exposure in fetal life 

2.2.1.1. Fetal over exposure to endogenous GCS 

Fetal plasma GCs are mainly of maternal adrenal origin (64). This is essentially because of the 
biochemical, “partial” barrier role played by the placenta. The placenta contains the enzyme 11 
β-HSD 2 which is responsible for inactivation of maternal cortisol into cortisone (Section 1.2.2) 
and hence maintains a normal feto-maternal concentration gradient of the hormone (65). This 
concentration gradient is species specific where it reaches 180 ng/ml in human; it is only 2 and 
15 ng/ml in sheep and pig respectively (66). Therefore, we can assume that fetal exposure to 
maternal GCs is, at least partly, dependent on the placental activity of this enzyme. This is 
supported by the finding that in human umbilical cord blood cortisone/cortisol ratio, as a 
marker of placental 11 β-HSD 2, and the enzyme activity itself and its mRNA expression were 
lower in human pregnancies which complicated by intrauterine growth restriction (IUGR) (67) 
and each unit increase in cortisol/cortisone ratio was found to be associated with 1.6 mm Hg 
higher systolic blood pressure at 3 years of age (68).  

GCs are essential for optimal fetal tissue maturation. GR are expressed in brain (69) where it 
is essential for development of neurons, the building unit in CNS, as well as the formation of 
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synapses by facilitating cortisone-induced axons and dendrites remodeling and neurons 
myelination (70). Human nervous system development during fetal life is a complex process 
where extensive proliferation of neurons occurs after initial migration between week 8 and 
16 of gestation (71) to reach, at 28 weeks, approximately 40 % higher than total number of 
neurons in adult (72). These enormous numbers of neurons start to be connected by an 
extensive network of synapses where between 24 and 34 weeks of gestation more that 10,000 
new synapses per second are formed (73). Therefore, exposure to altered plasma level of 
cortisone during these stages of development and vulnerability is able to alter the basic 
structure and subsequently the function of the CNS (74). The Maternal and fetal HPA axis 
are independent (Figure 4 ) where maternal cortisol is prevented to enter fetal compartment 
by placental 11 β-HSD 2 until late gestation where placental enzyme drops sharply and 
allow high levels of maternal free cortisol to enhance fetal lung, CNS and other tissue 
maturation (75). However, the placenta secretes placental corticotrophin releasing hormone 
(P-CRH) which is the major, if not the only, mean of cross talk between maternal and fetal 
HPA axis. As mentioned earlier (Section 1.2.2) that maternal cortisol is exerting negative 
feedback inhibition on her hypothalamus release of CRH, on contrast, it induces P-CRH 
secretion as pregnancy advances (76) which in turn will increase maternal and fetal adrenal 
cortisol secretion (77, 78). 

Therefore, maternal either biological stress, like nutritional deprivation, immune reaction, 
hypertension, or psychological stress will be associated with high maternal cortisol and P-
CRH which disrupt fetal nervous system development and affect postnatal cognitive and 
neuromuscular function. High P-CRH, as a marker of maternal stress, during third trimester 
associated with weak fetal responsiveness to noval stimuli (79). Postnataly, there is 
significant reduction in physical and neuromuscular development in neonates who exposed 
to higher maternal cortisol as well as P-CRH during second and third trimester respectively 
(80). Those neonates also express prolonged cortisol response to stress, which similar to the 
effect of synthetic prenatal GCs (81). Interestingly, these behavioral, cognitive and 
neuromuscular deficiency of offspring exposed to endogenous maternal GCs were 
accompanied by reduction in the volume of the areas responsible for these functions (82, 83).  

Immune system disorder also noted in offspring exposed to maternal prenatal stress with 
higher incidence of childhood skin, respiratory and other general infections and increased 
antibiotics use (84). In addition, they have increased body weight which was significantly 
apparent at age of 10 years (85). More specifically, maternal high CRH during second 
trimester was found to be associated with offspring adiposity at age of 3 years (86). 

2.2.1.2. Antenatal synthetic steroid (dexamethasone and betamethsone) exposure 

Maternal administration of synthetic GCs such as dexamethasone and betamethasone, 
which are poor substrates for 11 β-HSD 2 (87), during pregnancy can cross the placenta (88) 
in quantities sufficient to induce immediate fetal changes such as reduction in umbilical 
artery pulsatility index and improved velocity (89) along with transient suppression of fetal 
breathing and fetal movement resulting in lowering the score of biophysical profile (90). 11 
β-HSD 2 is expressed mainly in placental cytotrophoblasts, the progenitors, only upon 
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syncytialization into syncytiotrophoblasts (91). Li and colleagues found that up on 
syncytialization the expressions of SP1 transcription factor as well as the cAMP pathway are 
markedly activated (91). 

 
Figure 4. Fetal and maternal HPA axes are two independent systems. The P-CRH stimulates the 
production of both maternal and fetal cortisol. Maternal cortisol has negative feedback inhibition on her 
CRH and ACTH but exerts positive feedback stimulation on P-CRH. Placental 11 β-HSD 2 inactivates 
maternal cortisol into cortisone and hence partially protects the fetus from endogenous maternal GCs 
over exposure. H: Hypothalamus, P: Pituitary, HPA: Hypothalamo-Pituitary-Adrenal, P-CRH: Placental 
Corticotrophin Releasing Hormone, ACTH: Adreno-Corticotrophic Hormone, 11 β-HSD 2:11-β-
Hydroxysteroid dehydrogenase-2, GCs:Glucocorticoids, M-Cortisol: Maternal cortisol, M-Cortisone: 
Maternal cortisone, PVN: Paraventricular nucleus, : Inhibition, : Stimulation. 

GCs are strong inducers of HLA-G gene expression in choriocarcinoma JEG-3 cell lines. The 
HLA-G molecules play a pivotal role in regulating feto-maternal interface and essential for 
protecting the allogenic fetus from maternal immune attack (92). 

After the finding that surfactant deficiency in premature infants (less than 37 weeks of 
gestation) is the leading cause of respiratory distress syndrome (RDS) in 1959 (93) and high 
mortality rate among preterm infants because of this lung immaturity (94, 95) a continuous 
work was done to prevent such fatal condition. Clinically, GCs has been used to prevent 
neonatal respiratory distress syndrome successfully (96). Thereafter, many studies found 
that maternal treatment of GCs will significantly decrease neonatal death due to reduction 
of intraventricular haemorrhage and necrotising enterocolitis beside reduction in RDS (97, 
98). However, randomized controlled trials shown that no differences in the effectiveness of 
both dexamethasone and betamethasone in reducing the rate of respiratory distress 
syndrome, need for vasopressor therapy, necrotizing enterocolitis, retinopathy of 

 -  +
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prematurity, patent ductus arteriosus, neonatal sepsis, and neonatal mortality but reduction 
in the frequency of intraventricular haemorrhage was more with dexamethasone compared 
to betamethasone (99). 

When synthetic GCs administered during pregnancy they can cross placenta freely since 
they are not a good substrates to 11 β-HSD 2 (88) and is not bound by CBP (100). Although, 
the mechanism by which GCs enhance fetal lung maturity is not well established, the 
administration of antenatal GCs in threatened preterm labour was widely recommended by 
many institutes. For instance, the National Institutes of Health (NIH) published a Consensus 
Development Conference Statement in 1994 on the use of antenatal GCs (101) and in 2002, 
the American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice 
(ACOG) supported the conclusions of the NIH consensus conference (102), whereas, the 
Royal College of Obstetricians and Gynecologists (RCOG) published guideline in 1996 (103) 
about antenatal GCs use in preterm labour which then up dated in 1999 and further in 2004. 

Recently, there are many evidences that GCs induce fetal lung maturity at both transcriptional 
and post transcriptional levels (104-106). Pulmonary surfactant is a complex lipoprotein which 
main action is to reduce surface tension in the alveoli, and subsequently prevent alveolar 
collapse upon expiration (107). There are four major types of surfactant proteins (SP) A, B, C 
and D (108). GCs act mainly by increasing the surfactant protein-B (SP-B) mRNA expression at 
transcription level and its stability at post transcription level (109). Treatment consists of two 
doses of 12 mg of betamethasone given intramuscularly 24 hours apart or four doses of 6 mg 
of dexamethasone given intramuscularly 12 hours apart. Optimal benefit begins 24 hours after 
initiation of therapy and lasts 7 days (101). It has been recently established the use of repeated 
GCs courses every 14 days for those who still not delivered after the first course. Studies on 
animal models and also on human showed no additional benefits from repeated courses 
compared with single GCs course (110-112) and even can be harmful (113-116). 

In fact, multiple courses of antenatal GCs have been found to be associated with reduction 
in ponderal measurements including birth weight, height (116-120) and birth head 
circumference (117, 119, 121) and higher infant blood pressure and myocardial wall 
thickness (122, 123) also with maternal infection such as chorioamnionitis and endometritis 
(116, 121, 124). Rodríguez-Pinilla also reported that antenatal exposure to single steroid 
course is able to produce similar effects of multiple courses on birth weight and height but 
not head circumference (117). 

With regard to fetal bone metabolism, there were few studies addressing this subject. 
However, the available data do suggest that both single as well as multiple antenatal steroid 
courses have no detrimental effects on fetal bone metabolism as evidenced by umbilical cord 
serum levels of carboxy-terminal propeptide of type I procollagen, a marker for bone 
formation, and cross-linked carboxy-terminal telopeptide of type I procollagen, a marker of 
bone resorption (125-127). 

The impact of maternal GCs administration antenataly on neonatal hypothalamic-pituitary- 
adrenal (HPA) axis has been examined extensively but data are controversy. Sandesh Kiran 
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and coworkers found that multiple courses of antenatal dexamethasone causing a significant 
decrease in RDS without adrenal suppression, decreased growth or impaired neuro-
development (128). However, Schäffer and colleagues found that single course of antenatal 
GCs can lead to absence of stress-induced plasma cortisone and cortisol elevation in 
neonates at 4 days of life (129). On the other hand, Davis reported that antenatal GCs 
administration in threatened preterm labour was associated with higher pain-induced 
plasma cortisol elevation despite no difference in baseline levels than non-treated matched 
infants at 24 hr after birth (81). Others have assessed the impact of antenatal corticosteroid 
courses on HPA axis by measuring neonatal 17-OHP in filter-paper blood spots collected 
between 72 and 96 hr after birth, which usually used for screening the neonates for CAH 
(Section 1.2.1) (130). These studies revealed a significant reduction of blood 17-OHP in those 
received multiple courses compared to non-treated matched neonates (130). This fact raise 
the suspicion in the effectiveness of this screening test in this particular group of neonates as 
prenatal steroid-induced reduction in 17-OHP could be interpreted falsely as negative test in 
affected newborns. Ng et al found that at postnatal day 7 and 14 neonatal plasma ACTH 
and cortisone levels measured after human corticotrophin releasing hormone (hCRH) 
stimulation test was mildly lower in those exposed to multiple dexamethasone injections 
antenataly than none treated neonates. Interestingly, there was a negative correlation 
between plasma cortisone and the number of dexamethasone injections antenataly (131). 
These finding strongly indicate that antenatal steroid therapy, multiple courses in particular, 
has impact, which could be transient, on HPA axis harmony and neonatal observation 
during the first few days is warranted. Animal model of prenatal betamethasone using 
guinea pigs reported same finding that ACTH and plasma cortisol both suppressed by 
prenatal betamethasone treatment. This was assosiated with significant reduction in 
hippocampal mineralococrticoids receptor mRNA and protein expression especially in male 
offspring with no much difference among GR mRNA and protein expression (132).  

It has been found that multiple prenatal steroid courses are not associated with a deleterious 
effect on auditory neural maturation when assessed at 24 hr after birth (133). However, the 
use of multiple dexamethasone but not betamethasone are associated with persistent 
increases in brain parenchymal echogenicity in preterm infants (134) as well as cystic 
leukomalacia and neurodevelopmental delay at 2 years of age (135). Animal models of 
prenatal steroid therapy presented some evidence regarding possible mechanism by which 
antenatal glucocorticoids prevent intraventricular haemorrhage in preterm infants. In mice, 
prenatal steroid therapy can induce choroid plexus capillary stability and maturation by 
increasing basement membrane thickness and integrity with subsequent reduction in both 
peri and intraventricular haemorrhage (136). The frequency and severity of periventricular 
and intraventricular haemorrhage were even less if vitamin K injection administered 
antenataly along with steroid course (137). 

More recent data comparing the efficacy of single steroid course with multiple courses 
stated that there were no significant differences in the frequency of respiratory distress 
syndrome, intraventricular hemorrhage, necrotizing enterocolitis, sepsis and neonatal 
mortality in neonates receiving either single betamethasone course or multiple courses (138). 
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According to the same study, the use of multiple courses is not superior to single course. 
Similar beneficial effect was noted from the use of single and multiple antenatal steroid 
courses in decreasing the need for postnatal blood pressure support in extreme preterm 
infants born between 24 to 28 weeks of age (139).  

On the same bases, the ACOG Committee on Obstetric Practice (2011) has published its 
opinion regarding the use of multiple courses. The committee recommended the use of 
single corticosteroids course to all pregnant women at risk of preterm delivery at 24 to 34 
weeks gestation. Another single rescue course of antenatal corticosteroids may be 
considered if the initial steroid course was given more than 2 weeks earlier (140).  

2.2.2. Long term effects of prenatal GCs overexposure 

There are accumulating evidence about solid role played by fetal overexposure to both 
endogenous or synthetic GCs and the risk of developing metabolic and cardiovascular 
disease in adulthood (141, 142). This remote response to an intrauterine insult has been 
termed (fetal programming of adult disease). 

3. Fetal programming of adult disease 

Programming refers to physiological, metabolic, or behavioral adaptation resulting from 
exposure to or lack of hormones, nutrients, stress, and other agents at critical period during 
embryonic and fetal development. These insults may encode the function of organs and 
systems and manifested later as elevated risk for disease in adult life (143, 144). The concept 
of programming was emerged from many epidemiological studies. For instant, follow up 
study of a cohort of men who were born during Duch famine in 1944-45 found that 
exposure to undernutrition during the first half of pregnancy were significantly associated 
with obesity at adulthood (145). subsequent studies have linked the low birth weight with 
developing of hypertension, ischaemic heart disease, glucose intolerance, insulin resistance, 
type 2 diabetes, hyperlipidaemia, hypercortisolaemia, obesity, obstructive pulmonary 
disease, renal failure and reproductive disorders in the adult (146). 

The factors that can programme disease risk in later life are multiple but interact together 
and include undernutrition (147), stress(148) and endocrine disturbances (149). It has been 
found that maternal undernutrition leads to decreased placental and fetal birth weight 
associated with elevated maternal plasma GCs and reduced placental expression of 11 β-
Hydroxysteroid Dehydrogenase-2 and subsequently fetal over exposure to maternal 
corticosterone in rat (150). Maternal low protein diet, for instance, programmed the 
development of hypertension (151, 152), glucose intolerance (153, 154) and even feeding 
behavioral abnormalities (155). In human, fetal over exposure to endogenous maternal GCs, 
such as in maternal psychological stress, programmed the development of metabolic 
syndrome with higher BMI and body fat percentage, insulin resistance, and atherogenic 
lipid profile in the offspring at adult life (156). Moreover, adult offspring exposed to 
prenatal maternal stress, and hence high endogenous GCs, have altered T-helper 1 and 2 
balance and abnormal cytokines and ultimately become more prone to develop autoimmune 
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disorders and asthma (157). Similarly, there was impaired cognitive performance as well as 
memory in the offspring who exposed to maternal stress and higher endogenous GCs. This 
disturbances in mental function was associated with altered HPA axis in later life where 
ACTH was increased and plasma cortisol level was decreased (158). 

Interestingly, the same programming effect was observed using synthetic GCs such as 
dexamethasone, which is poor substrate to 11 β-Hydroxysteroid Dehydrogenase-2 (142, 
159). Prenatal exposure to synthetic GCs resulted in anxiety and depressive-like behavior in 
adult offspring. There was altered brain structure with significant increase in volume of the 
bed nucleus of the stria terminalis and on the other hand decrease amygdala volume due to 
dendritic atrophy. Dopamin was reduced and dopamin receptor 2 was up regulated in this 
area (160, 161). 

Dexamethasone exposure during late gestation is also able to alter the hepatic and adipose 
tissue activity and mRNA expression of β-HSD 1 in marmoset monkey with subsequent 
development of obesity and overt metabolic syndrome (162). It is clear from these data that 
both fetal exposure to undernutrition, as stress event that lead to fetal over exposure to 
endogenous maternal GCs, as well as overexposure to synthetic GCs, which are poor 
substrates to placental 11 β-HSD 2, share common mechanistic pathway in the 
programming of metabolic syndrome in the offspring at adult life.  

3.1. Proposed mechanism of fetal programming of adult disease 

The concept of the programming has its roots since 50 years ago (163) and proven by both 
animal (152, 164) and human studies (119, 149), however, the mechanism that events during 
intrauterine life are carried in the memory of every molecule, gene, cell, tissue and systems` 
organs of the body still not completely revealed. Many hypotheses have been proposed with 
their inherited power and weakness. These include epigenetic modifications of DNA, 
altered gene expression and regulation, disruption of organ structure by variation in cell 
number and differentiation and apoptotic remodeling (165, 166). “Hormonal imprinting” 
where exposure to abnormal levels of a particular hormone during specific window of tissue 
plasticity is able to exert lifelong abnormal metabolism is another proposed mechanism 
(167). 

3.1.1. Tissue remodeling 

In maternal undernutrition model, programming was found to be associated with decreased 
organ size and total cell mass. Programming of diabetes, in this model, was accompanied by 
altered pancreatic structure, with predominantly a decrease in β-cell mass (153) due, 
primarily, to decreased proliferation and increased apoptosis (168). In this model, last week 
of rat pregnancy was identified as the critical window of programming. Similarly, 
programming of hypertension was linked to decreased number of nephrons and impaired 
renal electrolytes and fluid balance (169). GCs, both synthetic one and endogenous, are 
mediating their programming effects through similar mechanism. As mentioned previously 
that the observed psychological, behavioral and neuromuscular disturbances were all 
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associated with decreased volume of brain area responsible on that particular function. 
Moreover, dexamethasone prenatally caused marked reduction in thymus (170). Therefore, 
antenatal exposure to glucocorticoids above the physiological limit will perturb the growth 
and ultimate size of the developing fetal organs and eventually their functional capacity 
which then manifested as disease in adult life.  

3.1.2. Epigenetic DNA modification 

Epigenetic phenomenon refers to altered heritable genomic function without change in 
DNA sequence (171). Epigenetic modification involves mainly DNA methylation, histone 
modification, and miRNA effects (172). DNA methylation has been well explored. In this 
case there is methylation of cytosine residues within CpG dinucleotides. When this 
abnormal methylation of CpG islands occur in the promoter region of genes it will result in 
silencing of genetic information and subsequently to altered biological function (171). 
Methylation status is a dynamic status and changes are observed since fertilization where 
both maternal and paternal genomes undergo extensive demethylation followed by 
selective methylation just prior to implantation (173). This alteration in methylation status 
has been suggested to play role in cell differentiation and organ development (174). DNA 
methylation blocks the binding of transcription factors to the promoter of the target gene 
(Figure 5) and hence prevent gene expression or it promote the binding of the methyl CpG 
binding protein (MeCP2) which recruits other protein complexes to bind to DNA resulting 
in a closed chromatin structure and transcriptional silencing (174). 

 
Figure 5. Epigenetic modification of GR promoter by CpG altered methylation. 

Maternal low protein diet during pregnancy as experimental model of programming of 
metabolic syndrome like phenotype has been found to be associated with altered DNA 
methylation in key genes. For instance, maternal low protein diet resulted in GR over 
expression and 11 β-HSD 2 decreased expressions in liver, lung, kidney and brain of the 
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offspring (175). GCs induce the hepatic expression and activity of phosphoenolpyruvate 
carboxykinase (PEPCK) the key enzyme responsible for gluconeogenesis and subsequently 
produce insulin resistance in this model (176). Interestingly, these changes in expression of 
target genes were associated with altered methylation status in their promoter area. Namely, 
GR promoter was found to be hypomethylated in liver tissue of 5 weeks old offspring (177). 
Some preliminary evidence suggest that hypomethylation of GR occur during early 
embryogenesis even before cell line differentiation, this was because of finding that GR 
hypomethylation found in all examined tissue of the offspring in this model (174). GR 
promoter hypomethylation was associated with histone modification, due to decreased 
acetylation, in way facilitating transcription (178). Supplementation of maternal low protein 
diet with glycine or folic acid prevented the development of metabolic syndrome like 
phenotype as well as GR promoter hypomethylation. Similarly, perinatal stress exposure 
resulted in altered stress response in the offspring which found to be accompanied with GR 
promoter hypermethylation at specific CpG dinucleotides in the hippocampus of the 
offspring. These changes were reversed in adult brain with intra-cranial histone deacetylase 
inhibitor administration (179). Similarly, in human fetal exposure to maternal stress during 
second and third trimesters was associated with increased methylation in specific CpG 
sequence in axon 1F of the GR gene analyzed in cord blood mononuclear cells and at 3 
months of offspring age there was significant association between higher CpG methylation 
in GR gene and higher plasma cortisol response to stress (180). These epigenetic DNA 
modification seen in antenatal malnutrition or dexamethasone exposure are transmitted to 
the second generation (181), however, in human it needs to be further explored. It has been 
suggested that GCs exposure, either endogenous as in maternal psychological stress or in 
food deprivation or due to antenatal synthetic GCs administration, lead to altered DNA 
methylation via reduce folic acid availability (182). N5- methyltetrahydrofolate is folic acid 
derivative and it is considered one of the important methyl donors, therefore, any constrain 
on folic acid availability will affect methyl donors availability as well. 

All these valuable data gave strong evidence that intrauterine life environment has crucial 
role in human health during adulthood and that the unfavorable conditions will act on the 
basic unit in the body, that is DNA. Therefore, altered DNA function via epigenetic 
modification will constrain the functional capacity of key organs when needed to work with 
their full capacity at adult life and ultimately expressed as disease. The understanding of the 
mechanism of disease can open the door for discovering early markers for the risk of 
developing disease and importantly more targeted therapeutic strategies. 

3.1.3. Glucocorticoids over exposure 

Most of animal models of disease programming and human studies including 
epidemiological data indicated that glucocorticoids have crucial role in the development of 
cardio-metabolic and neouro-psychological disease at adulthood. This deleterious effect of 
glucocorticoids can be exerted directly up on maternal administration of synthetic 
glucocorticoids and by stress induced endogenous maternal glucocorticoids hypersecretion 
or indirectly through other types of stress such as food restriction. The development of low 
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birth weight, hypertension, glucose intolerance and insulin resistance in offspring of rat 
dams fed low protein diet during pregnancy were linked to decreased placental 11 β-HSD 2 
expression and activity which resulted in high influx of maternal glucocorticoids to fetal 
compartment in addition to increased sensitivity of key metabolic organs such as liver, 
kidney and adipose tissue to glucocorticoids secondary to increased GR expression in these 
organs (175, 183). The development of metabolic syndrome like phenotype in this animal 
model has been replicated in human offspring who were exposed to prenatal synthetic 
glucocorticoids due to threatened preterm delivery to induce lung maturity and also in 
human offspring who were exposed to high maternal glucocorticoids secondary to maternal 
stress during pregnancy. Therefore, fetal glucocorticoids over exposure is the main 
programming pathway despite the variation in the prenatal insult. This hypothesis has 
many supporting evidence from low protein diet model and other human studies. In rodent, 
treatment of pregnant dams with placental 11 β-HSD 2 inhibitor, carbenoxolone, resulted in 
low birth weight and hypertension at adulthood (141). Hypertension in low protein model 
also was glucocorticoid dependent as maternal adrenalectomy significantly reduced the 
blood pressure to control levels and corticosterone replacement restored the hypertensive 
state seen these exposed offspring (151). In human, the placental 11 β-HSD 2 activity 
correlated with birth weight (184) and reduced in pre-eclampsia (185) and in intrauterine 
growth restricted fetuses (186). Moreover, 11 β-HSD 2 gene mutation constantly resulted in 
lower fetal birth weight compared to normal human fetus (187). High maternal GCs 
associated with decreased placental 11 β-HSD 2, elevated fetal plasma GCs, lower hepatic 11 
β-HSD 2 protein expression and enzyme activity which cause over expression and activity 
of key hepatic gluconeogenesis enzyme, phosphoenolpyruvate kinase (PEPCK), which is 
linked to insulin resistance and glucose intolerance. In the kidney, the main role of 11 β-
HSD 2 is to prevent GCs occupying and activating mineralocorticoid receptor (MR) (188), 
see figure 6.  

GCs-exposed offspring has decreased 11 β-HSD 2 expression and increased GR expression 
as well as GR promoter hypomethylation in kidney (189). Cortisol will then exert 
mineralocorticoid activity through MR binding in kidney and resulted in sodium and water 
retention, hypokalaemia, low plasma renin and aldosterone concentrations, and eventually 
hypertension in adult life (190). In brain the observed cognitive deficit, altered memory and 
psychological disturbances in GCs exposed offspring was associated with decreased GR 
expression in hippocampus (191), which could block the negative feedback regulation of 
HPA axis by plasma cortisol and hence resulted in abnormal regulation of this crucial 
nuerohormonal axis. GCs induce the expression of key lipogenic transcription factor, Sterol 
regulatory element binding protein-1c (SREBP-1c) in liver (192). SREBP-1c transgenic mice, 
with mRNA and protein over expression of this nuclear factor, developed 
hyperinsulinaemia, hyperglycaemia, and hepatic steatosis (193, 194). 

Interestingly, the metabolic syndrome like phenotype seen in low-protein diet exposed 
offspring was associated with abnormal expression of SREBP-1c. SREBP-1c mRNA and 
protein expression were both suppressed from birth until age 9 months in the rat offspring. 
At 18 months, however, marked over expression seen specially in hepatic tissue with 
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development of non-alcoholic fatty liver, hypercholestreamia, hpertriglycerideamia, 
hyperglycemia and insulin resistance (147). 

 
Figure 6. Glucocorticoids central role in the programming of the adult disease. Prenatal exposure to 
high maternal or synthetic glucocorticoids associated with decreased P-11βHSD2, K-11βHSD2 and H-
11βHSD2 expression and activity. In liver this will induce SREBP-1c and lipogenesis and PEPCK and 
hepatic gluconeogenesis. In kidney, GR hypomethylation and decreased K-11βHSD2 activity associated 
with more Na and H2O retention and eventually high BP. P-11βHSD2: Placental 11β Hydroxysteroid 
dehydrogenase 2, K: Kidney, H: Hepatic, SREBP-1c: Sterol Regulatory Element Binding Protein-1c, 
PEPK: Phosphoenolpyruvate kinase, Na: Sodium, BP: Blood pressure. 

4. Conclusions 

The understanding of pathogenesis of adult cardio-metabolic and psycho-cognitive 
disorders is now advanced beyond the idea that such diseases are result of current 
behavioral and environmental factors. It is well established that adult health originated from 
wellbeing during fetal life or even at gametes stage. Grandparents’ environmental 
challenges can have impact on human health many generations later. In fact, factors which 
operate at early life will increase the individual`s susceptibility and vulnerability to adverse 
environmental events in later life. It is obvious now that different early life environmental 
events share common programming pathway. The mechanism of programming started to 
be revealed which include epigenetic DNA modification and promoter methylation status 
resulting in altered gene expression as well as glucocorticoids over exposure as a primary 
mechanism where as tissue remodeling and decreased organ and body size as a secondary 
mechanism. Glucocrticoids over exposure is the main triggering stimulus in this 
programming, therefore the widely clinical use of prenatal glucocorticoids such as 
betamethasone and dexamethasone to induce lung maturity in preterm fetus need to be 
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carefully evaluated since they access fetal compartment very easily. Introduction of multiple 
courses of glucocorticoids as a routine should be discouraged and instead it should be 
restricted to wisely selected cases. The maximum number of safest courses and lowest 
therapeutic dose of each subsequent course should be standardized. However, prenatal 
glucocorticoids have provided the suitable model to study the effects of direct maternal 
administration of this programming hormone in human candidates. Notwithstanding, these 
studies still in their neonatal stage and extensive research in this particular area is 
warranted. The identification of how early life unfavorable environment still able to express 
pathogenesis at adulthood is crucial to set up pre-disease markers which can be applied 
clinically in health screening even before the disease itself develops. This will lead to early 
behavioral and life style interventions which may postponed the onset of disease for many 
years or even freeze the pathogenesis at its pre-disease stage. Obviously this will lead to 
decrease financial burden on the health authorities and will markedly cuts the expenses of 
medical and surgical treatment of the resulted complications.  
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