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1. Introduction 

The ICSI has become method of choice to achieve fertilization. Fertilization is possible in 

cases in which the sperm motility and ability to penetrate the zona pellucida are impaired. 

Injection is possible with sperm obtained from ejaculation, microsurgical epididymal sperm 

aspiration (MESA), percutaneous epididymal sperm aspiration (PESA), or testicular sperm 

extraction (TESE). In addition, indications for ICSI include idiopathic infertility and repeated 

conventional in vitro fertilization (IVF) failures [1]. Fertilization rate after ICSI is at about 70 

to 80% in all ages combined [2]. This suggests that, despite injecting sperm into mature 

oocytes, failed fertilization still occurs. Total failed fertilization (TFF) refers to failure of 

fertilization in all mature oocytes and “failed fertilization” refers to failure of fertilization in 

any mature oocyte. Based on a considerable emotional and financial involvement in a cycle 

of assisted reproduction, TFF is a distressful event for the infertile couple as well as the 

fertility professionals. TFF occurs in 5–10% of IVF [3] and 1-3% of ICSI cycles [4]. TFF after 

ICSI cycles is mostly due to low number of mature oocytes [4] or oocyte activation failure 

[5]. TFF is a rare event in cases with normal oocytes and sperm [6]. Some patients may face 

repeated TFF in spite of normal sperm parameters and good ovarian response [7]. In such 

cases, the primary reason for failed fertilization after ICSI is lack of oocyte activation, as 

more than 80% of these oocytes contain a sperm [4]. Considerable advances in artificial 

oocyte activation and recovery of sperm from epididymis or testis, suitable for ICSI, help 

avoid TFF. This chapter discusses the factors affecting success rate of ICSI, highlights causes 

of failure and suggests remedies for failed fertilization after clinical ICSI. 

2. Procedural effects of ICSI technique 

The risk of oocyte damage by the ICSI procedure is low in humans and is due to both the 

skill of the person performing the injection procedure and the quality of the gametes used 
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during the procedure [8]. The embryologist performing ICSI procedure is a significant 

predictor of fertilization, and laboratory conditions (i.e. incubators, culture of oocytes 

individually versus grouped) do not affect the rates [9]. When fertilization failure in most or 

all of the injected oocytes occurs, with experienced practitioners using normal sperm, the 

diagnosis falls to oocyte dysfunction, oocyte activation failure, or inability of sperm to be 

decondensed and processed by the oocyte.  

Although ICSI is now a routine, it remains a very demanding technique to master, due 

partly to its inherent technical difficulty and partly to the heterogeneity of the cases. It is 

generally agreed that the ICSI procedure is subject to a “learning curve" [9] and that one 

common technical failure is not depositing the sperm within the oocyte cytoplasm. In this 

situation, the oocyte membrane may not have been broken during attempts to aspirate the 

ooplasm into the ICSI needle. Thus, the sperm is deposited next to the membrane so that 

when the oolemma returns to its original position, the sperm is pushed out into the 

perivitelline space, or is trapped inside a sac formed by the membrane [10]. The sperm may 

also become adherent to the tip of the injection needle or remain within the injection needle 

and be inadvertently pulled out upon withdrawal of the needle from the cytoplasm. 

Aspiration of the ooplasm is always used to make sure that the oocyte membrane is broken 

during injection. However, if the ooplasm is aspirated too much, degeneration of the oocyte 

frequently results. The degeneration of oocytes after ICSI is often a result of a fault in the 

ICSI technique, e.g. an injection pipette that is too large, not positioned properly or not 

sharp enough. Figure 1 shows different stages of egg maturation and damaged oocytes after 

ICSI and Figure 2 shows normal and abnormal fertilization after ICSI. 

 

  

Figure 1. First row: A and B are GV, C is MI and D is MII oocyte. Second row: E shows typical funnel 

that appears after ICSI, F shows leakage of ooplasm after ICSI, G shows oocyte damage during 

denudation and H is an atretic oocyte after ICSI. 
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Figure 2. First row: A is an egg with1 pronucleus (PN), B with 3 and C with 4 PN. All these are 

abnormal fertilizations. Second row: Oocyte in D, E or F, each has 2 PN. This is a sign of normal 

fertilization. 

Proper orientation of the polar body and needle position are also important, since improper 

positioning can damage or disrupt the metaphase plate during needle entry. In addition, 

disturbances in the nuclear spindle may dispose oocytes to aneuploidy or maturation arrest. 

Thus, perturbation of the cytoskeletal integrity of oocyte may critically influence the fate of 

the embryo. During ICSI, the location of the first polar body is commonly used as an 

indication of the spindle position, with the assumption that they are located in close 

proximity. To avoid damage to the spindle, oocytes are injected at the 3 o’clock position 

with the first polar body at the 6 or 12 o’clock position. However, with the aid of the 

computer assisted polarization microscopy, some reports suggest that the location of the 

first polar body does not necessarily correspond to the spindle position [11, 12]. The reasons 

for the displacement of the spindle are not fully understood [13]. Further detail on this 

aspect is given under use of Polscope. 

Injection of a motile sperm without immobilization leads to poor fertilization rates [14]. In 

such cases, sperm with moving tails can be seen in the oocyte and sperm-oocyte interaction 

is obstructed by the normal sperm plasma membrane. Damage to the sperm membrane is 

necessary for successful oocyte activation following ICSI, as it induces gradual disruption of 

other parts of the sperm membrane allowing entry of sperm nucleus decondensing factor of 

the oocyte to induce initial swelling of the head. Because of this swelling, the sperm plasma 

membrane ruptures and sperm-associated oocyte activating factors are released into the 

ooplasm and induce oocyte activation. A modified ICSI technique is characterized by 
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pushing the needle tip close to the membrane opposite the puncture site, aspirating the 

cytoplasm at this point and releasing the sperm in the centre of oocyte [5]. This modification 

improves fertilization in oocyte-dependent activation failure, but its routine application 

does not improve the overall results.  

3. Use of PICSI 

The cell surface hyaluronic acid (HA) binding glycoprotein is present in spermatozoa of 

different species including rat, mice, bull, and human [15]. The formation of hyaluronic-acid 

(HA)-binding sites on the sperm plasma membrane is one of the signs of sperm maturity. 

Various biochemical sperm markers indicate that human sperm bound to HA exhibit 

attributes similar to that of zona pellucida-bound sperm, including minimal DNA 

fragmentation, normal shape, and low frequency of chromosomal aneuploidies [16].  

PICSI Sperm Selection Device (Biocoat, Inc. Horsham, PA, USA) offers advantage in 

selecting sperm for ICSI. The PICSI device, a dish similar to ICSI dish, contains 3 microdots 

of hyaluronan hydrogel which need to be hydrated by media before ICSI. The prepared 

sperm sample is placed at the edge of the microdrop of PICSI dish. Mature, biochemically 

competent sperm bind to the hyaluronan where they can be isolated by the embryologist 

and used for ICSI (Figure 3). The research supports that hyaluronan-bound PICSI-selected 

sperm are, in the vast majority of cases, more mature, exhibit less DNA damage, and have 

fewer chromosomal aneuploidies [17]. Further studies are needed to prove that use of PICSI 

technique improves pregnancy rates and reduce the number of IVF miscarriages. 

 

Figure 3. A is a graphical presentation of a PICSI dish. Each arrow is pointing to a dot containing 

hyaluronan. B and C are suggested arrangements for oocyte washing, PVP and ICSI drops (A, B and C 

are oocyte washing drops, P is PVP drop, a, b and c are hyaluronan dots and1, 2, 3, and 4 are ICSI 

drops).  

4. Use of IMSI 

Intracytoplasmic morphologically selected sperm injection (IMSI) is examination of 

unstained spermatozoa at 6000 or higher magnification to select sperm with best 

morphology. It is based on a method of high magnification motile sperm organelle 

morphology examination (MSOME) [18]. It requires an inverted light microscope equipped 
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with high power Nomarski optics enhanced with digital imaging. Such examination helps to 

identify spermatozoa with a normal nucleus and nuclear content [19]. The exact indications 

of IMSI [20] and usefulness [21] are debatable. Finding normal-looking spermatozoa took a 

minimum of 60 min, and up to 210 min, depending on the quality of the semen sample. The 

technique required two embryologists working together on the analysis of the same sample 

at the same time in order to minimize the subjective nature of sperm evaluation [22]. The 

IMSI procedure improved embryo development and the laboratory and clinical outcomes of 

sperm microinjection in the same infertile couples with male infertility and poor embryo 

development over the previous ICSI attempts [23]. A successful childbirth after IMSI 

without assisted oocyte activation in a patient with globozoospermia has been reported [24]. 

Randomized large-scale trials are needed to confirm the beneficial effects of IMSI in couples 

with poor reproductive prognoses [25].  

5. Use of polscope 

The oocyte spindle can be imaged non-invasively based on the birefringence, an inherent 

optical property of highly ordered molecules, such as microtubules, as they are illuminated 

with polarized light. Polarized light microscopy has been applied to embryology for 

decades. A digital, orientation-independent polarized light microscope, the Polscope, has 

demonstrated the exquisite sensitivity needed to image the low levels of birefringence 

exhibited by mammalian spindles [26]. The Polscope, is used to protect the meiotic spindle 

from damage during ICSI. The oocytes having Polscope visualised spindle have higher 

fertilization rate. When the spindle is located at 0°-30° in relation to the first polar body, ICSI 

achieves highest fertilization rate [27]. The use of Polscope is still not widely practiced and 

further improvements are needed. Morphometric evaluation of the spindle through the 

Polscope is not consistent with confocal analysis. This suggests that the Polscope may still be 

a rather inefficient method for assessing the metaphase II spindle [28].  

6. Timing of ICSI 

Both nuclear and cytoplasmic maturation of oocytes have to be completed to ensure optimal 

conditions for fertilization. Oocytes are retrieved prior to ovulation for IVF or ICSI 

procedures. In the pre-ovulatory phase, meiotic division of the oocyte must progress to 

metaphase II which is considered nuclear maturation and is evident by extrusion of first 

polar body. The oocyte also must develop the capacity to attain fertilization and initiate 

embryo development which is considered cytoplasmic maturation [29, 30]. Cytoplasmic 

maturity is thought to be asynchronous with nuclear maturity in stimulated cycles [31, 32] 

and the fertilizing ability of an oocyte with a mature nucleus is not necessarily at its 

maximum potential. Thus, preincubation of oocytes prior to IVF or ICSI may induce 

cytoplasmic maturation that could eventually increase fertilization and also pregnancy rates. 

The human oocytes progressively develop the ability for full activation and normal 

development during the MII arrest stage [33].  
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The ICSI technique is generally similar among different centres but the time intervals from 

retrieval to denudation and from denudation to ICSI varies. Very few studies have 

addressed this aspect, with discrepancies in the conclusions [34, 35]. The preincubation 

period between oocyte retrieval and injection improves the percentage of mature oocytes 

[36, 37], the fertilization rate [35, 37], and the embryo quality [35]. The appropriate 

incubation time for mature oocytes before ICSI is 5–6 h. This time improves embryo quality 

and pregnancy rate in ICSI cycles. The maximum clinical pregnancy rate is observed when 

ICSI is performed 5 h after oocyte retrieval. The clinical pregnancy rate dropped 

significantly when ICSI was performed 6 hrs after oocyte retrieval (Falcone et al., 2008). A 

longer oocyte pre-incubation (9– 11 hours) prior to ICSI is thought to have detrimental 

effects on embryo quality [38], probably due to oocyte ageing.  

7. Sperm related factors 

7.1. Sperm structural defects 

Normal sperm ultrastructure correlates with positive IVF results [39]. Single structural 

defects involving the totality of ejaculated sperm are among rare cases of untreatable human 

male infertility. This form of infertility is of genetic origin and is generally transmitted as an 

autosomal recessive trait. Numerous defective genes are potentially involved in human 

isolated teratozoospermia but such defects have not been defined at the molecular level in 

most cases [40]. An in-depth evaluation of sperm morphology by transmission electron 

microscopy (TEM) can improve the diagnosis of male infertility and can give substantial 

information about the fertilizing competence of sperm [41, 42]. The TEM evaluation of 

sperm can also identify potentially inheritable genetic disorders (for example primary ciliary 

dyskinesia, Kartagener’s syndrome), providing valuable information for couples 

contemplating ICSI [43]. 

Abnormal spermatozoa with head vacuoles account for the patient infertility. Sperm head 

vacuoles are easily detectable in human spermatozoa under the electron microscope. A 

sperm head vacuole is considered abnormal when it exceeds 20% of the head's cross-

sectional area. In rare cases, primary spermatozoa deformity is 100% vacuolated head [44]. 

There is a strong correlation between high relative vacuole area to sperm head and poor 

sperm morphology [45]. No correlation is observed between DNA defect and sperm-head 

morphology [46]. However, macrocephalic and large-headed spermatozoa are commonly 

associated with a low chance of pregnancy, mainly in relation to meiotic abnormalities 

during spermatogenesis. Enlarged-head spermatozoa are linked to sperm chromatin 

condensation dysfunction with no major meiotic dysfunction [47]. 

Acrosome agenesis is most often associated with a spherical shape of the head and is 

defined as “round head defect” or “globozoospermia”. The underlying causes of the 

syndrome remain to be elucidated [48]. The genetic contribution has been postulated as well 

[49]. An additional case report [50] supports it. Studies show that the pathogenic genes 

associated with globozoospermia include SPATA16, PICK1, GOPC, Hrb, Csnk2a2 and bs 
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[51]. Globozoospermia results from perturbed expression of nuclear proteins or from an 

altered golgi-nuclear recognition during spermiogenesis. The sperm show both gross and 

ultrastructural abnormalities, including the complete lack of an acrosome, abnormal nuclear 

membrane and mid-piece defects. Depending on the severity of the defect, the fertilization 

rate after ICSI with round headed sperm ranges from 0% to 37% [52, 53]. Successful 

pregnancies have been reported after ICSI in patients with globozoospermia with or without 

oocyte activation [54, 53, 55]. The most likely cause for failed fertilization after ICSI using 

round-head sperm is inability of sperm to activate the oocyte. In some forms of 

globozoospermia, arrest of nuclear decondensation and/or premature chromosome 

condensation also causes fertilization failure [55].  

7.2. Sperm DNA damage 

DNA damage in the male germ line is associated with poor fertilization rates following IVF, 

defective pre-implantation embryonic development and high rates of miscarriage and 

morbidity in the offspring, including childhood cancer [56, 57]. Activation of embryonic 

genome expression occurs at the four to eight-cell stage in human embryos [58], suggesting 

that the paternal genome may not be effective until that stage. Therefore, a lack of 

correlation between elevated DNA strand breaks in sperm and fertilization rates may occur 

before the four to eight-cell stage [59, 60]. Many published articles indicate that DNA strand 

breaks are clearly detectable in ejaculated sperm and their presence is heightened in the 

ejaculates of men with poor semen parameters [61, 62]. Nuclear DNA damage in mature 

sperm includes single strand nicks and double strand breaks that can arise because of errors 

in chromatin rearrangement during spermiogenesis, abortive apoptosis and oxidative stress 

[63, 64]. In the same individuals, testicular samples show a significantly lower DNA damage 

compared to ejaculated spermatozoa (14.9%±5.0 vs. 40.6%±14.8, P<0.05), but significantly 

higher aneuploidy rates for the five analyzed chromosomes (12.41%±3.7 vs. 5.77%±1.2, 

P<0.05). While testicular spermatozoa appear favourable for ICSI in terms of lower DNA 

damage, this potential advantage could be offset by the higher aneuploidy rates in testicular 

spermatozoa [65].  

Two tests are most commonly reported as indicators of sperm nuclear integrity; terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and sperm 

chromatin structure assay (SCSA). The TUNEL technique labels single or double-stranded 

DNA breaks, but does not quantify DNA strand breaks in a given cell. The SCSA, a 

quantitative and flowcytometric test, measures the susceptibility of sperm nuclear DNA to 

acid-induced DNA denaturation in situ, followed by staining with acridine orange [66]. The 

SCSA accurately estimates the percentage of sperm chromatin damage expressed as DNA 

fragmentation index (DFI) with a cut-off point of 30% to differentiate between fertile and 

infertile samples [67]. A statistically significant difference is seen between the outcomes of 

ICSI versus IVF when DFI is >30% [68]. The biological explanation behind the superior results 

of ICSI in cases of high DFI needs to be elucidated. One possibility may be that women 

undergoing ICSI, on average, produce healthier oocytes with a better DNA repair capacity 

than women undergoing IVF, as in the ICSI group infertility is mainly caused by male factor.  
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Other tests of sperm nuclear DNA integrity include in situ nick translation and the comet 

assay. The toluidine blue and sperm chromatin dispersion test are potential new assays [69]. 

At present, there are two major strategies that may be considered for the treatment of men 

exhibiting high levels of DNA damage in their sperm: (i) selective isolation of relatively 

undamaged sperm and (ii) antioxidant treatment [70]. The lack of consensus in defining a 

clinically relevant standard DNA fragmentation test with a meaningful cut-off level brings 

challenges in implementing the routine use of sperm DNA integrity assessment in daily 

practice [71]. 

8. Injection with immature sperm 

Round spermatid nucleus injection (ROSNI) or round spermatid injection (ROSI) is a 

method in which precursors of mature sperm obtained from ejaculated specimens or 

testicular sperm extraction (TESE) are injected directly into oocytes. ROSNI is proposed as a 

treatment for men in whom other more mature sperm forms (elongating spermatids or 

sperm) cannot be identified for ICSI [72]. It is not widely performed, not as successful as 

ICSI and is still an experimental procedure. It should be applied only in the setting of a 

clinical trial approved and overseen by a properly constituted institutional review board. 

Accurate identification of round spermatid is a technical challenge of ROSNI. It is difficult to 

distinguish haploid round spermatids from diploid spermatogenic precursors and somatic 

cells using the standard optics present in most clinical IVF laboratories. Mouse round 

spermatids have increased levels of DNA fragmentation [73] that may interfere with 

fertilization [63]. Increased DNA damage may occur because of deficient sperm nuclear 

protamine to histone replacement and decreased nuclear condensation in these immature 

sperm allowing increased susceptibility to reactive oxygen species and other damaging 

agents in culture. Another major concern is genetic risk. Any genetic abnormality 

sufficiently severe to result in meiotic arrest during spermatogenesis may also have adverse 

effects on other normal cellular processes or other systemic manifestations. Occurrence of 

significant congenital anomalies in ROSNI-conceived pregnancies raises serious concerns 

[74]. ROSNI should not be performed when more mature sperm forms (elongating 

spermatids or sperm) can be identified and used for ICSI. Patients who may be candidates 

for ROSNI should receive careful and thorough pre-treatment counselling to ensure they are 

clearly informed of the limitations and potential risks of the procedure [75]. 

9. Premature chromosomal condensation 

When a cell, with chromosomes in MII, fuses with an inter-phase cell, the nuclear membrane 

of the cell in the inter-phase dissolves and its chromatin condenses. This phenomenon is 

called premature chromosomal condensation (PCC) [76]. Following penetration of sperm 

into an oocyte; oocyte activation is triggered, resulting in completion of meiosis and 

formation of both male and female pronuclei. Under some circumstances although the 

sperm is within the oocyte, fertilization fails to occur, the oocyte remains in the MII stage 

and the sperm head transforms into PCC, separate from the oocyte chromosomes [77, 78]. 

Chromatin analysis of human oocytes has revealed that sperm PCC is one of the prevalent 

causes of fertilization failure in both IVF and ICSI [77]. 
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It is not yet fully understood how the sperm activates the oocytes. The failure of fertilization 

after ICSI may result from either the lack or deficiency of activating factors in sperm or from 

the lack of ooplasmic factors triggering sperm chromatin decondensation [79, 80]. Several 

pieces of evidence point to PLCζ being the physiological agent of oocyte activation and is 

detectable in different localities within the sperm head: the equatorial segment and 

acrosomal/post-acrosomal region [81].  

During normal spermiogenesis, 85% of histones are replaced with protamines [82], which 

results in sperm chromatin condensation. A sperm with a condensed nucleus is in the G1 

stage when entering an MII oocyte and is protected from PCC because an active maturation-

promoting factor (MPF) is not capable of reacting with protamine-associated DNA. Once 

sperm nuclear decondensation factors from the ooplasm enter the sperm, the sperm head 

swells and sperm associated oocyte activating factor is released. This results in MPF 

inactivation [83], the completion of meiosis 2 and the oocyte enters the G1 stage. During this 

time, protamines are slowly replaced by histones and cell cycle synchronization takes place. 

Under some circumstances, the oocyte fails to activate and remains arrested at MII. Because 

of the presence of an active MPF, sperm chromatin transforms into condensed chromatin. 

Sperm with excessive histones are prone to PCC.  

Sperm PCC has been associated with the type of ovarian stimulation protocol. Some 

protocols, such as clomiphene citrate and human menopausal gonadotropin stimulation 

may tend to recruit immature oocytes with immature cytoplasm [84]. Immature cytoplasm 

is believed to make sperm susceptible to a high incidence of PCC after insemination because 

of the inability of these immature oocytes to undergo oocyte activation [85]. The incidence of 

sperm PCC reported in the literature ranges from 10.1 to 85 % [86, 87], with higher values 

noted in cases of round headed sperm injection as they fail to activate the oocyte. 

Furthermore, other studies suggest a correlation between fertilization outcome post-ICSI 

and percentage of sperm with protamine deficiency [88]. The effect of sperm protamine 

deficiency on fertilization rate emphasizes the need for accurate sperm selection during ICSI 

as protamine-deficient sperm, in the form of slightly amorphous head, may find the chance 

of being injected due to inappropriate sperm selection [88]. 

10. Sperm motility and progression 

Defective sperm tail is the principal cause of sperm motility disorders. There are two main 

forms of tail disorders with different phenotypic characteristics and consequences for male 

fertility: non-specific tail anomalies and various genetic disorders including primary ciliary 

diskinesia and the dysplasia of the fibrous sheath [89]. In non-specific tail anomalies, ICSI 

has good prognosis and does not pose additional risks in view of the lack of recognized 

genetic components in this Disorder. Significant sperm abnormalities of proven or suspected 

genetic origin are rare conditions responsible for extreme asthenozoospermia or total sperm 

immotility. Affected patients complain of male infertility and chronic respiratory disease, 

alterations caused by abnormal function of sperm flagella and respiratory cilia. In patients 

with tail genetic disorders, ICSI results in normal rates of fertilization and implantation, and 
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many births of healthy babies have been reported. The main concern that remains is the 

potential transmission to the offspring [89].  

Whether sperm movement is slow or rapid generally has no influence on ICSI results. 

However, injection of immotile sperm usually results in impaired fertilization. In particular, 

where a non-viable immotile sperm is injected into an oocyte, normal fertilization and 

pregnancy rarely occurs [90, 91]. In case of immotile sperm, it is possible that the sperm may 

be dead. The most common practice to select viable non-motile sperm for ICSI involves the 

hypo-osmotic swelling (HOS) test. However, preliminary results in animal experiments 

(mouse and rabbit) indicate that viability of injected sperm is not an absolute pre-requisite 

for fertilization. Embryos derived after injecting mouse oocytes with freeze-dried and 

thawed sperm developed normally [92]. It appears that provided the DNA integrity of the 

sperm is maintained, embryos can be generated, at least in animal model, from severely 

damaged sperm that are no longer capable of normal physiological activity.  

The identification of a viable spermatozoon amongst immotile spermatozoa for ICSI often is 

difficult. However, selection of birefringent spermatozoa under Polscope shows promising 

results in asthenozoospermic men and men undergoing testicular sperm aspiration or 

extraction before ICSI [93]. The other tests employed are hypo-osmotic swelling test, the 

stimulation of motility with pentoxyfilline and non-contact diode laser [94, 95, 96, 97, 98].  

In patients with 100% immotile sperm, HOS test is a useful method to examine sperm 

viability. It measures the functional integrity of the sperm membrane [99]. Upon exposure of 

the sperm to hypo-osmotic conditions, the intact semi-permeable barrier formed by the 

sperm membrane allows an influx of water and results in swelling of the cytoplasmic space 

and curling of the sperm tail fibers. Only viable sperm react to the HOS solution since dead 

sperm are unable to maintain the osmotic gradient. 

Sperm HOS test based on fructose and sodium citrate dihydrate is applied for identification 

of immotile sperm for ICSI [100]. A significantly greater fertilization and cleavage rate after 

injection of sperm selected using the HOS test is achieved in contrast to injection of 

randomly selected sperm. A modified HOS test based on NaCl solution further improves 

fertilization rate in patients with 100% immotile sperm [101]. In these procedures, 

approximately 200,000 sperm are exposed to the HOS solution for 1 hour at 37°C. A 

modified HOS test has been used for samples with a low sperm count such as testicular 

samples [102]. In this technique, individual morphologically normal sperm is aspirated by 

microinjection pipette and is exposed to HOS solution for a brief period to minimize the 

sperm membrane damage.  

A mixture of 50% culture medium and 50% deionized grade water has the least delayed 

harmful effects on sperm vitality [103]. This mixture achieves similar implantation, 

pregnancy and ongoing pregnancy rates in the ejaculated and testicular non-motile sperm 

groups [104]. It is a simple and practical procedure and achieves acceptable and comparable 

pregnancy rates. 
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Obtaining viable spermatozoa from testicular biopsies using pentoxifylline is more effective 

in terms of fertilization and pregnancies than obtaining it through an HOS test [97]. The 

clinical use of pentoxifylline for activation of immotile ejaculatory sperm before ICSI in 

patients with Kartagener’s syndrome improves the outcome of the treatment and reduces 

the need of invasive intervention such as TESE in these patients. The immotile sperm are 

treated for 30 min with pentoxifylline (1.76 mM) before ICSI. Some spermatozoa show 

minimal motion and can be used for ICSI. Fertilization rate after ICSI is about 75% [105]. 

11. Sperm origin 

A new era in the field of assisted reproduction opened after the achievement of pregnancies 

and births after ICSI of human oocytes [106]. In special cases of long-standing male 

infertility, only a few functional sperm are available. By means of ICSI, most sub-fertile men 

and even men previously considered sterile (those with azoospermia, extreme 

oligozoospermia or cryptozoospermia) can now father a child.  

Azoospermia, is the most severe form of male factor infertility. The condition is currently 

classified as ’obstructive’ or ’non-obstructive’. Obstructive azoospermia is the result of 

obstruction in either the upper or lower male reproductive tract. Sperm production may be 

normal but the obstruction prevents the sperm from being ejaculated. Non-obstructive 

azoospermia is the result of testicular failure where sperm production is either severely 

impaired or nonexistent, although in many cases sperm may be found and surgically 

extracted directly from the testicles [107]. 

Conflicting results for fertilization and pregnancy rates are available in the literature after 

use of ejaculated or surgically retrieved sperm. After ICSI, ejaculated or surgically extracted 

sperm, when motile and morphologically normal, result in similar fertilization, implantation 

[108, 109] and clinical pregnancy rates ([109]. The incidence of early or late spontaneous 

abortion and ectopic pregnancy, or malformations is also similar [108]. However, after 

conventional IVF, even testicular or epididymal aspirates with very good sperm 

concentration and motility, generally achieve low fertilization and pregnancy rates [110]. 

The effect of cryopreservation of sperm on ICSI outcome has been thoroughly studied. Current 

studies suggest that the use of fresh or frozen-thawed sperm does not appear to affect ICSI 

outcomes [111]. Testicular tissue and epididymal sperm can be cryopreserved successfully 

without markedly reducing subsequent fertilization and implantation rates and repeated 

testicular biopsy can be avoided without the risk of any decrease in the outcome [112]. 

The origin of the sperm used in ICSI does not have a major influence on the early life 

outcomes for the offspring, but transgenerational and epigenetic effects remain unknown. 

From the limited information available, it appears that there is no increased risk of 

congenital malformations in children born from ICSI. There is, however, a small increase in 

both de novo and inherited chromosome abnormalities. In terms of growth and 

neurodevelopment, there are very few studies, and so far, no adverse outcomes have been 

found in young children whose fathers have a sperm defect [113].  
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12. Oocyte related factors 

12.1. Oocyte activation 

Oocyte activation is a complex series of events that results in the release of the cortical 

granules, activation of membrane bound ATPase, resumption of meiosis with the extrusion 

of the second polar body and finally the formation of male and female pronuclei. The 

ovulated or retrieved oocyte activates when the sperm enters, by either natural penetration 

or ICSI. In cases of oocyte activation failure, artificial means of oocyte activation are helpful. 

The oocytes remain arrested at MII if maturation has been completed. When one sperm 

contacts the oolemma and penetrates into the ooplasm, intracellular calcium oscillation 

occurs [114]. This increase in the concentration of calcium underlies oocyte activation and 

initiation of development. In mammals, growing experimental evidence supports the notion 

that, following fusion of the gametes, a factor from sperm is responsible for inducing 

calcium oscillations and stimulating inositol 1,4,5-trisphosphate (IP3) production [115]. 

Initial evidence stemmed from injection of cytosolic sperm extracts into oocytes that 

reproduced the calcium responses associated with fertilization regardless of the species of 

origin [116, 117]. Subsequent biochemical characterization of the extracts revealed that the 

active component contained a protein moiety [116] that possessed phospholipase C (PLC) -

like activity capable of inducing production of IP3 [118, 119] and that the PLC activity was 

highly sensitive to calcium [120]. A screen of expressed sequenced tags from testes 

identified a sperm-specific phospholipase C, PLCζ. The presence of PLCζ correlates with 

calcium activity in cytosolic sperm extracts [121]. Moreover, injection of oocytes with the 

recombinant protein [122] or with the encoding mRNA induces fertilization-like oscillations 

(Saunders, 2002), whereas depletion of PLCζ from the extracts with specific antisera 

abrogates PLCζ activity [123] and the calcium oscillatory activity of the extracts [121, 123]. 

The PLCζ is located in the equatorial region of human sperm. Men whose sperm are unable 

to initiate calcium oscillations consistently fail to fertilize following ICSI and lack PLCζ 
[124]. It has to be established that PLCζ is the sole calcium oscillation–inducing factor and 

how its absence has an impact on male fertility. 

The process of natural fertilization encompasses the entry of the sperm, oocyte activation 

and the first mitotic division resulting in a 2 cell embryo. Two steps are important for 

successful fertilization following ICSI, namely immobilization of the sperm and rupture of 

the oolemma in order to facilitate the liberation of the cytosolic sperm factor responsible for 

the oscillator function [14]. 

Low fertilization rates after ICSI in patients with round-headed sperm, globozoospermia, is 

a result of reduced ability of round-headed sperm to activate the oocyte. In the literature, the 

success rates of ICSI in cases of globozoospermia are variable. Assisted oocyte activation 

combined with ICSI may overcome the infertility associated with globozoospermia. Normal 

healthy live birth without assisted oocyte activation has also been achieved [54]. Apart from 

low fertilization rates associated with the use of round-headed sperm, cleavage rates are 

also compromised and these sperm may lack normal centrosomes [52]. Assisted oocyte 
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activation and ICSI restore fertilization, embryo cleavage and development for patients with 

globozoospermia [125].  

Assisted oocyte activation after ICS is very efficient in patients with a suspected oocyte-

related activation deficiency and previous total fertilization failure after conventional ICSI. 

However, when there was a prior history of low fertilization, one should be careful and test 

the efficiency of assisted oocyte activation on half of the sibling oocytes, because assisted 

oocyte activation is not always beneficial for patients with previous low fertilization and a 

suspected oocyte-related activation deficiency. For these patients, a split assisted oocyte 

activation-ICSI cycle using sibling oocytes can help to distinguish between a molecular 

oocyte-related activation deficiency and a previous technical or other biological failure [126]. 

Assisted oocyte activation aims to mimic the action of sperm penetration [127]. Some 

assisted activation treatments such as strontium chloride [128] and ionomycin [129], 

promote an increase in intracellular free calcium concentrations by the release of calcium 

from cytoplasmic stores. Others such as electrical stimulus promote influx of calcium from 

the extracellular medium and some treatments such as ethanol promote both effects [129].  

A birth after oocyte activation by treatment with the calcium ionophore A23187 and ICSI 

has been obtained in 1994 [130]. Human oocytes injected with round-headed sperm are 

activated following combination of calcium chloride injection and ionophore treatment. This 

activation is followed by an apparently normal completion of meiosis, male and female 

pronuclei formation, embryonic development and successful delivery of a healthy infant 

[53]. A combination of calcium ionophore A23187 with puromycin stimulates the 

unfertilized oocytes 20–68 h after ICSI. It results in an activation rate of 91.2% (31/34), a 

cleavage rate of 64.7% (22/34) and high-quality embryo rate of 44.1% (15/34). Nearly all 

activated embryos derived from 2PN/2PB had a normal set of sex chromosomes and 

developed normally [131]. Although calcium ionophore A23187 and puromycin do not 

appear to be cytotoxic to oocytes and result in pregnancies and the birth of healthy babies 

when low concentrations are used, the possible teratogenic and mutagenic activity of 

calcium ionophore A23187 and puromycin needs further investigation in animal models and 

in humans. 

Treatment with 10 mM strontium chloride for 60 min, approximately 30 min after ICSl 

results in activation and fertilization of all injected oocytes [132], development of the 

embryos to the blastocyst stage and delivery in patients with repeated fertilization failure 

[133]. Physical and mental development of the children from birth to 12 months is normal 

[132]. However, further studies are required to substantiate the finding that strontium 

chloride treatment is an effective method of artificial oocyte activation.  

An electrical field can generate micropores in the cell membrane of gametes and somatic 

cells to induce sufficient calcium influx through the pores to activate cytoplasm through 

calcium dependent mechanisms [134]. Mouse oocytes injected with secondary 

spermatocytes or spermatids are fertilized when stimulated by electroporation and 

developed into normal offspring when the resultant embryos are transferred to a recipient 
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[135]. Clinical pregnancy and delivery after oocyte activation by electrostimulation in 

combination with ICSI in previously failed to fertilize oocytes has been obtained [80]. Electrical 

stimulation rescues human oocytes that failed to fertilize after ICSI and stimulates them to 

complete the second meiotic division, to form pronuclei and to undergo early embryonic 

development [136]. Although the fertilization rate issimilar regardless of the number of 

electrical pulses applied, subsequent embryo development is dramatically improved in those 

oocytes that received three electrical pulses [136]. The embryo formation rate in the electrically 

activated group is 80% compared to 16% in the control group [137]. Although the fertilization 

rate is significantly higher in the electroactivated group (68%) as compared with that of the 

control (60%), a higher miscarriage rate is reported in the electroactivated group (5 of 15 

pregnancies) compared to the control (3 of 33) [6]. Like any other new assisted reproductive 

procedure, the impact of electrical activation on oocyte and embryo health must be evaluated 

in larger studies before this procedure can be considered for routine clinical purposes. Ideally, 

karyotyping or fluorescent in situ hybridization analysis should be performed to assess the 

incidences of aneuploidy and mosaicism in the resultant embryos. 

13. Poor ovarian response 

The definition of ‘poor response’ in the literature is often based on a combination of factors, 

including the number of mature follicles, the number of oocytes retrieved and the peak 

estradiol level [138]. The cut-off levels for the number of follicles or oocytes that define poor 

response vary widely from study to study. Some authors feel that the definition of poor 

response should also include the degree of ovarian stimulation used and that a low oocyte 

number is detrimental only when high total dose of follicle stimulating hormone (FSH) has 

been administered [139]. Various endocrine and ultrasonographic markers and dynamic 

tests to assess ovarian reserve have been evaluated. Such tests include basal FSH on cycle 

day 3, clomiphene citrate challenge test, inhibin B, oestrogen, anti-Mullerian hormone, 

antral follicle counts and ovarian volume. The success of each test can be measured against 

ovarian response or live birth rate per cycle [140]. However, none of these tests has 

demonstrated a reliable predictive value and for many women poor ovarian response is not 

discovered until the first IVF cycle.  

Poor response to gonadotropin stimulation occurs more often in older women, but may also 

occur in young women, regardless of the endocrinologic profile [141]. Poor responders have 

a significantly lower pregnancy rate per retrieval compared to normal to high responders in 

the same age group [138]. Although it is possible to have normal embryos and pregnancy in 

younger poor responders, the fertilization rate and quality of embryos in older poor 

responders are always low and the chance of achieving pregnancy in these patients is low. 

Poor responders also have an increased cycle cancellation rate due to retrieval of few or no 

oocytes and/or TFF. One of the major contributing factors for TFF after ICSI is ≤3 MII 

oocytes retrieved (Esfandiari et al., 2005a). The rate of fertilization failure increases as the 

number of injected oocytes decreases [142]. There is a higher chance of having no embryos 

for transfer and significantly lower pregnancy rates when less than five oocytes are 
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retrieved compared to cases with ≥5 oocytes [143]. Limited information is available on IVM 

of immature oocytes retrieved from poor responders in conventional stimulation IVF/ICSI 

cycles and IVM is not a viable alternative to cancellation of IVF cycles in such patients [10].  

Fecundity significantly decreases with increasing maternal age [144]. In a classic study of the 

Hutterite women, sterility increased from just over 10% at 34 years old to over 85% by the 

age of 44 years [145]. In women, all germ cells are formed during fetal life. The population of 

germ cells appears to rise steadily from 600 000 at 2 months post conception, reaching a 

peak of 6 800 000 at 5 months. By the time of birth, the number declines to 2 000 000 of 

which 50% are atretic. Of the 1 000 000 normal oocytes in the newborn infant, only 300 000 

survive to the age of 7 years [146]. Continuous loss of oocytes occurs through the 

physiological process of follicular growth and atresia throughout life [147]. 

The incidence of TFF increases with age [10]. Older women are more likely to undergo 

multiple cycles, have decreased number of oocytes retrieved and a lower number of 

embryos transferred [9].  

14. Oocyte maturity  

One of the major causes of TFF after ICSI is a low number of retrieved MII oocytes [10]. 

About 20% of retrieved oocytes from controlled ovarian stimulation cycles are immature, 

either at metaphase-I (MI) or germinal-vesicle (GV) stage in human IVF [35]. Some of these 

oocytes may extrude the first polar body during in vitro culture and can be injected in ICSI 

cycles. This may be a useful strategy for patients with low number of retrieved oocytes. 

However, embryos derived from immature oocytes do not efficiently translate into 

pregnancies and live births. Therefore, the clinical significance of using immature oocytes in 

stimulated cycles needs further investigation [148].  

The injection of MI oocytes immediately after denudation results in a high degeneration rate 

due to increased fragility of the oolemma. The fertilization rate of retrieved MI oocytes that 

remained MI at the time of ICSI is lower than the fertilization rate of sibling retrieved MI 

progressing to MII in vitro (25% compared to 62.2%, respectively). It is less than half when 

compared to the fertilization rate of retrieved sibling MII oocytes (69.5%). A high rate of 

multinucleated oocytes is also found in fertilized MI oocytes injected immediately after 

denudation [148]. 

In cases of poor responders and in patients with an unsynchronized cohort of follicles, 

where the presence of immature oocytes is frequent after stimulation [149], the use of 

immature oocytes is important in order to increase the number of embryos obtained in each 

cycle. Based on the assumption that oocyte maturity is a pre-requisite for obtaining normal 

fertilization, attempts have been made to mature GV and MI oocytes in vitro [147]. Despite 

the use of varying culture techniques and different stimulation protocols, such IVM oocytes 

consistently have lower fertilization rates, frequent cleavage blocks and overall retarded 

cleavage rate compared with sibling MII oocytes [147, 150]. The limited number of transfer 

cycles makes it difficult to draw solid conclusions about the value of transferring these 
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embryos. It should be noted that the immature oocytes collected in stimulated cycles have 

already been under stimulation with high doses of gonadotropins and are exposed to hCG 

before retrieval. The nuclear maturation, cytoplasmic maturation and ensuing 

developmental capacity of these oocytes may very well be different in comparison with 

immature oocytes collected from small antral follicles of unstimulated ovaries in the typical 

IVM procedure [151]. 

15. Oocyte morphology  

Poor oocyte morphology is a major determinant of failed or impaired fertilization. Normal 

features of a healthy mature oocyte at Metaphase-II (MII) include presence of a polar body, a 

round even shape, light colour cytoplasm with homogenous granularity, a small perivitelline 

space without debris and a colourless zona pellucida. In denuded oocytes, it is possible to 

assess the morphology and the nuclear maturity but not the cytoplasmic maturity. The MII 

oocytes with apparently normal cytoplasmic organization may exhibit extra-cytoplasmic 

characteristics, such as increased perivitelline space, perivitelline debris and/or fragmentation 

of the first polar body, which may reduce developmental competence of the oocyte [152]. It is 

common that extra-cytoplasmic and cytoplasmic dysmorphism occur together in the same 

oocyte (Figure 4 and 5). The dysmorphic phenotypes, which arise early in meiotic 

maturation, may be associated with failed fertilization and aneuploidy, while those occurring 

later in maturation may cause a higher incidence of developmental failure [153, 154].  

 

Figure 4. Oocytes in both rows show extra-cytoplasmic and cytoplasmic dysmorphism. 

Decreased fertilization rates due to some oocyte dysmorphisms have been reported [152], 

while others failed to observe that association [155, 156, 157, 158, 159]. Lower pregnancy and 

implantation rates result when the transferred embryos originate from cycles with >50% 

dysmorphic oocytes and the same dysmorphism repeats from cycle to cycle [155]. The 

repetitive organelle clustering is associated with an underlying adverse factor affecting the 

entire follicular cohort. The presence of a dark cytoplasm decreases by 83% the likelihood of 

obtaining good quality embryos [160]. However, another study did not find any adverse 

impact of dark colour of the oocytes on fertilization, embryo development and pregnancy 
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rate [161]. In human oocytes, the cytoplasmic granularity can be homogeneous affecting the 

whole cytoplasm, or concentrated in the centre with a clear peripheral ring giving a 

darkened appearance to the cytoplasm [162]. The abnormal changes in the cytoplasm of MII 

oocytes may be a reflection of delayed cytoplasmic maturation that is unsynchronized with 

nuclear maturity [163].  

 

Figure 5. Oocytes in first row represent different degrees of vacuoles in cytoplasm. Each oocytes in 

second row has increased central granularity. 

Normal fertilization, embryo development and live birth are possible after ICSI in oocytes 

with thick zonae, abnormal morphology or repeated polyspermia following conventional 

IVF. The oocytes with extreme morphological abnormalities should not be discarded as ICSI 

can result in fertilization, cleavage and normal embryonic development [164, 161]. The zona-

free oocytes may be fertilized normally after ICSI and develop to the blastocyst stage [165]. 

Pregnancy in human [166] and live birth in mouse [167] and pig [168] have been obtained 

after transfer of embryos resulting from zona-free oocytes. 

16. ICSI after previous ICSI cycle failure 

Repeated ICSI treatment can be useful or necessary because there is a high possibility of 

achieving normal fertilization if a reasonable number of oocytes with normal morphology 

are available and motile sperm can be found. If there are no motile sperm present in the first 

ejaculate, a second sample should be required followed by PESA or TESE to obtain motile 

sperm. In this way, a sufficient number of motile sperm for ICSI are usually found in most 

men with severe asthenozoospermia. 

A history of failed fertilization may be related to some gamete abnormality that may be 

modified or corrected at the next cycle. It has been documented that for a particular patient, 

fertilization results can be quite varied when followed through several ICSI cycles at the 

same centre [169]. The differences between fertilization rates are unexplained, although 
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fluctuations in the gamete quality are probably contributory. Pretreatment endocrine assays 

and semen analyses prove to be of little value in forecasting failed fertilization. One-third of 

the patients with TFF achieved pregnancy with their own oocytes in a subsequent ICSI cycle 

[10]. Since follow-up ICSI treatment has been shown to result in fertilization in 85% of cases, 

repeated ICSI attempts are suggested in TFF [4, 170]. 

17. Options for patients after repeated ICSI cycle failure 

Physicians should counsel patients based on the best possible evidence available and allow 

the couple to make an informed choice. The adverse result of a failed ICSI cycle does not 

imply a hopeless prognosis for future ICSI treatment. Very subtle improvements in semen 

parameters and/or oocyte yield/quality may result in fertilization in a subsequent ICSI 

attempt [169]. Otherwise, the options of donor sperm insemination, donated oocytes or 

embryos, adoption and remaining childless should be discussed with the couple [171]. 

18. Conclusion 

Significant advances have been made in achieving fertilization, pregnancy and live birth in 

cases with severe male factor infertility, oocyte activation failure and ICSI technique. 

Usually fertilization is 80-100 percent in mature eggs, however, low or no fertilization can 

still occur. Most cases of no fertilization occur due to very low number of mature oocytes, 

failure of oocyte activation or non-availability of appropriate sperm. Repeated ICSI attempts 

results in fertilization in 85% of cases. 
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