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1. Introduction 

Tsunamis are ocean waves generated by the displacement of a large volume of water due to 

earthquakes, volcanic eruptions, landslides or other causes above or below the ocean floor 

(e.g., Karling, 2005; Parker, 2012). The great Indian Ocean tsunami of December 2004 will be 

remembered for its ferocity, devastation and unprecedented loss of life for a long time 

(Stewart, 2005; The Indian Ocean Tsunami, 2011). It is also the same tsunami which has 

galvanized the international community to set up warning systems and undertake 

preventive measures against the onslaught of future tsunamis in the vulnerable regions 

around the globe. A surge of scientific studies on all aspects of the tsunami is in evidence in 

the literature. And a volume entitled “The Tsunami Threat – Research and Technology” (Mörner 

ed., 2011) has been brought out. The current volume entitled “Tsunami” (Lopez, ed., 2012) is 

a sequel to the above in a continued effort to promote understanding and predicting future 

tsunamis and warning the populace in the potentially vulnerable areas. 

There are three distinct stages of a tsunami event: (1) Generation; (2) Propagation; and (3) 

Inundation/landfall (cf. Cecioni & Belloti, 2011). The generation stage is the most complex 

and most difficult to analyze, since each tsunami is different and no single mechanism can 

account for all tsunamis. The inundation stage is also different for different areas affected, 

and again, no single scenario can describe all affected areas. The propagation stage covers 

the most extensive area, and is the only one that can be attacked by simple theory and 

analysis, even though detailed numerical models are found in the literature (see, for 

example, Imteaz, et al., 2011, and the references therein). These models consist of solving 

hydrodynamic equations with suitable boundary conditions that necessarily involve tedious 

numerical integrations. Such models, unfortunately, fall within the realm of the specialists, 

and are, by and large, outside the reach of the broader audience.  
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This chapter takes an alternative approach to the study of tsunami propagation in the open 

ocean. It commences with the theory of water wave propagation in general and applies 

them to tsunami propagation in particular, using analytical models. It is based upon first 

principles of physics and avoids numerical analysis, which is thus accessible to the broader 

scientific community. It only requires the knowledge of general science and basic calculus-

based physics. The derivations of the relevant equations are relegated to the appendices 

for quick reference so that the need to search for them outside this article is kept to a 

minimum. 

2. Theory of water waves and tsunamis 

The theory of water waves is well-documented in the literature (e.g., Coulson, 1955; 

Sharman, 1963; Towne, 1967; Elmore & Heald, 1969). The wave velocity of waves on water 

of density ρ under the action of gravity and surface tension T is obtained from a linear wave 

equation by ignoring the non-linear term of ½v2 in Bernoulli’s equation (cf. Coulson, 1955; 

Elmore & Heald, 1969): 

 tanh
g Tk

v kh
k ρ

 
  

 
   (1) 

Here h is the depth of water and k the wave number. In terms of the wavelength λ = 2π/k, we 

have: 

  
2 2

2
tanh

gλ πT πh
v

π λρ λ
 

  
 

 (2) 

When the gravity and surface tension terms are equal, λ is called the critical wavelength λc: 

  2c
Tλ π
ρg

  (3) 

For water waves, λc = 1.73 cm (cf. Towne, 1967; Elmore & Heald, 1969). The corresponding 

velocity vc = 27 cm/s (Sharman, 1963). 

For waves of λ < λc < h, the surface tension term dominates and 

 
ω Tk

v
k ρ

   (4) 

Thus 

 3 2/Tω k
ρ

   (5) 

and the group velocity 
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3 3

2 2

dω Tk
u u

dk ρ
     (6) 

The group velocity is faster than the wave velocity! The individual wave-crests fall behind 

the group while new crests build up at the forward edge of the group (cf. Towne, 1967). 

Such waves are called capillary waves or ripples. They are severely attenuated by viscous 

effects. 

For longer wavelengths (λ > λc), the gravity term dominates. We have (vide Appendix A): 

 tanh
gω

v kh
k k

    (7) 

and 

  tanhω gk kh    (8)  

Such waves are called gravity waves. Customarily, two kinds of gravity waves are recognized 

depending upon the wavelength λ = 2π/k: (1) If λ > h, the waves are called long waves in 

shallow water; (2) If λ < h, the waves are called short waves in deep water. 

In the first case, tanh kh kh  and the wave velocity 

 v gh    (9) 

The group velocity is, from Eq. (8): 

 dω
u gh v

dk
     (10) 

Owing to the equality of the wave velocity and the group velocity, such waves are non-

dispersive.  

In the second case, 1tanh kh  . Then 

   
g

v
k

    (11) 

and from Eq. (8): 

  
1 1

2 2

gdω
u v

dk k
      (12) 

In such waves, the individual waves travel faster than the group and rapidly diminish in 

amplitude as they cross the group (Towne, 1967). 

Tsunami waves in the deep ocean typically have wavelengths of about 200 km and velocity 

of 700 kilometers per hour. They maintain their form in dispersion-less propagation for long 
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distances with little dissipation of energy. They are thus identified as ‘long waves in shallow 

water’ even as they travel above the deepest parts of the ocean, the ‘long’ and ‘shallow’ 

adjectives referring to the relative magnitudes of the wavelength and depth of water. Many 

of the properties of the tsunamis, such as velocity and dispersion-less propagation follow 

from this description (e.g., Margaritondo, 2005; Helene & Yamashita, 2006; Tan & Lyatskaya, 

2009). However, the linearized theory of water waves is only an approximation to the true 

situation and a rigorous theory calls for the inclusion of the non-linear term in Bernoulli’s 

equation. For example, the form of these waves having a narrow crest and very wide trough 

can only be accounted for by a complete non-linear theory (cf. Elmore & Heald, 1969). 

Tsunamis also exhibit the characteristics of ‘canal waves’, first observed by Scott Russell in 

Scotland in 1834 (Russell, 1844). These disturbances travel like a single wave over long 

distances and maintain their shapes with little loss of energy. The mathematical theory of 

such waves, now-a-days called ‘solitary waves’ or ‘solitons’, was developed by Boussinesq 

(1871), Korteweg & de Vries (1895) and Lord Rayleigh (1914). Their analyses show that in a 

dispersive medium, the non-linear effect can exactly cancel out the dispersive effect to 

preserve the form of the wave (cf. Stoker, 1957; Lamb, 1993).  

3. Tsunami propagation models 

One-dimensional propagation models are the easiest to construct and analyze. Even though 

they may not represent the real situation for tsunami propagation in the open ocean, 

valuable results can come out of these models. The ‘long waves in shallow water’ model 

noted above represents a one-dimensional model (Model A) in which the displacement is in 

the vertical direction and propagation takes place in the horizontal direction (see Appendix 

A). The Models of Margaritondo (2005) and Helene & Yamashita (2006) are examples of this 

model. This model correctly predicts the speed of the tsunami by means of Eq. (9). In fact, 

this equation is widely used in bathymetry. It is also used to calculate the travel times of 

tsunamis.        

In the ‘long waves in shallow water’ model, the group velocity is equal to the wave velocity 

according to Eqs. (9) and (10). This helps to explain the dispersion-less propagation of the 

tsunamis. An alternative derivation of these equations is provided by Margaritondo (2005). 

By assuming that the vertical displacement of water is proportional to distance from the 

bottom, Margaritondo (2005) arrives at the same result by applying the energy conservation 

law. As stated earlier, however, a rigorous derivation would call for the solitary wave 

solution of non-linear differential equation obtained from Navier-Stokes equation (cf. 

Stoker, 1957). 

Eq. (9) has profound consequences in the inundation phase as the tsunami makes landfall. 

The wave energy density E within a wavelength λ is  

   2 2 2E A λ A v A h     (13) 

where A is the amplitude of the wave. Assuming E to remain constant, we have 



 
Tsunami Propagation Models Based on First Principles 111 

  
4

1
A

h
   (14) 

A 1 m high wave at a depth of 1000 m would become 5.62 m at a depth of 1 m! That goes to 

illustrate the devastating effects of tsunamis as they make landfall. Helene & Yamashita 

(2006) have shown that the Eq. (14) holds true when the depth of the ocean floor varies 

gradually instead of having abrupt steps, which helps the tsunamis to maintain their 

characteristics as they approach land. 

Helene & Yamashita (2006) have further shown how a tsunami will bend dramatically 

around an obstacle and strike land in the shadow regions. Since v h  according to Eq. (9), 

the velocity decreases nearer the coast as the depth decreases. The wave-fronts are able to 

bend dramatically towards the coast in a diffraction pattern and to strike land in the shadow 

region. This explains the damage caused in the western coasts of Sri Lanka and India during 

the Boxing day tsunami of December 2004. 

Useful as they are, the one-dimensional models of are not appropriate when the tsunami 

propagates in the open ocean from a well-defined epicenter since the waves will spread out 

in concentric circles, which calls for two-dimensional models. In Model B (Tan & Lyatskaya, 

2009), waves propagate outwards on a flat two-dimensional ocean from the epicenter. When 

the energy conservation principle is imposed, the energy density of the wave falls off 

inversely as the distance from the epicenter ρ: 

 1

ModelBI
ρ

   (15) 

The wave amplitude therefore falls off inversely as the square-root of the radial distance ρ:   

  1

ModelB ModelBψ I
ρ

    (16) 

The formal derivation of the results (15) and (16) are given in Appendix B where it is 

mentioned that strictly speaking, they apply at distances away from the epicenter. 

For long distance propagation, the curvature of the Earth must be taken into consideration. 

This is incorporated in Model C (Tan & Lyatskaya, 2009) which analyzes tsunami 

propagation on a spherical oceanic surface. In this model, the energy density of the wave 

varies as (vide Appendix C): 

  1

sinModelCI
θ

    (17) 

where θ is the zenith angle measured from the center of the Earth with the epicenter at the 

north pole. Hence the wave amplitude is a function of the polar angle: 

  
1

sin
ModelC ModelCψ I

θ
     (18) 
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The amplitude variation depends solely on the polar angle. Since the epicenter is considered 

to be located at the north pole (θ = 0), the wave amplitude gradually falls until it reaches the 

equator (θ = π/2), 10,000 km away, and then starts to rise again as the convergence effect due 

to the curvature of the Earth comes into play and finally regains its original value at the 

south pole (θ = π). Thus, if the Earth were entirely ocean, barring any losses, the wave 

amplitude would regain its original value at the anti-podal point. 

The comparison of wave amplitudes in Model C (true) and Model B (approximate) is given 
in Appendix C. We have: 

   
sin

ModelC

ModelB

ψ θ
ψ θ

    (19) 

Table C.1 shows that the difference in the two solutions is slight for small values of θ. Even 

at the equator (θ = π/2), the enhancement in amplitude due to curvature is only 25%. The 

enhancement becomes progressively greater until the south pole (θ = π) is reached, where it 

becomes infinite. 

When the tsunami is caused by an oceanic plate sliding under a continental plate, the 

subduction zone can be described by a finite line source instead of a localized point source. 

In that case, Model D is appropriate. In this model, the wave-fronts are ellipses with foci at 

the end-points of the line source and the energy propagates along con-focal hyperbolas 

(Appendix D). The wave amplitude near the source will be far different from that of a point 

source (Model B). If c is the length of the line source, then at distances ρb from the center 

across the line source, one has (vide Appendix D): 

   
2

4
2

1

1

ModelD

ModelB

b

ψ
ψ c

ρ





   (20) 

The wave amplitude in Model D is finite at the origin as opposed to being infinite in Models 

B and C. However, away from the source, the solutions for Models B and D rapidly 

converge, as the wave-fronts become more circular. For ρb > c, the difference is below 10%, 

whereas for ρb > 10c, the two solutions are virtually indistinguishable (Table D.1). 

Tsunamis are vast and highly complex geophysical phenomena, each having a character of 

its own. It is impossible to construct one model for any tsunami even with a high-speed 

numerical code. Further, each stage of the tsunami – generation, propagation and 

inundation, has to be modeled and studied separately. Nonetheless, simplified models 

based on first principles are able to explain individual aspects of this very complex 

geophysical phenomenon without detailed numerical computations. 

4. Model applications 

Viewed from space, the Earth is a watery planet with the oceans covering a full 71% of the 

surface area. The world ocean consists of three inter-connected oceans of the Pacific, Atlantic 
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and Indian oceans, which comprise 51.5%, 25.6% and 22.9% of the water surface, 

respectively (we disregard ‘Southern Ocean’ as a separate entity). The Pacific ocean is thus 

larger than the two other oceans put together. It alone covers 34% or just over a full one-

third of the Earth’s surface and is comfortably larger than all the landmasses (at 29% of the 

Earth’s surface) put together. The Pacific ocean is thought to be the remnant of ‘Panthalassa’, 

the world ocean, when all the landmasses were joined together as ‘Pangaea’.  

The Pacific ocean provides an ideal venue for tsunami propagation studies for several 

reasons. First, as stated above, it is the largest body of water, covering a full one-third of the 

globe. Second, it is bounded by active tectonic plate junctions, studded with volcanoes 

called the ‘Ring of Fire’. Tsunamis produced at these hotspots can traverse the length and 

breadth of the ocean with relative ease. Third, there are no landmasses or large islands to 

block or interfere with the propagation of tsunamis formed in the ocean. Fourth, the ocean 

itself is dotted with small islands which pose little interference with tsunami propagation, 

but provide valuable platforms for recording tsunami wave amplitudes. Many of these 

islands are volcanic in origin and are sources of tsunamis themselves. Fifth, the longest 

stretch of ocean water is found between the Japan archipelago in the north-west and 

southern Chile on the south-east covering a distance of over 17,000 km or 85% of the 

distance between the North pole and the South Pole. At both the ends of this diameter lie 

some of the most active plate tectonic regions and tsunamis from either ends have traversed 

this favorite racetrack. Last but not least, an astonishing 80% of all tsunamis are recorded in 

the Pacific ocean. 

With this geographical backdrop, we now proceed to study representative tsunami event to 

illustrate the validity of our propagation models. Model A, even though uni-dimensional, is 

a valuable tool for all tsunami events, as it correctly furnishes the velocity given the depth of 

the ocean, or vice-versa. It further predicts the travel times, which are vital for warning 

purposes. These results are independent of the direction, given the isotropy of space. Model 

A fails when the amplitude of the wave is to be studied, in which case Model B, C or D is 

called into consideration. In the following, we provide examples where one of the latter 

models, in conjuction with Model A, is used to analyze historic tsunami events. The data are 

taken from the National Oceanic and Atmospheric Administration website at 

www.ngdc.noaa.gov/hazard/tsu_travel_time_events.shtml. 

4.1. Hawaii tsunami of 1975 

On 29 November 1975, a magnitude 7.2 earthquake occurred on the southern coast of the 

island of Hawaii with the epicenter at 19.3oN and 155.0oW at a focal depth of 8 km (cf. 

Pararas-Carayannis, 1976). The earthquake, the largest local one since 1868, generated a 

locally damaging submarine landslide tsunami which was recorded at 76 tide gauge stations 

in Alaska, California, Hawaii, Japan, Galapagos Islands, Peru and Chile. The tsunami caused 

$1.5 million damage in Hawaii, 2 deaths and 19 injuries (Dudley & Lee, 1988). From the 

travel times registered, the tsunami reached Guadalupe Island, Mexico, 3864 km away in 5 h 

9 m at an average speed of 750 kph, while it took 6 h 8 m to reach Tofino Island, Canada, 

4210 km away, at the average speed of 686 kph. The slower speed in the first case is likely to 
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be due to the fact that the tsunami had to bend considerably before heading towards its 

destination (cf. Helene & Yamashita, 2006). 

Fig. 1 is a scatter plot of the wave amplitude versus the propagation distance. Since the 

maximum distance was under 8000 km, the flat space approximation holds (vide Appendix 

C) and Model B is applicable. The variation of the wave amplitude in this model is given by 

Eq. (16): 

 
ModelB

Aψ
ρ

    (21) 

where A is the amplitude constant to be determined by regression analysis. Summing over 

the data points, one obtains: 

  
1

ModelBψ
A

ρ




   (22) 

The current tsunami data yield: A = 20.5265. The model equation is shown in Fig. 1. Also 

shown in the figure is the actual variation of the wave amplitude in accordance with the 

data. This is determined by first assuming a functional variation of the form 

  α
observedψ Aρ   (23) 

where A and α are two constants to be determined from regression analysis. By taking 

natural logarithms of both sides first and then multiplying both sides by ρ, we get the two 

normal equations required to find the constants: 

  log log logψ A α ρ     (24) 

and 

  log log logρ ψ ρ A αρ ρ    (25) 

By summing Eqs. (24) and (25) over the n data points, we get: 

   log log logψ n A α ρ      (26) 

and 

  log log logρ ψ A ρ α ρ ρ      (27) 

By eliminating A between Eqs. (26) and (27), we have 

 
log log

log log

ρ ψ n ρ ψ
α

ρ ρ n ρ ρ





  
  

   (28) 
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Figure 1. Observed and Model wave amplitudes of Hawaii tsunami of 1975. 

A is then obtained from Eq. (23). The results give: A = 22.644; and α = -.6137. The actual 

variation of the wave amplitude with distance is then expressed as: 

  
6137

22 644

.

.
Observedψ

ρ
    (29) 

The actual wave amplitude falls off slightly faster than that predicted by Model B, which is 

based on conservation of energy. The difference may be assumed to represent the loss of 

energy due to as yet unidentified causes. The prime candidate appears to be the generation 

of atmospheric internal gravity waves by tsunamis, which can transport energy and 

momentum vertically through the atmosphere and produce travelling ionospheric 

disturbances (cf. Hickey, 2011). Assuming an exponential attenuation factor, we can write 

(vide Appendix B) 

   
βρ

Observed ModelBψ e ψ
   (30) 
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The attenuation factor then follows as 

   5.βρ αObserved

ModelB

ψ
e ρ

ψ
      (31) 

The attenuation factor and the attenuation coefficient are calculated for this event as 

functions of the distance from the epicenter and entered in Table 1. It shows that the 

amplitude loss is most rapid near the epicenter with almost 50% of it dissipated in the first 

400 km. The dissipation slows down dramatically thereafter and at 10,000 km, it is increases 

only to 65%. Consequently, the attenuation coefficient is not a constant but a function of the 

distance from the epicenter. By all accounts, the attenuation is small, suggesting the validity 

of models A and B. 

 

Distance from epicenter ρ Attenuation factor ρ-.1137 Attenuation coefficient β 

200 km .5475 .00301/km 

400 km .5060 .00170/km 

600 km .4832 .00121/km 

800 km .4676 .000950/km 

1,000 km .4559 .000785/km 

2,000 km .4214 .000432/km 

4,000 km .3894 .000236/km 

6,000 km .3719 .000165/km 

8,000 km .3599 .000128/km 

10,000 km .3509 .000105/km 

Table 1. Attenuation factor and attenuation coefficient as functions of distance from epicenter 

4.2. The Great Japan tsunami of 2011 

The Japan archipelago is one of the most earthquake-prone regions of the world. On 11 

March 2011, a 9.0 magnitude earthquake struck on the east coast of Honshu. The epicenter 

was at 38.322oN latitude and 142.369oE longitude, 72 km east of Oshika peninsula with the 

hypocenter at a depth of 32 km below sea level (cf. http://www.tsunamiresearchcenter. 

com/news/earthquake-and-tsunami-strikes-japan; http://itic.ioc-unesco.org/index.php). It 

was the greatest earthquake to strike Japan and one of the greatest in recorded history. It 

was comparable to the 2004 Indian Ocean earthquake. There were an estimated 16,000 

deaths, 27,000 injured and 3,000 missing (http://www.npa.go.jp/archive/keibi/ 

higaijokya_e.pdf) with total property damage of $235 billion (according to World Bank 

reports), making it the costliest natural disaster of all time. 

Fig. 2 provides a geometrical perspective of the 2011 Japan tsunami. The geodesic lines from 

the epicenter shown in the figure are great circles with a longitudinal separation of 90o, 

which define a ‘lune’ that covers one quarter of the Earth’s surface area. Intersecting the 

great circles are ‘circles of latitude’ at angular distances of θ = π/4, π/2 and 3π/4 which 
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translate to linear distances of 5,000 km, 10,000 km, and 15,000 km, respectively, from the 

epicenter. For constant propagation speeds, the circles of latitude define circular wavefronts. 

The 10,000 km great circle marks the ‘equator’ (θ = π/2), past which the waves begin to 

converge according to Model C. A tsunami propagating in this lune does not encounter any 

continental landmass until after a distance of 17,000 km, which is 85% of the distance 

between the poles. 

 
(adapted from worldatlas.com). 

Figure 2. Propagation geometry of 2011 Japan tsunami in a lune of angle 90o with wavefronts at 

intervals of 5,000 km 

The 2011 Japan tsunami was felt throughout the Pacific Ocean. Wave amplitudes were 

recorded at over 293 stations scattered in and around the Pacific. Fig. 3 is a scatter plot of the 

wave amplitude versus the distance from the epicenter. The highest amplitudes were 

recorded near the epicenter. Amidst a considerable scatter, a well-defined trend in the wave 

amplitudes emerges from the figure. The wave amplitude diminished rapidly as a function 

of the distance from the source, becoming nearly constant around the 10,000 km mark, and 

showing a discernible rise thereafter in accord with Model C. But for the intervention of the 

South American landmass, the waves would have converged at the anti-podal point in 

south Atlantic Ocean, and barring losses, the original wave amplitude restored. 
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Figure 3. Observed wave amplitudes of 2011 Japan tsunami with least-squares error lines according to 

Models B and C.  

The variation of the wave amplitude according to Model C can be written as [from Eq. (18)]: 

 
sin

ModelC
Aψ
θ

   (32) 

where A is a constant to be determined from the data. In terms of the radial distance ρ, we 

have 

  
sin

ModelC
Aψ
α ρ

   (33) 

where ρ is in kilometers and α = .009 deg/km or .00015708/km if θ is expressed in radian 

measure. 

The constant A is determined from a single normal equation obtained by summing over the 

n observed data points 

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000

Distance from Epicenter, km

W
a
v

e
 A

m
p

li
tu

d
e
, 

m

Model C

Model B



 
Tsunami Propagation Models Based on First Principles 119 

   

2 sinModelCψ αρ
A

n
 

   (34) 

giving A = .4896 m. The least-square error line according to Model C is then given by Eqs. 

(33) and (34). The same in Model B is obtained by Eq. (19): 

 
sin

ModelB ModelC

αρψ ψ
αρ

    (35) 

The regression lines according to Models B and C are superimposed on the data points in 

Fig. 3. As is shown in Appendix C, the difference between the two wave amplitudes is slight 

up to about the equator mark (10,000 km), after which the two curves begin to diverge. The 

predicted amplitude in Model B continues to fall according to Eq. (21), whereas that in 

Model C begins to rise according to Eqs. (32) and (33). The actual data clearly supports 

Model C and validates the convergence effect of the Earth’s curvature on the wave 

amplitude. The same effect was earlier observed in the 8.3 magnitude Kuril islands 

earthquake of 2006 (Tan & Lyatskaya, 2009). 

Finally, Eq. (9) of Model A furnishes a means to determine the average depth of the ocean 

along the travel path given the distance and the travel time to the destination: 

   
2v

d
g

   (36) 

From the observed travel times and the geodesic distances from the epicenter to 13 

destinations along the coast of Chile, the average travel speeds were calculated from which 

the average depth of the ocean along the travel path determined (Table 2). The mean 

average speed of 739 kph yielded a mean average depth of 4303 m for the Pacific Ocean 

along these paths, which compares favorably with various estimates found in the literature: 

e.g., 4282 m (Herring & Clarke, 1971), 4190 m (Smith & Demopoulos, 2003), 4267 m 

(http://oceanservice.noaa.gov) , and 4080 m (britannica online encyclopedia). 

The average depth of the Pacific Ocean (4300 m) is considerably grater than those of the 

Atlantic Ocean (3600 m) and Indian Ocean (3500 m) (cf. Herring & Clarke, 1971). Further, 

the smaller north-western half of the Pacific Ocean is substantially deeper than the larger 

south-eastern remainder, even though separate depth figures are hard to find in the 

literature. In order to estimate the average depth of north-western Pacific Ocean, we 

consider the travel times of the tsunami to reach various destinations on the coasts of the 

Hawaiian islands, which lie entirely in that region (Table 3). Travel time data from the 

epicenter to 8 destinations in the Hawaiian islands yield a mean average speed of 798 kph 

for a mean average depth of 5016 m for north-western Pacific Ocean along these paths. This 

confirms the fact that north-western Pacific Ocean is considerably deeper than the south-

eastern remainder. These travel time studies further re-affirm the validity of the ‘long wave 

in shallow water’ approximation for tsunami propagation. 
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Latitude 

of 

Destination 

 

Destination

Distance 

from 

Epicenter

 

Travel 

Time 

Average 

Speed 

Mean 

Average 

Speed 

Average 

Depth 

Mean 

Average 

Depth 

18.467oS Arica 16,166 km 21 h 26 m 754 kph 

739 kph 

4,479 m 

4,303 m 

20.217oS Iquique 16,308 km 21 h 18 m 766 kph 4,615 m 

23.650oS Antofagasta 16,522 km 21 h 33 m 767 kph 4,628 m 

27.067oS Caldera 16,693 km 21 h 44 m 768 kph 4,645 m 

29.933oS Coquimbo 16,799 km 22 h 04 m 761 kph 4,563 m 

33.033oS Valparaiso 16,911 km 22 h 13 m 761 kph 4,562 m 

33.583oS San Antonio 16,932 km 22 h 11 m 763 kph 4,587 m 

35.356oS Constitucion 16,921 km 23 h 08 m 731 kph 4,213 m 

36.683oS Talcahuano 16,905 km 22 h 57 m 737 kph 4,272 m 

39.867oS Corral 16,946 km 22 h 54 m 740 kph 4,312 m 

41.483oS P. Montt 17,006 km 25 h 20 m 671 kph 3,548 m 

45.467oS 72.339oW 17,065 km 25 h 06 m 680 kph 3,639 m 

54.933oS P. Williams 17,115 km 24 h 05 m 711 kph 3,976 m 

Table 2. Travel Times, Average Speed and Average Depth of Pacific Ocean. 
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Average 
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Mean 

Average 

Depth 

21.960oN Kauai 5,792 km 7 h 10 m 808 kph 

 

798 kph 

5,143 m 

 

5,016 m 

21.437oN Mokuoloe 5,961 km 7 h 32 m 791 kph 4,930 m 

21.300oN Honolulu 5,962 km 7 h 27 m 800 kph 5,042 m 

20.898oN Maui 6,108 km 7 h 40 m 797 kph 4,998 m 

20.780oN Lanai 6,071 km 7 h 48 m 778 kph 4,770 m 

20.036oN Kawaihae 6,217 km 7 h 48 m 797 kph 5,002 m 

19.733oN Hilo 6,302 km 7 h 56 m 794 kph 4,968 m 

19.634oN 156.507oW 6,182 km 7 h 33 m 819 kph 5,279 m 

Table 3. Travel Times, Average Speed and Average Depth of north-western Pacific Ocean. 

4.3. The Great Chilean tsunami of 1960 

On Sunday, May 22, 1960, at 19:11 GMT (15.11 LT), a super-massive earthquake occurred off 

the coast of south central Chile, with epicenter at 39.5oS latitude, 74.5oW longitude and focal 

depth of 33 km (cf. http://earthquake.usgs.gov/earthquakes/world/events/ 

1960_05_22_tsunami.php). It happened when a piece of the Nazca Plate of the Pacific Ocean 

subducted beneath the South American Plate. The magnitude of the earthquake of 9.5 makes 

it the most powerful earthquake in recorded history (Kanamori, 2010). The tsunami 

generated by the earthquake, along with coastal subsidence and flooding, caused 

tremendous damage along the Chilean coast where an estimated 2,000 people lost their lives 
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(http://neic.usgs.gov/neis/eq_depot/world/1960_05_22articles.html). The resulting tsunami 

raced across the Pacific Ocean causing the death of 61 people in Hawaii and 200 others in 

Japan and elsewhere (USGS reports). The estimated damage costs were near half a billion 

dollars. 

  
(adapted from worldatlas.com). 

Figure 4. Propagation geometry of 1960 Chilean tsunami in a lune of angle 90o with wavefronts at 

intervals of 5,000 km 

The Great Chilean tsunami of 1960 is similar to the Great Japan tsunami of 2011 coming 

from the opposite direction, only having greater amplitude. Both of these tsunamis, as well 

as many other analogous ones, traversed the longest stretch of continuous water covering 

over 85% of the distance between the poles. Thus the amplitude variations with distance of 

both of these tsunamis were similar. The strength of the Great Chilean tsunami was such 

that reflected waves from the Asian coasts were detectable 

(http://www.soest.hawaii.edu/GG/ASK/chile-tsunami.html). 

Fig. 4 provides the geometrical perspective of the 1960 Chilean tsunami. As in the earlier 

example, the geodesic lines from the epicenter shown in the figure are great circles with a 

longitudinal separation of 90o, which define a ‘lune’ that covers one quarter of the Earth’s 

surface area. Intersecting the great circles are ‘circles of latitude’ at angular distances of θ = 

π/4, π/2 and 3π/4 which translate to linear distances of 5,000 km, 10,000 km, and 15,000 km, 
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respectively, from the epicenter. For constant propagation speeds, the circles of latitude 

define circular wavefronts. The 10,000 km great circle marks the ‘equator’ (θ = π/2), past 

which the waves begin to converge according to Model C.  

The Great Chilean tsunami of 1960 was felt throughout the Pacific Ocean. Over 1,000 

measurements of wave amplitudes were recorded at 815 stations scattered in and around 

the Pacific. Fig. 5 is a scatter plot of the wave amplitude versus the distance from the 

epicenter. The highest amplitudes were recorded near the Chilean coast and at the 

diametrically opposite end, mostly on the Japanese coasts, where hundreds of data points 

were clustered. There is a second cluster past the 10,000 km mark at the Hawaiian Islands, 

where numerous measurements were taken. The over-all trend of the data points closely 

agrees with that predicted by the ‘spherical ocean’ Model C.  

 

Figure 5. Observed wave amplitudes of 1960 Chilean tsunami with least-squares error lines according 

to Models B and C.  

The least-squares regression lines of the data points as obtained from Eqs. (32) - (35) are 

shown in Fig. 5, with the amplitude constant A = 1.9488 m. This is 3.98 times that of the 2011 

Japan tsunami constant. Since the energy density of the waves is proportional to A2, this 
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indicates that the energy density of the 1960 Chilean tsunami was 15.84 times that of the 

2011 Japan tsunami, thus illustrating the power of the most powerful earthquake in 

recorded history. Normally, a 9.5 magnitude earthquake releases about 5.5 times the energy 

an a 9.0 earthquake (cf. Kanamori, 1977). 

From the observed travel times and distances from the epicenter to destinations on the 

eastern coast of Japan, the average travel speeds were calculated and the average depth of 

the ocean determined along these paths (table 4). The mean average depth of 4,231 m 

compares favorably with the value of 4,303 m obtained from the 2011 Japan tsunami (Table 

2). Also calculated were the travel speeds from the epicenter to locations on the Hawaiian 

Islands and the average depth of the ocean (Table 5). The mean average depth of 3,972 m 

reaffirms the fact that the north-western Pacific Ocean, at 5,016 m (Table 3) is substantially 

deeper than its south-eastern compliment. 

 

Latitude 

of 

Destinatio

n 

Destination

Distance 

from 

Epicenter

Travel 

Time 

Average 

Speed 

Mean 

Average 

Speed 

Average 

Depth 

Mean 

Average 

Depth 

41.783oN Hakodate 17,058 km 23 h 27 m 727 kph 

733 kph 

4,166 m 

4,231 m 
39.267oN Kamaishi 16,914 km 22 h 24 m 755 kph 4,489 m 

35.670oN Tokyo 16,989 km 22 h 59 m 739 kph 4,302 m 

28.383oN Nase 17,496 km 24 h 39 m 710 kph 3,967 m 

Table 4. Travel Times, Average Speed and Average Depth of Pacific Ocean 
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19.730oN Coconut I. 10,621 km 15 h 30 m 685 kph 

710 kph 

3,697 m 

3,972 m 

19.733oN Hilo 10,621 km 14 h 47 m 718 kph 4,064 m 

20.898oN Kahului 10,817 km 15 h 07 m 716 kph 4,032 m 

21.300oN Honolulu 10,957 km 15 h 22 m 713 kph 4,003 m 

28.960oN Nawiliwili 11,124 km 15 h 29 m 718 kph 4,064 m 

Table 5. Travel Times, Average Speed and Average Depth of south-eastern Pacific Ocean 

4.4. The Great Indian Ocean tsunami of 2004 

The great 2004 Indian Ocean earthquake occurred off the west coast of Sumatra, Indonesia, 

on Boxing Day, December 26, 2004. Its revised magnitude of 9.2 makes it the second largest 

earthquake in recorded history, after the 9.5 magnitude Chilean earthquake of 1960 (cf. 

http://walrus.usgs.gov/tsunami/sumatraEQ/; Lay, et al., 2005). In terms of human 

casualties, however, it was the greatest natural disaster in recorded history, by far. The 

earthquake generated a super-massive tsunami that took the lives of an estimated 230,000 
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people in Indonesia, Sri Lanka, India, Thailand and elsewhere (Mörner, 2010). More than 

1,000,000 people were displaced in the aftermath following the tsunami, which was 

eventually registered at every coast of the world ocean. 

 

Figure 6. Propagation geometry of 2004 Indian Ocean tsunami showing the two major faultiness and 

propagation along their perpendicular bisectors (adapted from phuket.news.com). 

This great earthquake was caused by the subduction of the Indo-Australian plate under the 

Eurasian plate near the Andaman and Nicobar Islands chain and its extension southwards 

under the Bay of Bengal (Fig. 6). Its hypocenter is listed at 3.295oN altitude and 95.982oW 

longitude. However, its fault-line was 1000 km long, which roughly consisted of two linear 

segments (cf. Kowalik, et al., 2005): (1) a 700 km long section off the west coasts of Andaman 

and Nicobar Islands; and (2) a 300 km section west of Aceh province of Sumatra, Indonesia 

(Fig. 6). The alignments of both the segments were generally north-south, with the southern 

segment titled slightly towards the south-easterly direction. The shorter southern segment 

had the more intense earthquake and generated the greater tsunami. Consequently, the 

epicenter lied on this segment of the fault-line. The earthquake is also variously referred to 

as the Sumatra-Andaman earthquake or the Boxing Day earthquake. 

It is evident from Fig. 6 that the eastward tsunami from the southern segment of the fault-

line (henceforth referred to as the Sumatra fault-line) had a direct impact on the Aceh 

province in northern Sumatra, where the highest waves of over 50 m were registered. More 

than half of all casualties were reported there. The westward tsunami from this fault-line, on 

the other hand, passed harmlessly over the open ocean, reaching the east coast of South 
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Africa, and entering the Atlantic Ocean. The northern segment of the fault-line (henceforth 

called the Andaman-Nicobar fault-line) produced tsunami which affected greater areas of 

landmass. Phuket lied near the perpendicular bisector of this fault and took a direct hit from 

the tsunami as did other coastal locations of Thailand and Myanmar. To the west, the east 

coasts of Sri Lanka and southern India were greatly affected. The tsunami rolled over the 

Maldive Islands and reached the eastern coast of Africa (Somalia, in particular), causing 

damage there. In consolation, Bangladesh, a densely populated area to the north, was 

spared the devastation. 

   

Figure 7. Observed and Model wave amplitudes of 2004 Indian Ocean earthquake due to the 

Andaman-Nicobar fault-line. 

Assuming that the tsunami from the Sumatra fault-line was largely intercepted by the island 

(vide Fig. 6), we proceed to analyze the tsunami propagation from the Andaman-Nicobar 

fault-line based on Models B and D. For this, we have to consider the mid-point of the fault-

line (approximately 9oN latitude and 92.5oE longitude) as the origin of the tsunami instead 

of the epicenter which lay on the Sumatra fault-line. Distances are now reckoned from this 

new center. If the coordinates (latitude, longitude) of the source and destination points be 
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(λs, φs) and (λd, φd), respectively, the angle subtended at the center of the Earth by the two 

locations is, from spherical trigonometry, 

   1cos sin sin cos cos coss d s d d sθ λ λ λ λ φ φ        (37) 

The linear distance between the two points on the surface of the Earth is then ed θr , where 

re = 6371 km, is the volumetric radius of the Earth prescribed by the International Union of 

Geodesy and Geophysics. 

Fig. 7 is a scatter plot of the wave amplitudes as functions of the distance from the center of 

the Andaman-Nicobar fault-line. The data betray distinct clumps for Thailand, Sri Lanka, 

India and Maldives. At the far end are data for the Somalia coast. Also shown are the 

isolated data points for Andaman and Seychelles islands. Superimposed on the data points are 

the model amplitudes according to Models B and D. The model amplitudes are virtually 

indistinguishable for distances upwards of 1000 km (cf. Appendix D). In comparison with the 

Hawaii and Japan earthquakes (Figs. 1 and 3), the wave amplitudes are significantly higher, 

which is indicative of the magnitude of the earthquake. Unlike Hawaii and Japan earthquakes, 

however, there is a dearth of data points with high amplitudes near the origin. This is because 

the earthquake occurred beneath the ocean and there was no land close to it. Nevertheless, the 

lack of high wave amplitudes close to the fault-line appears to support the validity of Model D. 

As before, the wave amplitudes according to Model B is given by (vide Eq. D.12): 

  ModelB
b

Aψ
ρ

   (38) 

where A is a constant to be determined from regression analysis of the data points. By 

summing over the data, we have 

  
1

b

ψ
A

ρ

 


   (39) 

The data yield a value of A = 146.296 m. The wave amplitudes in accordance with Model D 

then follows (vide Eq. D.8): 

   
2

4
2

1

2

ModelB
ModelD

b

ψ
ψ

c

ρ





  (40) 

Here c = 350 km. 

From the travel times and the travel distances from the epicenter on the Sumatra fault-line 

to five destinations on the South African coast and one on the Antarctic coast, the average 
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speed of the tsunami was calculated, and the average depth of the Indian Ocean determined 

(Table 6). The average speed of 700 kph translates to an average depth of 3,840 m which is 

quite consistent with the reference figure of 3,963 m found in the literature (Herring & 

Clarke, 1971). Once again, the tsunami speed and depth of the ocean predicted by the ‘long 

waves in shallow water’ model turns out to be reliable. 
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Depth 

28.800oS Richards Bay 7,683 km 11 h 04 m 694 kph 

700 kph 

3,795 m 

3,840 m 

33.027oS East London 8,193 km 11 h 29 m 713 kph 4,008 m 

33.958oS Pt. Elizabeth 8,423 km 12 h 13 m 698 kph 3,743 m 

34.178oS Mossel Bay 8,743 km 13 h 02 m 671 kph 3,543 m 

34.188oS Simons Bay 9,078 km 12 h 53 m 705 kph 3,909 m 

69.007oS 39.584oE 9,088 km 12 h 41 m 717 kph 4,042 m 

Table 6. Travel Times, Average Speed and Average Depth of Central Indian Ocean 

5. Conclusion 

Tsunamis are complex geophysical phenomena not easily amenable to theoretical rendering. 

The formal theory based on solitary wave model is not easily accessible to the great majority 

of the scientific readers. This chapter has demonstrated that the ‘long waves in shallow 

water’ approximation of the tsunami explains many facets of tsunami propagation in the 

open ocean. The one-dimensional model provides accurate assessments of the general 

properties such as dispersion-less propagation, speed of propagation, bending of tsunamis 

around obstacles and depth of the ocean, among others. Two-dimensional models on flat 

and spherical ocean substantially account for the wave amplitudes for far-reaching tsunami 

propagation. Finally, the finite line-source model satisfactorily predicts the wave amplitudes 

near the source when the tsunami is caused by a long subduction zone. 

Appendix 

A. Propagation of water waves in one dimension 

A wave is a transfer of energy from one part of a medium to another, the medium itself not 

being transported in which process (e.g., Coulson, 1955). The individual particles of the 

medium execute simple harmonic motions in one or two dimensions, depending upon the 

nature of the wave. For sound waves in air, the oscillations are parallel with the direction of 

propagation. Such waves are called longitudinal waves. For waves along a stretched string, 

the oscillations are perpendicular to the direction of propagation. Such waves are called 

transverse waves. Longitudinal waves can propagate through solids and fluid media (liquid 

or gas), whereas transverse waves can propagate through solids only. Longitudinal waves 



 

Tsunami – Analysis of a Hazard – From Physical Interpretation to Human Impact 128 

are sustained by compression forces, while transverse waves are due to shear forces. The 

sources of all waves are vibrations of some kinds. 

In an earthquake, as many as four kinds of waves are produced, of which two are body waves 

and the other two are surface waves. The body waves are categorized as: (1) Longitudinal 

waves (called the primary waves); and (2) Transverse waves (called secondary waves). The 

surface waves, too, fall into two categories: (1) Transverse waves called Love waves, where 

the oscillations are parallel with the surface but perpendicular to the direction of 

propagation; and (2) Rayleigh waves, in which the oscillations take place in directions both 

parallel with and perpendicular to the direction of propagation, the latter taking place in the 

vertical direction. In Rayleigh waves, the particles below the surface undergo elliptical 

motions in the vertical plane.  

Waves on the surface of water are similar to the Rayleigh waves. They are influenced by 

three physical factors: (1) Gravitation, which acts to return the disturbed surface back to the 

equilibrium configuration; (2) Surface Tension, since the pressure under a curved surface is 

different from that beneath a flat surface; and (3) Viscosity, which causes dissipation of 

energy. Of these, gravity is the dominant force except in the very short wavelength regions. 

Water waves controlled by gravity are called gravity waves. When surface tension dominates, 

the waves are called capillary waves or ripples. Such waves have wavelengths shorter than 1.7 

cm and are quickly damped out by viscous forces (cf. Towne, 1967; Elmore & Heald, 1969).  

The theory of gravity wave propagation in one dimension is well documented in the 

literature. A particularly elegant treatment is found in Elmore & Heald (1969). 

Conventionally, x is taken as the direction of propagation and y is taken to be the vertical 

direction. The conditions are assumed to be uniform in the z direction, which then 

disappears from the view of analysis. As water is an incompressible fluid, its density ρ is 

constant. The equation of continuity gives 

  0v 
     (A.1) 

where ˆ ˆx yv v x v y 


 represents the velocity. Also, for irrotational motion, we have 

  0v 
 

   (A.2) 

According to the potential theory, v


 is obtained from a velocity potential: 

  v φ 


 (A.3) 

where φ  is a scalar function which satisfies Laplace’s equation: 

 
2 2

2

2 2
0

φ φφ
x y

 
   

 
   (A.4) 

If ξ and η represent the displacements in the horizontal and vertical directions, respectively, 

then 
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 x

φξ
v

t x


  
 

   (A.5) 

and 

   y

η φ
v

t y

 
  
 

   (A.6) 

At the bottom, the vertical component of velocity must vanish: 

  0 0,y

φ
v y

y


   


  (A.7) 

At the surface of water, the pressure is atmospheric pressure P. Omitting the non-linear 

term ½v2 in Bernoulli’s equation, we can write 

    .,
φ

P ρg h η ρ const y h
t


    


  (A.8) 

where h is the depth of water and g the acceleration due to gravity. Eq. (A.8) constitutes the 

relation between the variation of pressure due to the vertical displacement of water and the 

resulting change in the velocity potential. Differentiating Eq. (A.8) with respect to t, we get 

  
2

2

1

y

η φ
v

t g t

 
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   (A.9) 

Our task now is to find the velocity potential which satisfies Laplace’s equation (A.4) and 

the two boundary conditions (A.7) and (A.9). We assume a trial solution 

        , ,φ x y t X x Y y T t   (A.10) 

and apply the method of separation of variables. From Eq. (C.4), we get 

  
2 2

2

2 2

1 1d X d Y
k

X Ydx dy
        (A.11) 

where the separation constant k is chosen to insure that X is a periodic function of x. Written 

separately, Eq. (A.11) gives 

 
2

2

2
0

d X
k X

dx
     (A.12) 

and 

   
2

2

2
0

d Y
k Y

dy
     (A.13) 
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The general solutions to Eqs. (A.12) and (A.13) are, respectively 

   ikx ikxX x Ae Be    (A.14) 

and 

   kx kxY y Ce De    (A.15) 

For a wave travelling in the forward direction, B = 0. Further, from Eq. (A.10): 

   
φ dY

XT
y dy





  (A.16) 

The boundary condition at the bottom (A.7) dictates that C = D. Thus 

   2 coshY y C ky    (A.17) 

and 

     , , cosh ikxφ x y t A kye T t   (A.18) 

where A is a new arbitrary constant. Now from Eqs. (A.6) and (A.9), we get: 

  sinh ikn
y

φ
v kA kye T t

y


   


   (A.19) 

and 

 
 22

2 2

1 1
cosh ikx

y

d T tφ
v A kye

g gt dt


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
 (A.20) 

Eqs. (A.19) and (A.20) yield: 

  
2

2
0tanh

d T
gk kh T

dt
    (A.21) 

Hence, the velocity potential has a simple harmonic time-dependence with angular 

frequency 

   tanhω gk kh    (A.22) 

If we choose iωtT e , the velocity potential of a gravity wave propagating in the forward x 

direction over water of depth h becomes 

   cosh
i kx ωtφ A kye

    (A.23) 
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The wave velocity of the gravity wave is thus 

 tanh
gω

v kh
k k

    (A.24) 

B. Wave propagation on two-dimensional flat surface 

The equation of a wave emanating from a point source in a two-dimensional plane is 

conveniently expressed in plane polar coordinates (ρ, φ) with the source at the origin (e.g., 

Zatzkis, 1960): 

 
2 2 2

2 2 2 2 2

1 1 1ψ ψ ψ ψ
ρ ρρ ρ φ v t

   
  

  
  (B.1) 

where v is the velocity of the wave. Assuming circular symmetry (i.e., ψ independent of φ), 

we get: 

  
2 2

2 2 2

1 1ψ ψ ψ
ρ ρρ v t

  
 

 
   (B.2) 

To apply the method of separation of variables, let 

       ,ψ ρ t P ρ T t    (B.3) 

Then Eq. (B.2) becomes 

  
2 2

2 2 2

d P T dP P d T
T

ρ dρdρ v dt
     (B.4) 

Dividing both sides by ψ, separating the variables, and letting each side equal to a constant 

(- k2), we get 

 
2 2

2

2 2 2

1 1 1d P dP d T
k

P Pρ dρdρ v T dt
      (B.5) 

The t-equation is  

 
2

2 2

2
0

d T
k v T

dt
    (B.6) 

whose solution is 

  ikvtT e    (B.7) 

The ρ-equation is  
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2

2 2 2

2
0

d P dPρ ρ k ρ P
dρdρ

      (B.8) 

or 

 2 2
0

d dPρ ρ k ρ P
dρ dρ

 
  

 
 (B.9) 

This is Bessel’s equation of the zeroth order. A novel technique to solve this equation is 

found in Irving & Mullineaux (1959). Let 

  
R

P
ρ

   (B.10) 

Then Eq. (B.9) assumes the form 
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1 0
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d R
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dρ k ρ

 
   
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   (B.11) 

For large ρ (i.e., away from the source), the second term within the square bracket may be 

neglected. Thus 
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2
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0

d R
k R

dρ
     (B.12) 

giving the solution 

 ikρR e  (B.13) 

Hence, from Eq. (B.10):     

 
ikρe

P
ρ

   (B.14) 

and 

       
 

0
,

ik ρ vt
eψ ρ t P ρ T t ψ

ρ



     (B.15) 

Since the wave is propagating outwards, we retain the + sign only, giving 

    
 

0
,

ik ρ vt
eψ ρ t ψ

ρ



    (B.16) 

In terms of the wave number k, 
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  
 

0
,

i kρ ωt
eψ ρ t ψ

ρ



    (B.17)  

The amplitude of the wave falls off inversely as the square-root of the distance from the 

source: 

 
1

ModelBψ
ρ

   (B.18) 

The intensity of the wave (i.e., the energy density) is thus inversely proportional to the 

distance from the source: 

 2 1

ModelB ModelBI ψ
ρ

    (B.19) 

There is a simple alternative procedure to obtain Eq. (B.18) from Eq. (B.19) (Tan & 

Lyatskaya, 2009). Assuming conservation of energy, the energy spreads out in concentric 

circles of radius ρ, so that the intensity of the wave varies inversely as the radial distance 

whence the wave amplitude varies according to Eq. (B.18). 

When k is complex, we can write k = κ + iβ ., Eq. (B.16) then takes the form 

  
 

0
,

i kρ ωtβρe eψ ρ t ψ
ρ


   (B.20) 

In Eq. (B.20), e-βρ gives the attenuation factor when loss processes are present, with β 

representing the attenuation coefficient. 

C. Wave propagation on two-dimensional spherical surface 

For long-distance propagation of waves on a spherical surface, the curvature of the surface 

must be taken into account (Tan & Lyatskaya, 2009). Use spherical coordinates (r, θ, φ) with 

the center of the sphere as the origin and place the source of the wave at the north pole (θ = 

0) (Fig. C.1). Assume azimuthal symmetry, i.e., ψ independent of φ. Then circular waves will 

propagate on the surface of the sphere (r = a) outwards in the direction of increasing zenith 

angle θ. The wave-fronts will be small circles on the sphere having radii asinθ and 

circumferences 2πasinθ. The energy conservation principle now requires that the intensity 

of the wave varies inversely as sinθ: 

 



sin

12 ModelCI   (C.1) 

Hence the amplitude of the wave varies inversely as the square-root of sinθ: 

  
1

sin
ModelC


    (C.2) 
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The amplitude and intensity of the wave decrease from the north pole (θ = 0) to the equator 

(θ = π/2), but increase thereafter until the wave converges at the south pole (θ = π), where 

the original amplitude and intensity are restored. 

 

Figure C.1. Spherical surface with source at north pole (θ = 0). 

In order to compare the spherical surface solution with that of the flat surface solution (cf. 

Bhatnagar, et al., 2006), we notice that the corresponding circular wave-fronts on the flat 

surface will have radii of aθ and circumferences 2πaθ (Fig. C.1). Thus the ratio of the 

intensities of the waves will be 

 
sin

sphericalModelC

ModelB flat

II

I I




     (C.3) 

Hence, the ratio of the amplitudes of the waves is 

 
sin

sphericalModelC

ModelB flat

 
  

    (C.4) 

Table C.1 shows the ratios of the wave intensities and amplitudes in the spherical and flat 

surface solutions. The values are independent of the radius of the sphere and are therefore 

applicable to all spherical surfaces. The departures of the spherical surface solutions from 

those of the flat surface solutions are slight for small values of θ. Even at the equator (θ = 

π/2), the enhancements of the wave intensity and amplitude are merely 57% and 25% 

respectively. The enhancement becomes progressively greater until the south pole (θ = π) is 

reached, where it becomes infinite. 
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θ, deg 

 

θ, rad 

 

sinθ 


sin
 




sin
 

0 0 0 1 1 

15 .2618 .2588 1.0115 1.0057 

30 .5236 .5000 1.0472 1.0233 

45 .7854 .7071 1.1107 1.0539 

60 1.0472 .8660 1.2092 1.0996 

75 1.3090 .9659 1.3552 1.1641 

90 1.5708 1.0000 1.5708 1.2533 

105 1.8326 .9659 1.8972 1.3774 

120 2.0944 .8660 2.4184 1.5551 

135 2.3562 .7071 3.3322 1.8254 

150 2.6180 .5000 5.2360 2.2882 

165 2.8798 .2588 11.1267 3.3357 

180 3.1426 0 ∞ ∞ 

Table C.1. Intensity and Amplitude Ratios in Spherical and Flat Surface Solutions. 

D. Wave propagation from finite line source in two dimensions 

Consider a finite line source of strength q and length 2c in the x - y plane, whose end-points 

are located at (- c, 0) and (c, 0) (Fig. D.1). The velocity potential ψ can be expressed as 

    ,x y T t     (D.1) 

where  yx,  satisfies the two-dimensional Laplace’s equation 

 
2 2

2 2
0

x y

  
 

 
   (D.2) 

The potential due to a line source constitutes a well-known problem in electrostatics (cf. 

Abraham & Becker, 1950). The equi-potential lines on which φ (x, y) is constant are con-focal 

ellipses with their foci located at the end-points of the line source. The lines of force are con-

focal hyperbolas perpendicular to the ellipses (cf. Morse & Feshbach, 1953). In the case of a 

tsunami from a linear subduction zone, the ellipses represent the wave-fronts, whereas the 

hyperbolas are the lines along which the enrrgy is transferred (Fig. D.1). 

The amplitude of the wave can be obtained by a practical approach similar to that of Tan & 

Lyatskaya (2009). An approximate expression for the perimeter of an ellipse with semi-

major axis a and semi-minor axis b is found in the literature (cf. Weisstein, 2003): 

   222 baL      (D.3) 
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Figure D.1.Elliptical wave-fronts on which potential due to finite line source is constant. 

From the property of the ellipse, 2 2 2a b c  (cf. Tan, 2008). Thus 

 2 22L b c     (D.4) 

As the elliptical wave-front propagates outwards, its intensity diminishes inversely as L, 

giving 

 
2

2

1

2

ModelDI
c

b





 (D.5) 

Hence, the wave amplitude varies as 

 
2

24

1

2

ModelD
c

b

 



  (D.6)  

Along the y-axis or the perpendicular bisector of the line source, we can equate b with the 

distance from the center of the source along that axis b : 

 
2

24

1

2

ModelD

b

c








   (D.7) 

One can compare the wave amplitude in Model D with that of a point source of equivalent 

strength (Model B). Remembering Eq. (B.18), we can re-write Eq. (D.7) as: 
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2 2

4 4
2 2

1 1 1

1 1
2 2

ModelD ModelB

b

b b

c c
 



 

 

 

  (D.8) 

Thus 

 
2

4
2

1

1
2

ModelD

ModelB

b

c










  (D.9) 

Table D.1 shows the comparative values of the wave amplitudes in the line source (Model 

D) and point source (Model B) models. They differ greatly near the origin (ρb = 0), but the 

solutions begin to converge away from the origin. At ρb = .2c, the Model D value is only half 

that of Model B. For ρb > c, the difference is below 10%. For ρb = 10c, the two solutions are 

virtually indistinguishable. 

 

 

c
b  4

2
2

2

1

c
b 

 
 

b
1

 4
2

2

2
1

1

b

c




 

0 1.189 ∞ 0 

.1 1.183 3.162 .374 

.2 1.167 2.236 .521 

.3 1.141 1.826 .625 

.4 1.109 1.581 .702 

.5 1.075 1.414 .760 

.6 1.038 1.291 .804 

.7 1.003 1.195 .839 

.8 .968 1.118 .866 

.9 .935 1.054 .887 

1.0 .904 1.000 .904 

1.5 .777 .816 .951 

2.0 .687 .707 .971 

3.0 .570 .577 .987 

4.0 .496 .500 .992 

5.0 .445 .447 .995 

6.0 .407 .408 .996 

7.0 .377 .378 .997 

8.0 .353 .354 .998 

9.0 .333 .333 .999 

10.0 .316 .316 1.000 

Table D.2. Amplitude Ratios in Line Source and Point Source Solutions. 
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