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1. Introduction 

Generally, the electric induction motors are designed for supply conditions from energy 

sources in which the supply voltage is a sinusoidal wave. The parameters and the functional 

sizes of the electric motors are guaranteed by designers only for it. If the electric motor is 

powered through an inverter, due to the presence in the input voltage waveform of superior 

time harmonics, both its parameters and its functional characteristic sizes will be more or 

less different from those in the case of the sinusoidal supply. The presence of these 

harmonics will result in the appearance of a deforming regime in the machine, generally 

with adverse effects in its operation. Under loading and speed conditions similar to those in 

the case of the sinusoidal supply, it is registered an amplification of the losses of the 

machine, of the electric power absorbed and thus a reduction in efficiency. There is also a 

greater heating of the machine and an electromagnetic torque that at a given load is not 

invariable, but pulsating, in rapport with the average value corresponding to the load. The 

occurrence of the deforming regime in the machine is inevitable, because any inverter 

produces voltages or printed currents containing, in addition to the fundamental harmonic, 

superior time harmonics of odd order. The deforming regime in the electric machine is 

unfortunately reflected in the supply power grid that powers the inverter. Generalizing, the 

output voltage harmonics are grouped into families centered on frequencies: 

    
j f c f 1

f Jm f Jm f    J 1, 2, 3, ... , (1) 

and the various harmonic frequencies in a family are: 

          
j c f c f 1

f f kf (Jm k)f Jm k f , (2) 
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with  

   
f

Jm k  (3) 

In the above relations, mf represents the frequency modulation factor, f1 is the fundamental’s 

frequency and fc is the frequency of the control modulating signal. Whereas the harmonic 

spectrum contains only ν order odd harmonics, in order that (Jmf±k) is odd, an odd J determines 

an even k and vice versa. The present chapter aims to analyze the behavior of the induction 

motor when it is supplied through an inverter. The purpose of this study is to develop the 

theory of three-phase induction machine with a squirrel cage, under the conditions of the 

non-sinusoidal supply regime to serve as a starting point in improving the methodology of 

its constructive-technological design as advantageous economically as possible. 

2. The mathematical model of the three-phase induction motor in the case 

of non-sinusoidal supply 

In the literature there are known various mathematical models associated to induction 

machines fed by static frequency and voltage converters. The majority of these models are 

based on the association between an induction machine and an equivalent scheme 

corresponding to the fundamental and a lot of schemes corresponding to the various ν 

frequencies, corresponding to the Fourier series decomposition of the motor input voltage - 

see Fig. 1 (Murphy & Turnbull, 1988). In this model the skin effect is not considered. 
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   a)               b) 

Figure 1. Equivalent scheme of the machine supplied through frequency converter: a) for the case of 

fundamental; b) for the  order harmonics (positive or negative sequence). 

For the equivalent scheme in Fig.1.a, corresponding to the fundamental, the electrical 

parameters are defined as: 

      
1 1n 1 1n1 1 1 1

R R R ; X X aX ;  

      ' ' ' ' ' '

2 2n 2 2n2 1 2 1
R R R ; X X aX ;  

       2

m mn m mnm 1 m 1
R R a R ; X X aX ;  (4) 
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 

 
 

'
'

2 1 '2
2n

1

R R a
R

s s c
 

In relations (4), R1n, X1n, R'2n, X'2n, Rmn, Xmn represents the values of the parameters R1, X1, R'2, 

X'2, Rm and Xm in nominal operating conditions (fed from a sinusoidal power supply, rated 

voltage frequency and load) and  

  


  


1 1 1

1n 1n 1n

f n
a ;

f n
 

 
    1 1 1

1n 1 1n

n n n n n
c s a

n n n
  (5)  

In the relations (5), f1 and f1n are random frequencies of the rotating magnetic field, and the 

nominal frequency of the rotating magnetic field respectively. For  order harmonics, the 

scheme from Fig. 1.b is applicable. The slip s(), corresponding to the  order harmonic is: 

  


   
   


 1

1 1

n n n 1 c 1
s 1 1

n n a
,  (6) 

where sign (-) (from the first equality) corresponds to the wave that rotates within the sense 

of the main wave and the sign (+) in the opposite one. For the case studied in this chapter - 

that of small and medium power machines – the resistances R1() and reactances X1() values 

are not practically affected by the skin effect. In this case we can write: 

       
1 1n1 1 1

R R R R ,   (7)  

                 
11 1 1 1

X L L ,  (8) 

where L1σ() is the stator dispersion inductance corresponding to the  order harmonic. If it is 

agreed that the machine cores are linear media (the machine is unsaturated), it results that 

the inductance can be considered constant, independently of the load (current) and flux, one 

can say that: 

        
11 1 1

L L L   (9) 

By replacing the inductance L1σ() expression from relation (9) in relation (8), we obtain: 

         
1 1 1 1n1

X L X aX   (10) 

For the rotor resistance and rotor leakage reactance, corresponding to the  order harmonic, 

both reduced to the stator the following expressions were established: 

       ' ' ' '

2 2n2 2 1
R R R R ,  (11) 

         ' ' '

2 2n2
X X a X   (12) 
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The magnetization resistance corresponding to the  order harmonic, Rm, is given by the 

relation: 

      "

2 2

mnm K
R k a R  (13) 

kK” is a coefficient dependent on iron losses and on the magnetic field variation. The 

magnetization reluctance corresponding to the magnetic field produced by the  order 

harmonic is: 

      ' mnm K
X k a X   (14) 

Further the author intends to establish a single mathematical model associated to induction 

motors, supplied by static voltage and frequency converter, which consists of a single 

equivalent scheme and which describes the machine operation, according to the presence in 

the input power voltage of higher time harmonics. For this, the following simplifying 

assumptions are taken into account:  

- the permeability of the magnetic core is considered infinitely large comparing to the air 

permeability and the magnetic field lines are straight perpendicular to the slot axis; 

- both the ferromagnetic core and rotor cage (bar + short circuit rings) are homogeneous 

and isotropic media;  

- the marginal effects are neglected, the slot is considered very long on the axial direction. 

The electromagnetic fields are considered, in this case plane-parallels;  

- the skin effect is taken into account in the calculations only in bars that are in the transverse 

magnetic field of the slot. For the bar portions outside the slot and in short circuit rings, 

current density is considered as constant throughout the cross section of the bar;  

- the passing from the constant density zone into the variable density zone occurs 

abruptly;  

- in the real electric machines the skin effect is often influenced by the degree of 

saturation but the simultaneous coverage of both phenomena in a mathematical 

relationships, easily to be applied in practice is very difficult, even precarious. Therefore, 

the simplifying assumption of neglecting the effects of saturation is allowed as valid in 

establishing the relationships for equivalent parameters; 

- the local variation of the magnetic induction and of current density is considered 

sinusoidal in time, both for the fundamental and for each  harmonic; 

- one should take into account only the fundamental space harmonic of the EMF.  

Under these conditions of non-sinusoidal supply, the asynchronous motor may be associated to 

an equivalent scheme, corresponding to all harmonics. The scheme operates in the 

fundamental frequency f1(1) and it is represented in Fig. 2. According to this scheme, it can be 

formally considered that the motors, in the case of supplying through the power frequency 

converter (the corresponding parameters and the dimensions of this situation are marked 

with index "CSF") behave as if they were fed in sinusoidal regime at fundamental’s 

frequency, f1(1) with the following voltages system: 



 
The Behavior in Stationary Regime of an Induction Motor Powered by Static Frequency Converters 

 

49 

    
                

   
A 1(CSF) 1 B 1(CSF) 1 C 1(CSF) 1

2 2
u 2 U sin t ; u 2 U sin t ; u 2 U sin t

3 3
, (15) 

where, 


 2 2

1(CSF) 1(1) 1( )
1

U U U   (16) 

1( )
U is the phase voltage supply corresponding to the  order harmonic. Corresponding to 

the system supply voltages, the current system which go through the stator phases is as follows: 

 

    
   

   


      

           

 
  

        
  

A 11 CSF 1 CSF

B 11 CSF 1 CSF

C 11 CSF 1 CSF

i 2 I sin t

2
i 2 I sin t

3

4
i 2 I sin t

3

,  (17) 

where I1(CSF) is given by: 

 


 2 2

1(CSF) 1(1) 1( )
1

I I I   (18) 

 

Figure 2. The equivalent scheme of the asynchronous motor powered by a static frequency converter. 

Power factor in the deforming regime is defined as the ratio between the active power and 

the apparent power, as follows: 

  
 

 

 

   
  

1 CSF 1 CSF

CSF

1 CSF 1 CSF 1 CSF

P P

S U I
  (19) 

If we consider the non-sinusoidal regime, the active power absorbed by the machine P1(CSF) is 

defined, as in the sinusoidal regime, as the average in a period of the instantaneous power. 

The following expression is obtained: 
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                   
 

        
T

1 1 11 CSF 1 1 1 1 1 1
1 10

1
P p dt U I cos U I cos U I cos

T
  (20) 

Therefore, the active power absorbed by the motor when it is supplied through a power 

static converter is equal to the sum of the active powers, corresponding to each harmonic 

(the principle of superposition effects is found). In relation (20), cos(1) is the power factor 

corresponding to the  order harmonic having the expression: 

  

 
 

 

 
 

 
    










  




 
 
   
 
 

'

2

1

1 2
'

2
2 '

1 1 2

R
R

s
cos

R
R X X

s

  (21) 

The apparent power can be defined in the non-sinusoidal regime also as the product of the 

rated values of the applied voltage and current: 

       
1 CSF 1 CSF 1 CSF

S U I ,  (22) 

Taken into account the relations (20), (21) and (22), the relation (19) becomes: 

  

     

        

  


 

  
 

  



 
1 1 1 1 1 1

1 1 1 1 1 1
1

CSF 2 2 2 2

1 1

U I cos U I cos

U U I I
  (23) 

Because Δ(CSF)≤1, formally (the phase angle has meaning only in harmonic values) an angle 

1(CSF) can be associated to the power factor Δ(CSF), as:      
1 CSF CSF

cos . With this, the 

relation (23) can be written: 

  

 

 

 
 

 

 

 

 

1 1

1 1
1 11 1

1 CSF 2 2

1 1

1 11 1 1 1

U I
cos cos

U I
cos

U I
1 1

U I

 




 

 

  

 
   
     
   
   



 

  (24) 

If one takes into account the relation (Murphy&Turnbull, 1988): 

 
 

 

 

 

 
  
 

1 1

*

1r sc1 1 1 1

I U1 1

I Uf x
,  (25) 

where x *sc is the reported short-circuit impedance, measured at the frequency f1 = f1n , 

relation (24) becomes: 
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  

 

 
 

 

 

 

 






 

 

 
     
     

      
                          



 

2

1

1 * 1
1 1r sc 1 1

1 CSF
2 2

1 1

*
1 1 1r sc1 1 1 1

U1 1
cos cos

Uf x
cos

U U1 1
1 1

U Uf x

  (26) 

3. The determination of the equivalent parameters of the stator winding 

The equivalent parameters of the scheme have been calculated at the fundamental’s frequency, 

under the presence of all harmonics in the supply voltage. Under these conditions, we note 

by pCu1(CSF) the losses that occur in the stator winding when the motor is supplied through a 

power frequency converter. These losses are in fact covered by some active power absorbed by 

the machine from the network, through the converter, P1(CSF). According to the principle of 

the superposition effects, it can be considered:  

                
 

    2 2

Cu1 CSF Cu1 1 Cu1 1 1 1 1 1 1
1 1

p p p 3R I 3 R I   (27) 

Further, the stator winding resistance corresponding to the fundamental, R1(1) and stator 

winding resistances corresponding to the all higher time harmonics R1(), are replaced by a 

single equivalent resistance R1(CSF), corresponding to all harmonics, including the 

fundamental. The equalization is achieved under the condition that in this resistance the 

same loss pCu1(CSF) occurs, given by relation (27), as if considering the “” resistances R1(), 

each of them crossed by the current I1(). This equivalent resistance, R1(CSF), determined at the 

fundamental’s frequency, is traversed by the current I1(CSF) , with the expression given by 

(18). Therefore:  

            


     
 

2 2 2

Cu1 CSF 1 CSF 1 CSF 1 CSF 1 1 1
1

p 3R I 3R I I   (28) 

Making the relations (27) and (28) equal, it results: 

                     
  

     
         

     
  2 2 2 2 2 2

1 CSF 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1

3R I I 3R I I 3R I I ,   (29) 

from which: 

 R1(CSF) = R1(1) = R1 .  (30) 

Applying the principle of the superposition effects to the reactive power absorbed by the 

stator winding QCu1 (CSF), the following expression is obtained:  

                
 

     2 2

Cu1 CSF Cu1 1 Cu1 1 1 1 1 1 1
1 1

Q Q Q 3 X I 3 X I   (31) 
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As in the previous case, the stator winding reactance corresponding to the fundamental, X1(1) 

(determined at the fundamental’s frequency f1(1)) and the stator winding reactances, 

corresponding to all higher time harmonics X1() (determined at frequencies f1()=f1 where 

Jmf±k) are replaced by an equivalent reactance, X1(CSF), determined at fundamental’s 

frequency. This equivalent reactance, traversed by the current I1(CSF), conveys the same 

reactive power, QCu1(CSF) as in the case of considering “” reactances X1(), (each of them 

determined at f1() frequency and traversed by the current I1()). Following the equalization, 

the following expression can be written: 

            


 
   

 
2 2 2

Cu1 CSF 1 CSF 1 CSF 1 CSF 1 1 1
1

Q 3X I 3X I I   (32) 

Making the relations (31) and (32) equal, it results: 

                  
  

   
         

   
  2 2 2 2 2 2

1 11 CSF 1 1 1 1 1 1 1 1 1 1 1
1 1 1

X I I X I X I X I I   (33) 

One can notice the following:  

 
1 CSF

X1

1

X
k

X
 

the factor that highlights the changes that the reactants of the stator phase value suffer in the 

case of a machine supplied through a power frequency converter, compared to sinusoidal 

supply, both calculated at the fundamental’s frequency. From relations (25) and (33) it follows: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

      
                        
      
                     

 

 

2 22 2

1 1

* 2 *
1 11r sc 1r sc1 1 1 11 CSF

X1 2 22 2
1

1 1

* 2 2 *
1 11r sc 1r sc1 1 1 1

U U1 1 1 1
1 1

U Uf x f xX
k

X U U1 1 1 1
1 1

U Uf x f x

 (34) 

where:  

*

(1)

sc
sc

X
X

Z
  

- is the short circuit impedance reported, corresponding to the frequency f1=f1n and f1r is the 

reported frequency. One can notice that: kX1>1. With the equivalent resistance given by (30) 

and the equivalent reactance resulting from the relationship (34) we can now write the relation 

for the equivalent impedance of the stator winding, Z1(CSF) covering all frequency harmonics 

and including the fundamental: 

           1 CSF X1 11 CSF 1 CSF 1 CSF
Z R jX R jk X   (35) 
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4. Determining the equivalent global change parameters for the power 

rotor fed by the static frequency converter  

Further, it is considered a winding with multiple cages whose bars (in number of "c") are placed 

in the same notch of any form, electrically separated from each other (see Fig. 3). These bars 

are connected at the front by short-circuiting rings (one ring may correspond to several bars 

notch). This "generalized" approach, pure theoretically in fact, has the advantage that by its 

applying the relations of the two equivalent factors kr(CSF) and kx(CSF), valid for any notch type 

and multiple cages, are obtained. The rotor notch shown in Fig. 3 is the height hc and it is 

divided into "n" layers (strips), each strip having a height hs = hc/n. The number of layers "n" 

is chosen so that the current density of each band should be considered constant throughout 

the height hs (and therefore not manifesting the skin effect in the strip). The notch bars are 

numbered from 1 to c, from the bottom of the notch. The lower layer of each bar is identified 

by the index "i" and the top layer by the index "s”. Thus, for a bar with index  characterized 

by a specific resistance  and an absolute magnetic permeability, the lower layer is noted 

with Ni and the extremely high layer with Ns. The current that flows through the bar  is 

noted with ic (Ic - rated value). The length of the bar, over which the skin effect occurs, is L. 

For the beginning, let us consider only the presence of the fundamental in the power supply, 

which corresponds to the supply pulsation, ω1(1)=ω1=2πf1. In this case: 
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,  (36) 
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  (37) 

where b and bε are the width of  and ε order strips and Ψδnσ(1) is the  bar flux 

corresponding to the fundamental of the own magnetic field, assuming that for the  order 

strip, the magnetic linkage corresponds to a constant repartition of the fundamental current 

density on the strip.  
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Figure 3. Notch generalized for multiple cages. 
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If in the motor power supply one considers only the  order harmonic which corresponds to 

the supply pulsation 1()=1, the relations (36) and (37) remain valid with the following 

considerations: index "1" is replaced by index "" and the rotor phenomena are with the 

pulsation 2() given by the relation:  

        

 
          


12 1

1 s
s 1  ,  (38) 

Subsequently we shall consider the real case, where in the  bar both the fundamental and  

order time harmonics are present. For this, the equivalent d.c. global factor of the  bar 

resistance modification is calculated with the relation: 

  
 

 

 

 

 


   

 
CSF ~ CSF ~

r CSF

CSF CSF

p R
k

p R
 , (39) 

where p(CSF)~ represents the total a.c. losses in  bar (considering the appropriate skin effect 

for all harmonics) and p(CSF)- represents the bar  total losses, without considering the 

repression phenomenon. The a.c. total losses in the  bar are obtained by applying the effects 

superposition principle by adding all the  bar a.c. losses caused by each  order time, 

including the fundamental. Therefore one can obtain: 

         


 CSF ~ 1 ~
1

p p p , (40) 

The a.c. loss in  bar, corresponding to the fundamental, p(1)~, is calculated with the 

following relation: 

            2

1 ~ c 1 r 1
p I k R  (41) 

In the same way, the expression of the  bar a.c. losses produced by some  order time 

harmonic is obtained:  

                         2 2

~ c ~ c r
p I R I k R   (42) 

By replacing the relations (41) and (42) in relation (40), it results: 

                                   
 

 
          

 
 2 2 2 2

CSF ~ c 1 r 1 c r c 1 r 1 c r
1 1

p I k R I k R R I k I k .  (43) 

The  bar losses without considering the repression phenomenon in the bar are calculated 

using the following relationship: 

         2

CSF c CSF
P I R , (44) 

where: 
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         


 2 2

c CSF c 1 c
1

I I I  (45) 

is the rated value of the current which runs through the  bar, in the case of a motor 

supplied by a frequency converter. By replacing the relation (45) in relation (44): 

           


 
  

 
2 2

CSF c 1 c
1

p R I I  (46) 

By replacing the relations (43) and (46) in (39) one obtains the expression for the global 

equivalent factor of the a.c. increasing resistance in the bar , kr (CSF), in case of the presence 

of all harmonics in the motor power: 
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 
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 
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2 2

r 1 r
c 1 r 1 c r 1 c 1CSF ~ 1

r CSF 2
2 2CSF

c
c 1 c

1
1 c 1

I
k kR I k I k Ip

k
p IR I I

1
I

 (47) 

The global equivalent change of a.c.  bar inductance modification has the expression:  

  
 

 




 


CSF ~

x CSF

CSF

q
k

q
 , (48) 

where q(CSF)~ is the a.c. total reactive power, in the  bar, and q(CSF)- is the total reactive 

power for a uniform current distribution  in the bar. Applying the superposition in the case 

of a.c. total reactive power, the following relationship is obtained: 

         


 CSF ~ 1 ~ ~
1

q q q  , (49) 

A.c. reactive power corresponding to the fundamental is calculated using the following 

relation: 

               2

1 n1 ~ x 1 c 1
q k L I  (50) 

In the same way, the expression of the a.c. reactive power in the  bar corresponding to the  

order harmonic is obtained: 

                                 2 2

1 n~ 1 n ~ c x c
q L I k L I  (51) 

By replacing the relations (50) and (51) in the relation (28), the expression for calculating the 

total a.c. reactive power in the  bar is obtained: 
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             
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q k L I k I k I

L k I k I

 (52) 

The total reactive power for an uniform current repartition in the  bar, in the case of a 

motor supplied through a frequency converter, is calculated by the relation: 

            


 CSF 1
1

q q q  , (53) 

where q(1)- is the reactive power corresponding to the fundamental, in case of an uniform 

current distribution Ic(1) in the  bar, while q()- is the reactive power corresponding to the  

harmonic in case of a uniform current distribution Ic() in the  bar: 

                     2 2

n 1 n1 1 1 c 1 c 1
q L I L I  . (54) 

Similarly, for the reactive power corresponding to the  harmonic, in the case of an uniform 

current Ic() repartition in the  bar, the following relation is obtained: 

                            2 2

n 1 n1 c c
q L I L I  (55) 

By replacing the relations (54) and (55) in relation (53), the expression for the total reactive 

power for a uniform current distribution in the  bar becomes:  

                      
 
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 
 2 2 2 2

1 n 1 n 1 nCSF c 1 c c 1 c
1 1

q L I L I L I I  (56) 

By replacing the relations (52) and (56) in relation (48), the expression for the global 

equivalent factor of the a.c. modifying inductance is obtained: 
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(57) 

5. Determining the equivalent parameters of the winding rotor, 

considering the skin effect 

The rotor winding’s parameters are affected by the skin effect, at the start of the motor and 

also at the nominal operating regime. For establishing the relations that define these 

parameters, considering the skin effect, the expression of the rotor phase impedance 
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reduced to the stator is used. For this, the rotor with multiple bars is replaced by a rotor 

with a single bar on the pole pitch. Initially only the fundamental present in the power supply 

of the motor is considered. The rotor impedance reduced to the stator has the equation: 

  
 

 
  

'

2 1' '

2 1 2 1

1

R
Z jX

s
  (58) 

Knowing that the induced EMF by the fundamental component of the main magnetic field 

from the machine in the pole pitch bars is: 

       ' '

2 1 2 1e 1U I Z  ,  (59) 

where, for the general case of multiple cages is valid the relation: 

    
 

 
  

 
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 

c c
e 1' '

2 1 c 1 1
1 11

U
I I   (60) 

In the relation (60), the number of the cages and respectively the rotor bars/ pole pitch is 

equal to “c”. In the case of motors with the power up to 45 [kW], c=1 (simple cage or high 

bars) or c=2 (double cage). Δ(1) is the determinant corresponding to the equation system: 

       


 
c

1 c 1e 1
1

U R I , =1, 2, …, c , (61) 

having the expression:  
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11 1 1n 1

1

n1 1 nn 1

R ... R

. .

. .

R ... R

 (62) 

Δδ(1) is the determinant corresponding to the fundamental obtained from Δ(1), where column 

δ is replaced by a column of 1: 
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       

 



 

 

11 1 1, 1 1 1, 1 1 1n 1

1
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R ... R 1 R ... R

. .

. .

R ... R 1 R ...R

  (63) 

Because in the first phase the steady-state regime is under focus, the phenomenon in the 

rotor corresponding to the fundamental has the pulsation ω2(1)=sω1, where s is the motor slip 

for the sinusoidal power supply in the steady-state regime. If the relation (63) is introduced 
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in (60), the expression of the equivalent impedance of the rotor phase reduced to the stator, 

corresponding to the fundamental valid when considering the skin effect is obtained: 

  
 

 






1'

2 1 c

1
1

Z   (64) 

Thus, the expressions for the rotor phase resistance and inductance reduced to the stator, 

corresponding to the fundamental, both affected by the skin effect can be written. 
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By considering in the motor power supply the ν harmonic only, similar expressions are 

obtained for the corresponding rotor parameters. Thus: 
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    

''
22

X m Z   (69) 

Further on we consider the real case of an electric induction machine fed by a frequency 

converter. For the beginning, the case of simple cage respectively high bars induction 

motors will be analyzed. Thus, a rotor phase resistance corresponding to the fundamental, 

R’2(1), and rotor phase resistance corresponding to higher order harmonics R’2(ν) are replaced 

by an equivalent resistance R’2(CSF), which dissipates the same part of active power as in the 

case of “ν” resistances. This equivalent resistance is defined at the fundamental’s frequency 

and it is traversed by the I’2(CSF) current: 

      


 ' ' 2 ' 2

2 CSF 2 1 2
1

I I I   (70) 

For the rotor phase equivalent resistance reduced to the stator, corresponding to all 

harmonics, defined at the fundamental’s frequency, one can write: 

      ' ' '

2c 2i2 CSF r CSF
R k R R  , (71) 
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where: R’2c is the resistance, considered at the fundamental’s frequency of a part from the 

rotor phase winding from notches and reported to the stator, R’2i is the resistance of a part of 

the rotoric winding, neglecting skin effect reported to the stator, kr(CSF) is the global 

modification factor of the rotor winding resistance, having the expression given by the 

relation (47). To track the changes that appear on the resistance of the rotor winding when 

the machine is supplied through a frequency converter, comparing to the case when the 

machine is fed in the sinusoidal regime, the kR’2 factor is introduced: 

 
 '

2

'

2 CSF

'R
2

R
k

R
 ,  (72) 

where R’2 is the rotor winding resistance reported to the stator, when the machine is fed in 

the sinusoidal regime: 

  ' ' '

2 r 2c 2i
R k R R  ,  (73) 

where kr is the modification factor of the a.c. rotor resistance, in the case of sinusoidal: 

krkr(1). It is obtained: 
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 (74) 

If both the nominator and the denominator of the second member on the relation (74) are 

divided by kr and then by R’2c, the following expression is obtained: 
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 ,  (75) 

where: 

  
'

2i
2 '

2c

R
r const.

R
, 

which is constant for the same motor, at a given fundamental’s frequency. For c=1, kkr>1, it 

results that kR’2 >1, which means that R’2(CSF)>R’2 also. The procedure is similar for the 

reactance. The rotor phase reactance, corresponding to the fundamental, X’2(1), and also the 

reactance corresponding to the higher harmonics, X’2(), are replaced by an equivalent 

reactance X’2(CSF). As in the case of the rotor resistance, we can write: 
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where X’2(CSF) is the equivalent reactance of the rotor phase, reduced to the stator, corre-

sponding to all harmonics, including the fundamental, on the fundamental’s frequency: 

     ' ' '

2c 2i2 CSF X CSF
X k X X  ,  (77) 

and X’2 is the reactance of the rotor phase reduced to the stator which characterizes the 

machine when it is fed in the sinusoidal regime: 

  ' ' '

2 X 2c 2i
X k X X  (78) 

In relation (77) and (78), we noted: X’2c -the reactance of the rotor winding part from the 

notches, reduced to the stator, in which the skin effect is present, X’2i- the reactance of the 

rotor winding phase where the skin effect can be neglected. kX(CSF) is defined in relation (57), 

where c1. Taking into account the relations (77) and (78), the relation (76) becomes: 
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where: 


'

2i
2 '

2c

X
x

X
,  

is a constant for the same motor at a given fundamental’s frequency kkX<1, with the 

consequences kX’2<1 and X’2(CSF)<X’2 . With this, the impedance of a rotor phase reported to the 

stator in the case of a machine supplied by a power converter, receives the form: 

  
 

 
  

'

2 CSF' '
2 CSF 2 CSF

CSF

R
Z jX

s
 , (80) 

where: 

  
   

 


' '

2 CSF 2 CSF

CSF

e1 CSF

R I
s

U
 (81) 

and: 

      


 2 2

e1 CSF e1 1 e1
1

U U U  (82) 

In the case of double cage induction motors, the rotor parameters are necessary to be determined 

for both cages. The principle of calculation keeps its validity from the above presented case, 
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the induction motors with simple cage, respectively cage with high bars, with one remark: 

in the relations for determining kr(CSF) respectively kx(CSF),it is considered that c=2 (for δ=1 the 

working work cage results and for δ=c=2 the startup cage results). The complex structure of the 

used algorithm and its component computing relations synthetically presented in the paper, 

request a very high volume of calculation. Therefore the presence of a computer in solving 

this problem is absolutely necessary. In the Laboratory of Systems dedicated to control the 

electrical servomotors from the Polytechnic University of Timişoara the software calculation 

CALCMOT has been designed. It allows the determination and the analysis of the factors 

kr(CSF), kx(CSF) and the parameters of the equivalent winding machine induction in the non-

sinusoidal regime. Further on, the expressions of the equivalent parameters for the magnetic 

circuit will be set (corresponding to all harmonics). Thus, to determine the equivalent 

resistance of magnetization R1m(CSF), we have to take into account that this is determined only 

by the ferromagnetic stator core losses which are covered directly by the stator power 

without making the transition through the stereo-mechanical power. By approximating that 

I01(CSF) Iμ(CSF), for R1m(CSF) it is obtained: 

  
   

 




z1 CSF j1 CSF

1m CSF 2

CSF

p p
R

3I
, (83) 

where pz1(CSF) and pj1(CSF) are global losses occurring respectively in the stator teeth and in the 

yoke due to the supplying of the motor through the frequency converter. In determining the 

total magnetization current Iμ(CSF), the principle of the superposition effects is applied: 

         


 2 2

CSF 1
1

I I I  (84) 

For the equivalent magnetizing reactance, corresponding to all harmonics, determined at the 

fundamental’s magnetization frequency f1(1), we obtain: 

  
 

 
    



 
   
 
 

2

2
1 CSF

1m CSF 1 CSF 1m CSF

CSF

U
X R R

I
 (85) 

For the equivalent impedance of the magnetization circuit it can be written: 

        1m CSF 1m CSF 1m CSF
Z R j X   (86) 

Given these assumptions and considering that the equivalent parameters were calculated 

reduced to the fundamental’s frequency (in the conditions of a sinusoidal regime), one may 

formally accept the calculation in complex quantities. Corresponding to the unique scheme 

shown in Fig. 2, the motor equations are: 

         1 CSF 1 CSF1 CSF e1 CSFU Z I U ;  
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         ' ' '

2 CSF 2 CSFe2 CSF e1 CSFU Z I U ;  

        m CSF 01 CSFe1 CSFU Z I ;  (87) 

       '

01 CSF 1 CSF 2 CSFI I I  

6. Experimental validation 

The induction machines which have been tested are: MAS 0,37 [kW] x 1500 [rpm] and MAS 

1,1 [kW] x 1500 [rpm]. To validate the experimental studies of the theoretical work, tests 

were made both for the operation of motors supplied by a system of sinusoidal voltages, 

and for the operation in case of static frequency converter supply. In Tables 1 and 2 are 

presented theoretical values (obtained by running the calculation program) and the results 

of measurements, for kR’2 and kX’2, factors, respectively the calculation errors of, for both 

motors tested. 

Nr. 
f1(1) 

[Hz] 

 2(CSF)

R ' 2

2

R'
k

R'
 

(calculated) 

kR’2 

(measured)

εkR’2 

[%] 

 2(CSF)

X ' 2

2

X'
k

X'
 

(calculated) 

kX’2 

(measured) 

εkX’2 

[%] 

1. 25 1,048 1,11 5,58 0,863 0,894 3,6 

2. 30 1,026 1,077 4,97 0,912 0,857 -6,03 

3. 40 1,021 1,061 3,77 0,944 0,884 -6,35 

4. 50 1,014 1,075 6,01 0,967 0,897 -7,23 

5. 60 1,011 1,079 6,82 0,975 0,914 -6,25 

Table 1. The theoretical and experimental values of factors kR'2 and kX'2, respectively the errors of 

calculation, corresponding to 0.37 [kW] x 1500 [rpm] MAS. 

 

Nr. 
f1(1) 

[Hz] 

 2(CSF)

R ' 2

2

R'
k

R'
 

(calculated) 

kR’2 

(measured)

εkR’2 

[%] 

 2(CSF)

X ' 2

2

X'
k

X'
 

(calculated) 

kX’2 

(measured) 

εkX’2 

[%] 

1. 20 1,098 1,185 7,92 0,812 0,821 1,108 

2. 30 1,041 1,120 7,58 0,886 0,916 3,386 

3. 40 1,034 1,106 6,96 0,926 0,891 -3,77 

4. 50 1,023 1,089 6,45 0,956 0,863 -9,72 

5. 60 1,018 1,082 6,28 0,966 0,871 -9,83 

Table 2. The theoretical and experimental values of factors kR’2 şi kX’2, respectively the errors of 

calculation, corresponding to 1.1 [kW] x 1500 [rpm] MAS. 
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Parameters of the winding machine supplied by the power converter can be calculated with 

errors less than 10 [%]. The main cause of errors is the assumption of saturation neglect. 

Even in this case the results can be considered satisfactory, which leads to validate the 

theoretical study carried out in the paper. 

7. Theoretical analysis of the magnetic losses 

7.1. Statoric iron losses 

7.1.1. The main stator iron losses 

A. The main stator teeth losses  

In the teeth, the magnetic field is alternant and generates this type of losses. In the case of 

the direct supplying system the total losses from the stator teeth pzl are being composed by 

the magnetic hysteresis losses, pzlh and the eddy currents losses, pzlw: 

           2 2 2

z1 zh h 1 zw w 1 z1m z1
p k f k f B G ,  (88) 

where: h is a material constant depending on the thickness and the quality of the steel 

sheet, f1 is the supplying frequency, Bzlm represents the magnetic induction in the middle of 

the stator tooth, Gzl represent the weight of the stator teeth, w is a material constant similar 

to h, depending on the sheet thickness and quality and  represents the thickness of the 

sheet. kzh and kzw are two factors which have the mission of underlining respectively the 

hysteresis losses increment and the eddy currents losses increment due to the mechanical 

modifications of the stator’s sheets. In the case of converters-mode supplying system, at the 

total losses from the stators teeth caused by the fundamental the losses induced by the 

higher time harmonics must be taken into account. For an exact analytic expression in the 

following it is proposed an analysis method of the iron losses based upon the equalization of 

the hysteresis losses with the eddy currents ones. For the start, only the fundamental is 

considered present in the supplying system. Distinct from the sine-mode supplying system, 

when in most cases the supplying frequency is f1=f1n=50 [Hz], is the fact that in the case of 

the inverter based supplying system the fundamental frequency can take values higher than 

50 [Hz]. At very high magnetization frequencies the influence of the skin effect must be 

taken in consideration. In the following, the minimum value of the magnetization frequency 

is being determined and for that the skin effect must be considered. The computing relation 

for the magnetization frequency f1 is the following: 

   
  

    

2

1
f  ,  (89) 

where ξ is the refulation factor. 

The minimum magnetization frequency fmin, computed with the relation (89), from which 

the skin effect must be considered is 140[Hz]. Consequently, in the fundamental - wave 
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supplying mode, at which usually we have f1≤120 [Hz], the principal losses from the stators 

teeth, can be written as following: 

                 
2

2 2 2

zh h 1 zw w 1 z1z1 1 z1m 1
p k f k f B G  ,  (90) 

where Bz1m(1) represents the magnetic induction from the middle of the tooth,    z1mz1m 1
B B . 

In order to be able to apply the principle of over position effects, the machine is being consid-

ered as being ideal; therefore we neglect the hysteresis phenomenon. For this, we proposed 

the equalization of the hysteresis losses with the eddy current losses, an assumption that 

allows the linearization of the machines’ equations. Through this equalization, the real 

machine – that is practically non-linear and in which the principal losses are made of a sum 

of two components: the one of eddy currents losses and the one of hysteresis losses - is being 

replaced with a theoretical linear machine, characterized only by its eddy currents losses. 

Energetically speaking, the two machines must be equivalent. As a following, if we take p*z1w(1) 

as the eddy currents losses corresponding to the fundamental, which appear in the 

theoretical model of the machine adopted, than these losses must be equal to the main losses 

from the stator teeth characteristic to the real machine, losses given through the relation: 

    *

z1w 1 z1 1
p p   (91) 

We consider these equivalent losses, p*z1w(1), equal to the real losses through the eddy currents 

corresponding to the fundamental, pz1w(1), multiplied with a kz1e(1) factor. This is an 

equalization factor of the real losses from the stators teeth with losses resulted only from 

”pz1w(1)” – fundamental-mode supplying state: 

       *

z1w 1 z1e 1 z1w 1
p k p   (92) 

We consider that through this equalization factor a covering value of the principal stator 

teeth losses is obtained. The relation (91) made explicit becomes: 

                          2 2 2 2 2 2

zh h 1 zw w 1 z1 zw w 1 z1z1m 1 z1e 1 z1m 1
k f k f B G k k f B G  . (93) 

Because of the fact that the usually used sheets have the thickness =0.5 [mm]=const, one 

can consider that: 

   
  z

z1e 1

1

K
k 1

f
  (94) 

where we have 

   2

z z
K K /  with 

 

 

h zh
z

w zw

k
K

k
 

In the following part we consider that only the  order harmonic is present in the supplying 

wave, characterized by the magnetization frequency f1()=f1. Therefore, the principal losses 
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in the stator teeth occurring in the real machine corresponding to the  order time harmonic 

must be corrected through the two factors kh() and kw(), which are a function of the reaction 

of the eddy currents: 

                             2 2 2 2

zh h 1 zw w 1 z1z1 h w z1m
p k k f k k f B G   (95) 

In the relation (95), Bz1m() represents the magnetic induction according to the  order time 

harmonic from the middle of the tooth. The factors kh() and kw() have the expressions: 

   
     

   
 

 

   

   

    

 
    

      
   

      h w

sh sin sh sin3
k ; k ;

2 ch cos ch cos
 (96) 

As in the case of the fundamental-wave supplying case, the real machine is replaced by a 

theoretical linear machine which has only losses given by the eddy currents. Reasoning as in 

the case of the fundamental, we obtain: 

   
 

 

 

 

 


 

      
   

h hz z
z1e 2

1 1w w

k kK K1
k 1 1

f k f k
 ,  (97) 

                                  * 2 2 2 2

zw w 1 z1z1 z1w z1e z1w z1e w z1m
p p k p k k k f B G  (98) 

where p*z1w(ν) are the equivalent losses corresponding to the ν harmonic. If we have pz1(CSF) 

for the losses from the stators teeth with the machine supplied by inverters, by applying the 

principle of over position effects for the theoretical linear model of the machine, it will be written: 

          
 

 



 


  
              

   


2

z1m2 2 2 2

zw w 1 z1z1 CSF z1m 1 z1e 1 z1e w
1 z1m 1

B
p k f B G k k k

B
  (99) 

In order to analyze the modifications suffered by the main losses in the stators teeth while 

the motor is supplied by an inverter versus the sine-mode supplying system, we analyze the 

ratio between the relations (99) and (88). After making the intermediary computations in 

which the relations (93), (94) and (99) are taken into account we obtain: 

 
   

 
   



 


 
       
 
 

z1 CSF z1e 2 2

pz1 w Bz1 ,1
1z1 z1e 1

p k
k 1 k k

p k
 ,  (100) 

where kBz(ν,1) = Bz1m(ν) / Bz1m(1). 

B. The principal losses in the stator yoke 

In the case of the direct – mode supplying system of the machine, the principal yoke losses 

consist of the hysteresis losses, pj1h and eddy currents losses, pj1w: 
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             2 2 2

j1 h 1 j1h w 1 j1w j1 j1
p f k f k B G   (101) 

where: Bjl is the magnetic induction in the stator yoke, Gjl represents the weight of the stator 

yoke,  
j1w j1w1 j1w2

k k k , where kj1w1 is a coefficient that corresponds to the non uniform 

repartition of the magnetic induction in the yoke and kj1w2 is a coefficient that corresponds to 

the currents closing perpendicular to the sheets, through the places with imperfections in 

the sheets isolation layer and also in the wholes made in the cutting process. In the case on 

an inverter supplying system at the total losses from the stator yoke caused by the 

fundamental, the superior time harmonics losses must be added. In order to apply the 

principle of over-position effect the method is similar to the one used in the case of the principal 

losses in the teeth. We equalize energetically the real machine with the linear theoretical one 

where we consider only the eddy currents losses. As a following, for the fundamental 

supplying mode, the principal losses in the stator yoke for a real machine, pj1(1) are: 

                 2 2 2

h 1 j1h w 1 j1w j1j1 1 j1 1
p f k f k B G   (102) 

If we have p*j1w(1) as losses in eddy currents, than these must be equalized with the principal 

losses from the stator yoke described with the relation (102): 

     *

j1w 1 j1 1
p p  (103) 

These equivalent losses, p*j1w(1) are considered equal to the real eddy currents losses pj1w(1), 

multiplied with an equalizing factor of the real yoke losses with “pj1w(1)” type losses, kj1e(1): 

         *

j1w 1 j1e 1 j1w 1
p k p   (104) 

Similarly to point A, as a following of the equalization we obtain the relation: 

   
   

 
w w

j1e 1 2

11

K K
k 1 1

ff
,  (105) 

where we have:  

 

 

h j1h

w

w j1w

k
K

k
 and   

w
w 2

K
K  

As a following we consider present in the supplying system of the machine only the  order 

superior time harmonic. Because of the fact that the magnetization frequency f1() is the 

fundamental one multiplied with , the principal losses from the stator yoke which appear 

in the fundamental must be adjusted with the two coefficients: kh() and kw(). These factors 

take into account respectively the skin effect and the eddy currents reaction. 

                           2 2 2 2

h 1 j1h w 1 j1w j1j1 h w j1
p k f k k f k B G    (106) 
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In the relation (106), Bj1() represents the magnetic induction accordingly to the  order 

harmonic. Through the energetically equalization realized from the replacement of the real 

machine with the linear model, we obtain the equalizing factor of the stator yoke losses, 

with the “pj1w()” type losses: 

   
 

 

 

 

 


 

      
   

h hw w
j1e 2

1 1w w

k kK K1
k 1 1

f k f k
 (107) 

In conclusion, the principal losses in the stator yoke, corresponding to the  order time 

harmonic can be written by equalizing as: 

               *

j1 j1w j1e j1w
p p k p ,   (108) 

where: 

                   2 2 2 2

w 1 j1w j1j1w w j1
p k f k B G  (109) 

As a following we have considered the situation of the machine supplied by the fundamental 

and the superior time harmonics as well. Taking pj1(CSF) as the global losses occurring in the 

stator yoke due to the converter supplying mode, by applying the over position effect 

principle on the theoretical linear model we can write: 

 
         

 

 



 


  
               

   


2

j12 2 2 2

w 1 j1w j1j1 CSF j1 1 j1e 1 j1e w
1 j1 1

B
p f k B G k k k

B
 (110) 

In order to analyze the changes that the principal losses from the stator yoke suffer when the 

machine is being supplied through an inverter versus the sine-mode supplying case, we 

divide the relation (110) at (101). After finishing the computations we have: 

     

 
   



 


 
       
 
 

j1 CSF j1e 2 2

pj1 w Bj1 ,1
1j1 j1e 1

p k
k 1 k k

p k
 ,   (111) 

where: kBj(ν,1) = Bj1(ν) / Bj1(1). 

7.1.2. The supplementary stator iron losses 

A. Surface supplementary losses 

In the case of a network supplying mode, the magnetic induction distribution curve over the 

polar step is not very different from a sine-curve. The surface stator losses are given by the 

expression: 

       

 
             


1,5 2

c1 41
1 o c2 c2 2 2

c1

b1
P l D k N n k B

2
  (112) 
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In the relation (112) the significance of the sizes is the following: D is the inner diameter of 

the stator, c1 is the step of the stator slot and c2 is the step of the rotor slot, b41 is the opening 

of the stator slot, Nc2 is the number of stator slots, n is the rotation speed, 2 is a factor 

dependent on the ratio b42/ (b42 is the opening of the rotor slot), k2 is an air gap factor, ko is 

an adjustment factor which depends on the materials resistivity and its magnetic 

permeability. In the case of the inverter supplying method, due to the deforming state at the 

supplementary losses produced by the fundamental, the surface losses produced by the 

superior time harmonics must be considered. Because of the fact that the surface losses in 

the polar pieces are treated as the eddy current losses developed in the inductor sheets, we 

can apply the over position effect principle without any further parallelism. Therefore, the 

surface supplementary losses in the stator in the case of a machine supplied by inverters can 

be computed with the relation: 

         

 

 

 
 

                          


2

21,5
c1 41

o c2 c2 2 21 CSF 1
1c1 1

Bb1
P l D k N n k B 1

2 B
 (113) 

Dividing the supplementary losses in the stator surface when having an inverter supplying 

system for the machine, P1(CSF), by the supplementary losses in the stator surface when we 

have the sine-mode supplying system for the machine, P1, and making the intermediary 

computations we obtain the increment factor of the supplementary stator surface losses in 

the inverter versus the sine-mode supplying case, kP1, as following: 
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where kBδ(ν,1) = Bδ(ν) / Bδ(1). By analyzing the relation (114) one can notice the fact that the kP1 

factor tends to 1 because of the fact that the value is practically very low. Consequently, the 

surface supplementary losses increase due to the inverter supplying system to an extent that 

is not to be taken into consideration. 

B. The pulsation supplementary losses 

In the case of the sine-mode supplying system, the pulsation supplementary losses in the 

stator, provided that the magnetic field along the polar step is not much different from a 

sine-wave, has the following expression: 

    
  

          

2

2 22
P1 w wP1 c2 z1 z1m

c1

k1
P k N n G B

2 2
,   (115) 

where kwP1 is an increment coefficient of the stator losses by eddy currents due to processing, 

k is the total air gap factor and 2 is constant for the one and the same machine, depended 

on the opening of the stator slot and the air gap dimension. In the situation in which the 
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machine is supplied by inverters, by applying the over position effect principle, the following 

expression for the supplementary pulsation losses in the stator PP1(CSF) is obtained: 
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Dividing the pulsation stator losses in the case of the inverter supplying system PP1(CSF), by 

the pulsation stator losses in the case of sine-mode supplying system PP1, we obtain the 

increment factor of the supplementary pulsation losses in the inverter versus sine-wave 

supplying system, kPp1: 
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By analyzing the relation (117) we can state that in the case of an inverter supplied machine 

we have not obtained a significant increment of the pulsation losses in the stator due to the 

small value of the  
2

Bz1 ,1
k . 

7.2. Rotor iron losses 

7.2.1. Principal losses in the rotor iron 

A. The principal losses in the rotor’s teeth 

Firstly, only one superior time harmonic is considered present in the supplying system of 

the machine, of an average order . The real losses that this harmonic produces in the rotor 

teeth have the expression: 

                                   2 2 2 2 2

zh h 1 zw w 1 z2z2 h w z2m
p k k s f k k s f B G   (118) 

In the relation (118), Bz2m() represents the magnetic induction corresponding to the  order 

harmonic from the middle of the rotor tooth. In the theoretical model adopted, these losses 

given by the relation (118) are produced only by eddy currents: 

             *

z2 z2w z2e z2w
p p k p  ,   (119) 

where kz2e() is an equalizing factor of the real losses from the rotor teeth, only with the losses 

of “pz2w()” type, corresponding to the  order time harmonic. Developing the relation (119) 

by using the relation (118), after finishing the intermediary computations we obtain: 
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Therefore, the principal losses from the rotor teeth, corresponding to the  order time 

harmonic can be written by equalization as it follows: 
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zw w 1 z2z2 z2e w z2m
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In the conditions in which in the supplying system of the machine all the superior time 

harmonics are present, the principal losses in the rotor teeth can be written as: 

    


z2 CSF z2
1

p p   (122) 

B. The principal losses from the rotor’s yoke 

In the hypotheses in which in the supplying system only the  order harmonic is present, the 

real principal losses induced by it in the rotor yoke have the expression: 
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Through the energetic equalization, due to the replacement of the real machine by a 

theoretical linear model we can obtain the equality: 

             *

j2 j2w j2e j2w
p p k p   (124) 

Reasoning as in the previous cases, we can determine the equalizing factor of the real losses 

in the rotor yoke, only with losses of the type “pj2w()” type as it follows: 
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Consequently, the principal rotor yoke losses corresponding to the  order harmonic can be 

written by equalization in the form: 
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Disregarding all these, in the case of the inverter supplying system the total principal losses 

in the rotor yoke, pj2(CSF), are computed with the relation: 

      

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p p   (127) 

7.2.2. The supplementary losses in the rotor iron 

A. The surface supplementary losses 

If the machine is directly supplied from the power supply, the surface supplementary rotor 

losses are calculated with the relation: 



 
The Behavior in Stationary Regime of an Induction Motor Powered by Static Frequency Converters 

 

71 

    

 
         


c2 42

2 2

c2

b1
P p l 2

2
 ,   (128) 

where the specific rotor surface losses p2 have the expression: 
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1,5 2
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In the relations (128) and (129) we noted by b42 the opening of the rotor slot, Nc1 the number 

of rotor slots, 1 a factor dependent on the b41/ ratio and k1 the air gap factor. Proceeding 

similarly we can obtain the expression of the increment factor of the supplementary losses in 

the rotor surface while the machine is being supplied by inverters versus the sine-mode 

supplying system, kP2: 
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B. The supplementary pulsation losses 

The supplementary pulsation rotor losses, in the sine-mode supplying system have the 

following expression: 
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BP2 represents the pulsation induction in the rotor teeth. Consequently, taking into account 

the fact that: 
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we obtain:  

   
  



   P2 CSF 2

Pp2 B ,1
1P2

P
k 1 k 1

P
  (133) 

8. Conclusions  

This paper aims to study the theoretical behavior of asynchronous three-phase motor in the 

case of supplying through a power frequency converter. This study has aimed to develop 

the theory of the asynchronous three-phase motor in non-sinusoidal periodic regime to serve 

as a starting point in optimizing the design methodology. Given that the asynchronous three-

phase motor is fed through a static frequency converter, the machine operation in the 

presence of higher time harmonics in the supply voltage can be described by a single 

mathematical model. The model consists of a single equivalent scheme corresponding to all 

harmonics and it is defined at the fundamental frequency.  
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