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1. Introduction

The Direct Torque Control (DTC) has become a popular technique for three-phase Induction

Motor (IM) drives because it provides a fast dynamic torque response without the use of

current regulators [23][9], however, nowadays exist some other alternative DTC schemes to

reduce the torque ripples using the Space Vector Modulation (SVM) technique [11][14]. In

general the use of fuzzy systems does not require the accurate mathematic model of the

process to be controlled. Instead, it uses the experience and knowledge of the involved

professionals to construct its control rule base. Fuzzy logic is powerful in the motor control

area, e.g., in [1] the PI and Fuzzy Logic Controllers (FLC) are used to control the load angle

which simplifies the IM drive system.

In [8] the FLC is used to obtain the reference voltage vector dynamically in terms of torque

error, stator flux error and stator flux angle. In this case both torque and stator flux ripples

are remarkably reduced. In [15] the fuzzy PI speed controller has a better response for a wide
range of motor speed. Different type of adaptive FLC such as self-tuning and self-organizing

controllers has also been developed and implemented in[20][4].

In [18], [13] and [10] are proposed fuzzy systems which outputs are a specific voltage vector

numbers, similarly to the classic DTC scheme[23]. On the other hand, in [26] is proposed a

fuzzy inference system to modulate the stator voltage vector applied to the induction motor,

but it consider the stator current as an additional input.

In [19] two fuzzy controllers are used to generate the two components of the reference voltage

vector instead of two PI controllers, similarly, in [7] flux and torque fuzzy controllers are

designed to substitute the original flux and torque PI controllers, but these schemes use two

independent fuzzy controllers, one for the flux control and another one for the torque control.

©2012 Azcue et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Unlike the schemes mentioned before, the aim of this chapter is to design a Takagi-Sugeno

(T-S) Fuzzy controller to substitute flux and torque PI controllers in a conventional DTC-SVM

scheme. The T-S fuzzy controller calculates the quadrature components of the stator voltage

vector represented in the stator flux reference frame. The rule base for the proposed controller
is defined in function of the stator flux error and the electromagnetic torque error using

trapezoidal and triangular membership functions. The direct component of the stator voltage

takes a linear combination of the inputs as a consequent part of the rules, however, the

quadrature component of the stator voltage takes the similar linear combination used in

the first output but with the coefficients interchanged, not to be necessary another different

coefficients values for this output.

The simulation results shown that the proposed T-S fuzzy controller for the DTC-SVM scheme

have a good performance in terms of rise time (tr), settling time (ts) and torque ripple when it

was tested at different operating conditions validating the proposed scheme. The chapter

is organized as follows. In section 2 the direct torque control principles of the DTC for

three-phase induction motor is presented. In section 3 the topology of the proposed control

scheme is analyzed and in section 4 the proposed T-S fuzzy controller is described in detail

mentioning different aspects of its design. Section 5 presents the simulations results of T-S

fuzzy controller, and in the end, the conclusion is given in Section 6.

2. Direct Torque Control principles

2.1. Dynamical equations of the three-phase induction motor

By the definitions of the fluxes, currents and voltages space vectors, the dynamical equations

of the three-phase induction motor in stationary reference frame can be put into the following

mathematical form [25]:

�us = Rs�is +
d�ψs

dt
(1)

0 = Rr�ir +
d�ψr

dt
− jωr�ψr (2)

�ψs = Ls�is + Lm�ir (3)

�ψr = Lr�ir + Lm�is (4)

Where �us is the stator voltage space vector, �is and �ir are the stator and rotor current space

vectors, respectively, �ψs and �ψr are the stator and rotor flux space vectors, ωr is the rotor

angular speed, Rs and Rr are the stator and rotor resistances, Ls, Lr and Lm are the stator,

rotor and mutual inductance, respectively.

The electromagnetic torque is expressed in terms of the cross-vectorial product of the stator

and the rotor flux space vectors.

te =
3

2
P

Lm

Lr Lsσ
�ψr × �ψs (5)

te =
3

2
P

Lm

Lr Lsσ

∣

∣�ψr

∣

∣

∣

∣�ψs

∣

∣ sin(γ) (6)
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The Takagi-Sugeno Fuzzy Controller Based Direct Torque Control with Space Vector Modulation for Three-Phase Induction Motor 3

Where γ is the load angle between stator and rotor flux space vector, P is a number of pole

pairs and σ = 1 − L2
m/(LsLr) is the dispersion factor.

The three-phase induction motor model was implemented in MATLAB/Simulink as is shown

in [3], the code source of this implementation is shared in MATLAB CENTRAL [2].

2.2. Direct Torque Control

In the direct torque control if the sample time is short enough, such that the stator voltage

space vector is imposed to the motor keeping the stator flux constant at the reference value.

The rotor flux will become constant because it changes slower than the stator flux. The

electromagnetic torque (6) can be quickly changed by changing the angle γ in the desired

direction. This angle γ can be easily changed when choosing the appropriate stator voltage

space vector.

For simplicity, let us assume that the stator phase ohmic drop could be neglected in (1).

Therefore d�ψs/dt = �us. During a short time Δt, when the voltage space vector is applied

it has:

Δ�ψs ≈ �us · Δt (7)

Thus the stator flux space vector moves by Δ�ψs in the direction of the stator voltage space

vector at a speed which is proportional to the magnitude of the stator voltage space vector. By

selecting step-by-step the appropriate stator voltage vector, it is possible to change the stator

flux in the required direction.

2.2.1. Stator-flux-oriented direct torque control

The stator-flux-oriented direct torque control (SFO-DTC) based on space vector modulation

scheme have two PI controllers as is shown in Fig. 2. This control strategy relies on a simplified

description of the stator voltage components expressed in stator-flux-oriented coordinates

uds = Rsids +
dψs

dt
(8)

uqs = Rsiqs + ωsψs (9)

Therefore, in this reference frame the stator flux quadrature component is zero as is shown

in Fig. 1 that means ψs = ψds and ψqs = 0. Also, in this reference frame the electromagnetic

torque is calculated by

Tem =
3P

2
ψsiqs (10)

iqs =
2

3P

Tem

ψs
(11)

However, if the equation (11) is substitute in the equation (9), we can obtain the expression

to control the electromagnetic torque applying and appropriate stator voltage quadrature

343
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Stator-flux-oriented

Stationary

reference frame

reference frame

d

q

α

β

ωs

ψ s
=

ψ ds

ψαs

ψβs

Figure 1. Stator-flux-oriented reference frame.

component, it is:

uqs =
2

3P
Rs

Tem

ψs
+ ωsψs (12)

From equation (8), the stator flux is controlled with the stator voltage direct component uds.

For every sampled period Ts, the equation (8) is approximated by

uds = Rsids + Δψs/Ts (13)

When the three-phase IM operates at high speeds the term Rsids can be neglected and the

stator voltage can to become proportional to the stator flux change with a switching frequency

1/Ts. However, at low speeds the term Rsids is not negligible and with the aim to correct this

error is used the PI controller, it is:

u∗
ds = (KPψ + KIψ/s)(ψ∗

s − ψ̂s) (14)

From the equation (12), the electromagnetic torque can be controlled with the stator voltage

quadrature component if the term ωsψs is decoupled. A simple form to decoupled it is adding

the term ωsψs to the output of the controller as is shown in Fig. 2. Then, the PI controller is

used to control the electromagnetic torque, it is:

u∗
qs = (KPTem

+ KITem
/s)(T∗

em − T̂em) + ωsψs (15)

Finally, the outputs of the PI flux and PI torque controllers can be interpreted as the stator

voltage components in the stator-flux-oriented coordinates [6].

Where ωs is the angular speed of the stator flux vector. The equations (12) and (13) show

that the component uds has influence only on the change of stator flux magnitude, and the

component uqs, if the term ωsψs is decoupled, can be used for torque adjustment. Therefore,

after coordinate transformation dq/αβ into the stationary reference frame, the command

values u∗
ds, u∗

qs are delivered to SVM. In [3] this scheme is analyzed in detail.

344 Induction Motors – Modelling and Control
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Figure 2. Conventional stator-flux-oriented direct torque control scheme.

The SFO-DTC based on space vector modulation scheme requires the flux and the torque

estimators, which can be performed as it is proposed in this chapter, this scheme is used to

implement the T-S fuzzy controller proposed.

3. The proposed direct torque control scheme

The Figure 3 shows the proposed DTC-SVM scheme, this scheme only needs sense the DC link

and the two phases of the stator currents of the three-phase induction motor. In the DTC-SVM

scheme the electromagnetic torque error (Eτ) and the stator flux error (Eψs
) are the inputs and

the stator voltage components are the outputs of the Takagi-Sugeno fuzzy controller, these

outputs are represented in the stator flux reference frame. Details about this controller will be

presented in the next section.

3.1. Stator voltage calculation

The stator voltage calculation use the DC link voltage (Udc) and the inverter switch state (SWa,

SWb, SWc) of the three-phase two level inverter. The stator voltage vector �us is determined as

in [5]:

�us =
2

3

[

(SWa −
SWb + SWc

2
) + j

√
3

2
(SWb − SWc)

]

Udc (16)

3.2. Space vector modulation technique

In this work is used the space vector modulation (SVM) technique with the aim to reduce the

torque ripple and total harmonic distortion of the current, is therefore necessary to understand

the operation and fundamentals that governing their behavior. This concept was discussed in

publications such as [24], [12] and [27]. For our purpose the basic ideas are summarized. In

Fig. 4 and Fig. 5 are shown the three-phase two level inverter diagram, where the state of the

345
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Figure 3. Takagi-Sugeno fuzzy controller in the direct torque control with space vector modulation
scheme.

switches follow the following logic.

SWi =

{

1, the switch SWi is ON and the switch S̄Wi is OFF

0, the switch SWi is OFF and the switch S̄Wi is ON
(17)

Where i=a,b,c and considering that the switch S̄Wi is the complement of SWi is possible to

resume all the combinations only considering the top switches as is shown in Table 1.

Vector SWa SWb SWc

�S0 0 0 0
�S1 1 0 0
�S2 1 1 0
�S3 0 1 0
�S4 0 1 1
�S5 0 0 1
�S6 1 0 1
�S7 1 1 1

Table 1. Switching vectors

Where �S0, �S1, �S2, �S3, �S4, �S5, �S6 and �S7 are switching vectors. These switching vectors generate

six active voltage vectors (�U1, �U2, �U3, �U4, �U5 and �U6) and two zero voltage vectors (�U0 and
�U7) as are shown in the Figures 6 and 7. The generalized expression to calculate the active and

zero voltage vectors is:

�Un =

{

2
3

√
3Udc · ej(2n−1) π

6 , n = 1, ..., 6

0 , n = 0, 7
(18)

Where Udc is the DC link voltage.
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1 ZZ Z

Ia Ib Ic

P

N

n

a b c

Udc

UaN

UnN

Uan Ubn Ucn

SWa

S̄Wa

SWb

S̄Wb

SWc

S̄Wc

Figure 4. Three-phase two level inverter with load

1 ZZ Z

Ia Ib Ic

P

N

n

a b c

Udc

UaN

UnN

Uan Ubn Ucn

SWa SWb SWc

Figure 5. Simplified three-phase two level inverter with load

In Fig. 6 the hexagon is divided in six sectors, and any reference voltage vector is represented

as combination of adjacent active and zero voltage vectors, e.g. the voltage vector �U∗ is

localized in sector I between active vectors �U1 and �U2, as is shown in Fig. 8, and considering

a enough short switching period, it is:

�U∗ · Tz = �U1 · T1 + �U2 · T2

�U∗ = �U1
T1

Tz
+ �U2

T2

Tz
(19)
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Figure 6. Switching and voltage vectors

Uab

Ubc

Uca

�U∗

|�U∗| = Udc

|�U1| = 2√
3

Udc

�U1

�U2�U3

�U4

�U5
�U6

�U0

�U7

α

β

LinearRegion

Figure 7. Linear region to work without overmodulation

The times T1 and T2 are calculated using trigonometric projections as is shown in Fig. 8, it is:

T1 =
|�U∗|
|�U1|

· Tz
sin(π

3 − φ)

sin( 2π
3 )

(20)

T2 =
|�U∗|
|�U2|

· Tz
sin(φ)

sin( 2π
3 )

(21)

Where T1 and T2 are the times of application of the active vectors in a switching period, TZ is

the switching period and φ is the angle between the reference voltage vector and the adjacent

active vector (�U1). If the sum of times T1 and T2 is minor of the switching period, the rest of

the time is apply the zero vectors, it is:

T0 = T7 = TZ − T1 − T2 (22)

348 Induction Motors – Modelling and Control
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�U1
T1
Tz

�U2
T2
Tz

�U∗

�U1

�U2

�U7

φ
2π
3

π
3 − φ

Figure 8. Voltage vector �U∗ and its components in sector I

Where T0 and T7 are the times of applications of zero vectors in a switching period. Once

calculated the times of applications of each adjacent voltage vectors the next step is to follow

a specific switching sequence for the symmetrical space vector modulation technique, this

one depends if the reference vector is localized in an even or odd sector, e.g. in Fig. 9 is

observed the optimum switching sequence and the pulse pattern for odd sector (�S0,�S1,�S2 and
�S7), however for even sector the switching sequence is contrary to the case for odd sector as is

shown in Fig. 10.

1 10 0 0 000

0 0 1 11 1 0 0

0 1 1 1 1 1 1 0

T0
4

T0
4

T7
4

T7
4

T1
2

T1
2

T2
2

T2
2

Tz

Ubc

�U1

�U2
�U3

�U0

�U7 �S1(100)

�S2(110)�S3(010)

�S0(000)

�S7(111)

I

II

α

β

Figure 9. Switching sequence for odd sector.
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0 1 1 1 1 1 1 0

T0
4

T0
4

T7
4

T7
4

T1
2

T1
2

T2
2

T2
2

Tz

Ubc

�U1

�U2
�U3

�U0

�U7 �S1(100)

�S2(110)�S3(010)

�S0(000)

�S7(111)

I

II

α

β

Figure 10. Switching sequence for even sector.
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The details about the implementation of SVM algorithm in MATLAB/Simulink are presented

in [3] in page 97.

3.3. Electromagnetic torque and stator flux estimation

The Figure 3 shows that the electromagnetic torque and the stator flux estimation depends of

the stator voltage and the stator current space vectors, therefore:

�ψs =
∫

(�us − Rs ·�is)dt (23)

The problem in this type of estimation is when in low speeds the back electromotive force

(emf) depends strongly of the stator resistance, to resolve this problem is used the current

model to improve the flux estimation as in [17]. The rotor flux represented in the rotor flux

reference frame is:

�ψrdq =
Lm

1 + sTr

�isdq − j
(ωψr

− ωr)Tr

1 + sTr

�ψrdq (24)

Where Tr = Lr/Rr is the rotor time constant. In this reference frame ψrq = 0 and substituting

this expression in the equation (24), it is:

ψrd =
Lm

1 + sTr
isd (25)

In the current model the stator flux is represented as:

�ψi
s =

Lm

Lr

�ψi
r +

LsLr − L2
m

Lr

�is (26)

Where �ψi
r is the rotor flux estimated in the equation (25). The voltage model is based in the

equation (1) and from there the stator flux in the stationary reference frame is:

�ψs =
1

s
(�vs − Rs�is − �Ucomp) (27)

With the aim to correct the errors associated with the pure integration and the stator resistance

variations with temperature, the voltage model is adapted through the PI controller.

�Ucomp = (Kp + Ki
1

s
)(�ψs − �ψi

s) (28)

The Kp and Ki coefficients are calculated with the recommendation proposed in [17]. The rotor

flux �ψr in the stationary reference frame is calculated as:

�ψr =
Lr

Lm

�ψs −
LsLr − L2

m

Lm

�is (29)

The estimator scheme shown in the Figure 11 works with a good performance in the wide

range of speeds.
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e−jθr ejθr

Eq. 30 te

LPF

arctan(ψrq/ψrd)

�ψs(�ψr)

�ψr(�ψs)

�ψs

�ψs

�ψr

�ψr

∫

�us
�is

�is

�isdq �ψrdq �ψi
r

�ψi
s

θ�ψr
θ�ψr

�Ucomp

+

+

+

−

−

−PI

Rs

Figure 11. Stator and rotor flux estimator, and electromagnetic torque estimator.

Where LPF means low pass filter. In the other hand, when the equations (27) and (29) are

replaced in (5) it is estimated the electromagnetic torque.

te =
3

2
P

Lm

Lr Lsσ
�ψr × �ψs (30)

4. Design of Takagi-Sugeno fuzzy controller

The Takagi-Sugeno Fuzzy controller takes as inputs the stator flux error Eψs
and the

electromagnetic torque error Eτ, and as outputs the quadrature components of the stator

voltage vector, represented in the stator flux reference frame. The first output (u∗
ds) takes a

linear combination of the inputs as a consequent part of the rules, similarly, the second output

(u∗
qs) takes the similar linear combination used in the first output but with the coefficients

interchanged how is shown in the Figure 12.

Fuzzi f ication De f uzzi f ication

Fuzzy

In f erence

Engine

Eψs

Eτ

u∗
ds

u∗
qs

If Eψs
is FE and Eτ is TE then u∗

qs = −bEψs
+ aEτ

If Eψs
is FE and Eτ is TE then u∗

ds = aEψs
+ bEτ

for u∗
ds

for u∗
qs

Figure 12. The structure of a fuzzy logic controller.

4.1. Membership functions

The Membership Functions (MF) for T-S fuzzy controller are shown in Figure 13 and

in Figure 14, for the stator flux error and the electromagnetic torque error, respectively.

These MF’s shape and parameters was found through trial and error method with multiple

simulations and with the knowing of the induction motor response for every test. This method

is know as subjective approach [22].
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The universe of discourse for the stator flux error input is defined in the closed interval [-0.5,

0.5]. The extreme MFs have trapezoidal shapes but the middle one takes triangular shape as

is shown in Figure 13. However, the universe of discourse for electromagnetic torque error

input is defined in the closed interval [-20, 20] but with the objective to see the shape of the
MFs only is shown the interval [-5, 5] in Figure 14, the shapes of these MF are similar to the first

input. For both inputs the linguistic labels N, Ze and P means Negative, Zero and Positive,

respectively.
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Figure 13. Membership function for stator flux error input (Eψs )
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Figure 14. Membership function for electromagnetic torque error input (Eτ)

4.2. The fuzzy rule base

The direct component of the stator voltage u∗
ds is determined by the rules of the form:

Rx : if Eψs
is FE and Eτ is TE then u∗

ds = aEψs
+ bEτ

However, the quadrature component of the stator voltage u∗
qs is determined by the rules of the

form:

Ry : if Eψs
is FE and Eτ is TE then u∗

qs = −bEψs
+ aEτ

Where FE = TE = {N, ZE, P} are the fuzzy sets of the inputs and, a and b are coefficients of

the first-order polynomial function typically present in the consequent part of the firs-order

Takagi-Sugeno fuzzy controllers.
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For instance, when the consequent function of the rule Ri is a real number, the consequent

function is a zero-order polynomial and we have a zero-order controller. If the consequent

function is a linear we have first-order controller [21].

Ri : if X is Ai and Y is Bi then z = fi(X, Y)

The rule base to calculate u∗
ds and u∗

qs is shown in Table 2. The product is the conjunction

operator and the weighted average (wtaver) is the defuzzification method used to set the

controller in the MATLAB fuzzy editor.

E�s / Eø N ZE P

N u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

ZE u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

P u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

u∗
ds = aFe + bTe

u∗
qs = −bFe + aTe

Table 2. Fuzzy rules for computation of u∗
ds and u∗

qs

5. Simulation results

The simulations were performed using MATLAB simulation package which include Simulink

block sets and fuzzy logic toolbox. The switching frequency of PWM inverter was set to be

10kHz, the stator reference flux considered was 0.47 Wb and the coefficients considered were

a = 90 and b = 2. In order to investigate the effectiveness of the proposed control system and

in order to check the closed-loop stability of the complete system, we performed several tests.

We used different dynamic operating conditions such as: step change in the motor load (from

0 to 1.0 pu) at fifty percent of rated speed, no-load sudden change in the speed reference (from

0.5 pu to -0.5 pu), and the application of an arbitrary load torque profile at fifty percent of

rated speed. The motor parameters are given in Table 3.

Rated voltage (V) 220/60Hz
Rated Power (HP) 3
Rated Torque (Nm) 11.9
Rated Speed (rad/s) 179
Rs, Rr(Ω) 0.435, 0.816
Lls, Llr (H) 0.002, 0.002
Lm (H) 0.0693

J(Kgm2) 0.089
P (pole pairs) 2

Table 3. Induction Motor Parameters [16]

The Figure 15 illustrates the torque response of the DTC-SVM scheme with T-S fuzzy

controller when the step change in the motor load is apply. The electromagnetic torque tracked

the reference torque and in this test is obtained the following good performance measures: rise

time tr = 1.1ms, settling time ts = 2.2ms and torque ripple ripple = 2.93%. Also is observed

that the behavior of the stator current is sinusoidal.
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Figure 15. Electromagnetic torque and stator current response for step change in the motor load at fifty
percent of rated speed

The Figure 16 presents the results when an arbitrary torque profile is imposed to DTC-SVM

scheme with T-S fuzzy controller. In the first sub-figure the electromagnetic torque tracked
the reference torque as expected, and in the next one the sinusoidal waveforms of the stator

currents is shown. The Figure 17 shows space of the quadrature components of the stator flux

and it shows the circular behavior of the stator flux when the torque profile is applied, and in

consequence the proposed controller maintain the stator flux constant.
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Figure 16. Electromagnetic torque and stator current response when is apply the load torque profile at
fifty percent of rated speed
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Figure 17. Space of the stator flux quadrature components.

The Figure 18 shows the behavior of the rotor angular speed ωr, the electromagnetic torque

and the phase a stator current waveform when a step change in the reference speed from 0.5 pu

to -0.5 pu is imposed, with no-load. The torque was limited in 1.5 times the rated torque how

it was projected and the sinusoidal waveforms of the stator current shown that this control

technique allowed also a good current control because it is inherent to the algorithm control
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Figure 18. Rotor angular speed, electromagnetic torque and phase a stator current when was apply the
no-load sudden change in the speed reference at fifty percent of rated speed

355
The Takagi-Sugeno Fuzzy Controller Based Direct Torque Control 
with Space Vector Modulation for Three-Phase Induction Motor



16 Will-be-set-by-IN-TECH

proposed in this chapter. All the test results showed the good performance of the proposed

DTC-SVM scheme with T-S fuzzy controller.

6. Conclusion

This chapter presents the DTC-SVM scheme with T-S fuzzy controller for the three-phase

IM. The conventional DTC-SVM scheme takes two PI controllers to generate the reference

stator voltage vector. To improve the drawback of this conventional DTC-SVM scheme is

proposed the Takagi-Sugeno fuzzy controller to substitute both PI controllers. The proposed

controller calculates the quadrature components of the reference stator voltage vector in the

stator flux reference frame. The rule base for the proposed controller is defined in function

of the stator flux error and the electromagnetic torque error using trapezoidal and triangular

membership functions. The direct component of the stator voltage takes a linear combination

of its inputs as a consequent part of the rules, however, the quadrature component of the

stator voltage takes the similar linear combination used in the first output but with the

coefficients interchanged, not to be necessary another different coefficients values for this

output. Constant switching frequency and low torque ripple are obtained using space vector

modulation technique.

Simulations at different operating conditions have been carried out. The simulation
results verify that the proposed DTC-SVM scheme with T-S fuzzy controller achieved good

performance measures such as rise time, settling time and torque ripple as expected, It shown

the fast torque response and low torque ripple in a wide range of operating conditions such

as step change in the motor load, no-load sudden change in the speed reference, and the

application of an arbitrary load torque profile. These results validate the proposed scheme.
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